Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 45(18): 10436-10451, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-28985428

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by Adenosine DeAminases acting on double-stranded RNA(dsRNA) (ADAR), occurs predominantly in the 3' untranslated regions (3'UTRs) of spliced mRNA. Here we uncover an unanticipated link between ADARs (ADAR1 and ADAR2) and the expression of target genes undergoing extensive 3'UTR editing. Using METTL7A (Methyltransferase Like 7A), a novel tumor suppressor gene with multiple editing sites at its 3'UTR, we demonstrate that its expression could be repressed by ADARs beyond their RNA editing and double-stranded RNA (dsRNA) binding functions. ADARs interact with Dicer to augment the processing of pre-miR-27a to mature miR-27a. Consequently, mature miR-27a targets the METTL7A 3'UTR to repress its expression level. In sum, our study unveils that the extensive 3'UTR editing of METTL7A is merely a footprint of ADAR binding, and there are a subset of target genes that are equivalently regulated by ADAR1 and ADAR2 through their non-canonical RNA editing and dsRNA binding-independent functions, albeit maybe less common. The functional significance of ADARs is much more diverse than previously appreciated and this gene regulatory function of ADARs is most likely to be of high biological importance beyond the best-studied editing function. This non-editing side of ADARs opens another door to target cancer.


Asunto(s)
Adenosina Desaminasa/metabolismo , Redes Reguladoras de Genes/fisiología , Neoplasias/genética , Edición de ARN , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3'/genética , Adenosina/metabolismo , Animales , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Inosina/metabolismo , Neoplasias/metabolismo , Células Tumorales Cultivadas
2.
J Hepatol ; 67(5): 979-990, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28647567

RESUMEN

BACKGROUND & AIMS: We investigated the functional role and clinical significance of stearoyl-CoA desaturase-1 (SCD1) mediated endoplasmic reticulum (ER) stress in regulating liver tumor-initiating cells (T-ICs) and sorafenib resistance, with the aim of developing a novel therapeutic strategy against hepatocellular carcinomas (HCCs). METHODS: We evaluated the clinic-pathological relevance of SCD1 and its correlation with sorafenib resistance in large cohorts of HCC clinical samples by qPCR and immunohistochemical analyses. Lentiviral-based overexpression and knockdown approaches were performed to characterize the functional roles of SCD1 in regulating liver T-ICs and sorafenib resistance. Molecular pathways mediating the phenotypic alterations were identified through RNA sequencing analysis and functional rescue experiments. The combinatorial effect of SCD1 inhibition and sorafenib was tested using a patient-derived tumor xenograft (PDTX) model. RESULTS: SCD1 overexpression was found in HCC, which was associated with shorter disease-free survival (p = 0.008, log rank test). SCD1 was found to regulate the populations of liver T-ICs; while its suppression by a SCD1 inhibitor suppressed liver T-ICs and sorafenib resistance. Interestingly, SCD1 was markedly upregulated in our established sorafenib-resistant PDTX model, and its overexpression predicts the clinical response of HCC patients to sorafenib treatment. Suppression of SCD1 forces liver T-ICs to differentiate via ER stress-induced unfolded protein response, resulting in an enhanced sensitivity to sorafenib. The PDTX#1 model, combined with sorafenib treatment and a novel SCD1 inhibitor (SSI-4), showed a maximal growth suppressive effect. CONCLUSIONS: SCD1-mediated ER stress regulates liver T-ICs and sorafenib sensitivity. Targeting SCD1 alone or in combination with sorafenib might be a novel personalized medicine against HCC. Lay summary: In this study, SCD1 was found to play a critical role in regulating liver tumor-initiating cells and sorafenib resistance through the regulation of ER stress-mediated differentiation. Targeting SCD1 in combination with sorafenib may be a novel therapeutic strategy against liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Hepáticas , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Estearoil-CoA Desaturasa/genética , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Resistencia a Antineoplásicos/genética , Hong Kong , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Niacinamida/administración & dosificación , Niacinamida/farmacocinética , Pruebas de Farmacogenómica , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/farmacocinética , Sorafenib , Análisis de Supervivencia
3.
Gut ; 63(5): 832-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23766440

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) is a heterogeneous tumour displaying a complex variety of genetic and epigenetic changes. In human cancers, aberrant post-transcriptional modifications, such as alternative splicing and RNA editing, may lead to tumour specific transcriptome diversity. DESIGN: By utilising large scale transcriptome sequencing of three paired HCC clinical specimens and their adjacent non-tumour (NT) tissue counterparts at depth, we discovered an average of 20 007 inferred A to I (adenosine to inosine) RNA editing events in transcripts. The roles of the double stranded RNA specific ADAR (Adenosine DeAminase that act on RNA) family members (ADARs) and the altered gene specific editing patterns were investigated in clinical specimens, cell models and mice. RESULTS: HCC displays a severely disrupted A to I RNA editing balance. ADAR1 and ADAR2 manipulate the A to I imbalance of HCC via their differential expression in HCC compared with NT liver tissues. Patients with ADAR1 overexpression and ADAR2 downregulation in tumours demonstrated an increased risk of liver cirrhosis and postoperative recurrence and had poor prognoses. Due to the differentially expressed ADAR1 and ADAR2 in tumours, the altered gene specific editing activities, which was reflected by the hyper-editing of FLNB (filamin B, ß) and the hypo-editing of COPA (coatomer protein complex, subunit α), are closely associated with HCC pathogenesis. In vitro and in vivo functional assays prove that ADAR1 functions as an oncogene while ADAR2 has tumour suppressive ability in HCC. CONCLUSIONS: These findings highlight the fact that the differentially expressed ADARs in tumours, which are responsible for an A to I editing imbalance, has great prognostic value and diagnostic potential for HCC.


Asunto(s)
Adenosina Desaminasa/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Edición de ARN , ARN Bicatenario/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirugía , Estudios de Casos y Controles , Línea Celular Tumoral , Supervivencia sin Enfermedad , Regulación hacia Abajo , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirugía , Masculino , Ratones , Persona de Mediana Edad , Recurrencia Local de Neoplasia/genética , Proteínas de Unión al ARN/metabolismo , Resultado del Tratamiento , Regulación hacia Arriba
4.
Genome Res ; 21(8): 1328-38, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21555364

RESUMEN

Maternally deposited mRNAs direct early development before the initiation of zygotic transcription during mid-blastula transition (MBT). To study mechanisms regulating this developmental event in zebrafish, we applied mRNA deep sequencing technology and generated comprehensive information and valuable resources on transcriptome dynamics during early embryonic (egg to early gastrulation) stages. Genome-wide transcriptome analysis documented at least 8000 maternal genes and identified the earliest cohort of zygotic transcripts. We determined expression levels of maternal and zygotic transcripts with the highest resolution possible using mRNA-seq and clustered them based on their expression pattern. We unravel delayed polyadenylation in a large cohort of maternal transcripts prior to the MBT for the first time in zebrafish. Blocking polyadenylation of these transcripts confirms their role in regulating development from the MBT onward. Our study also identified a large number of novel transcribed regions in annotated and unannotated regions of the genome, which will facilitate reannotation of the zebrafish genome. We also identified splice variants with an estimated frequency of 50%-60%. Taken together, our data constitute a useful genomic information and valuable transcriptome resource for gene discovery and for understanding the mechanisms of early embryogenesis in zebrafish.


Asunto(s)
ARN Mensajero/genética , Transcriptoma , Pez Cebra/embriología , Pez Cebra/genética , Cigoto/metabolismo , Animales , Secuencia de Bases , Genoma , ARN Mensajero/metabolismo , ARN Mensajero Almacenado/genética , ARN Mensajero Almacenado/metabolismo , Análisis de Secuencia de ARN , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Curr Microbiol ; 68(2): 227-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24121549

RESUMEN

The IncA/C plasmids are broad host-range vehicles which have been associated with wide dissemination of CMY-2 among Enterobacteriaceae of human and animal origins. Acquired metallo-ß-lactamases (MBLs) such as the IMP-type enzymes are increasingly reported in multidrug-resistant Gram-negative bacteria worldwide, particularly in Enterobacteriaceae. We described the complete sequence of the first IMP-4-encoding IncA/C2 plasmid, pIMP-PH114 (151,885 bp), from a sequence type 1 Klebsiella pneumoniae strain that was recovered from a patient who was hospitalized in the Philippines. pIMP-PH114 consists of a backbone from the IncA/C2 plasmids, with the insertion of a novel Tn21-like class 1 integron composite structure (containing the cassette array bla IMP-4-qacG-aacA4-catB3, followed by a class C ß-lactamase bla DHA-1 and the mercury resistance operon, merRTPCADE) and a sul2-floR encoding region. Phylogenetic analysis of the IncA/C repA sequences showed that pIMP-PH114 formed a subgroup with other IncA/C plasmids involved in the international spread of CMY-2, TEM-24 and NDM-1. Identical bla IMP-4 arrays have been described among different Enterobacteriaceae and Acinetobacter spp. in China, Singapore and Australia but the genetic context is different. The broad host range of IncA/C plasmids may have facilitated dissemination of the bla IMP-4 arrays among different diverse groups of bacteria.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Klebsiella pneumoniae/genética , Plásmidos/genética , beta-Lactamasas/genética , Antibacterianos/farmacología , Orden Génico , Genotipo , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Fenotipo , Filogenia
6.
Antiviral Res ; : 105961, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002800

RESUMEN

Baloxavir acid (BXA) is a pan-influenza antiviral that targets the cap-dependent endonuclease of the polymerase acidic (PA) protein required for viral mRNA synthesis. To gain a comprehensive understanding on the molecular changes associated with reduced susceptibility to BXA and their fitness profile, we performed a deep mutational scanning at the PA endonuclease domain of an A(H1N1)pdm09 virus. The recombinant virus libraries were serially passaged in vitro under increasing concentrations of BXA followed by next-generation sequencing to monitor PA amino acid substitutions with increased detection frequencies. Enriched PA amino acid changes were each introduced into a recombinant A(H1N1)pdm09 virus to validate their effect on BXA susceptibility and viral replication fitness in vitro. The I38T/M substitutions known to confer reduced susceptibility to BXA were invariably detected from recombinant virus libraries within 5 serial passages. In addition, we identified a novel L106R substitution that emerged in the third passage and conferred greater than 10-fold reduced susceptibility to BXA. PA-L106 is highly conserved among seasonal influenza A and B viruses. Compared to the wild-type virus, the L106R substitution resulted in reduced polymerase activity and a minor reduction of the peak viral load, suggesting the amino acid change may result in moderate fitness loss. Our results support the use of deep mutational scanning as a practical tool to elucidate genotype-phenotype relationships, including mapping amino acid substitutions with reduced susceptibility to antivirals.

7.
Curr Microbiol ; 67(4): 493-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23728748

RESUMEN

The IncX family of plasmids has recently been expanded to include at least four subtypes, IncX1-IncX4. The revised classification provides an opportunity for improving our understanding of the sequence diversity of the IncX plasmids and the resistance genes they carried. We described the complete nucleotide sequence of a novel IncX3 plasmid, pKPC-NY79 (42,447 bp) from a sequence-type 258 Klebsiella pneumoniae strain that was isolated from a patient who was hospitalized in New York, United States. In pKPC-NY79, the plasmid scaffold and genetic load region were highly similar to homologous regions in pIncX-SHV (IncX3, JN247852) and the bla KPC carrying pKpQIL (IncFIIk, GU595196), respectively, indicating that it has possibly arisen through recombination of plasmids. The bla KPC-2 gene, as part of a transposon Tn4401a, was found within the genetic load region. The backbone of pKPC-NY79 differs from pIncX-SHV by a deletion involving the gene tandem hns-topB (encoding H-NS protein and topoisomerase III, respectively) and a putative ATPase gene. Unexpectedly, the impact of the hns-topB deletion on host fitness and plasmid stability was found to be small. In conclusion, the findings contribute to a better understanding of the plasmid platforms carrying bla KPC and of variations in the backbone of the IncX3 plasmids.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Plásmidos/genética , beta-Lactamasas/genética , Anciano , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/aislamiento & purificación , Masculino , Plásmidos/metabolismo , Orina/microbiología , beta-Lactamasas/metabolismo
8.
J Infect Dis ; 206(3): 341-51, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22615319

RESUMEN

A scarlet fever outbreak occurred in Hong Kong in 2011. The majority of cases resulted in the isolation of Streptococcus pyogenes emm12 with multiple antibiotic resistances. Phylogenetic analysis of 22 emm12 scarlet fever outbreak isolates, 7 temporally and geographically matched emm12 non-scarlet fever isolates, and 18 emm12 strains isolated during 2005-2010 indicated the outbreak was multiclonal. Genome sequencing of 2 nonclonal scarlet fever isolates (HKU16 and HKU30), coupled with diagnostic polymerase chain reaction assays, identified 2 mobile genetic elements distributed across the major lineages: a 64.9-kb integrative and conjugative element encoding tetracycline and macrolide resistance and a 46.4-kb prophage encoding superantigens SSA and SpeC and the DNase Spd1. Phenotypic comparison of HKU16 and HKU30 with the S. pyogenes M1T1 strain 5448 revealed that HKU16 displays increased adherence to HEp-2 human epithelial cells, whereas HKU16, HKU30, and 5448 exhibit equivalent resistance to neutrophils and virulence in a humanized plasminogen murine model. However, in contrast to M1T1, the virulence of HKU16 and HKU30 was not associated with covRS mutation. The multiclonal nature of the emm12 scarlet fever isolates suggests that factors such as mobile genetic elements, environmental factors, and host immune status may have contributed to the 2011 scarlet fever outbreak.


Asunto(s)
Brotes de Enfermedades , Escarlatina/epidemiología , Escarlatina/microbiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/genética , Adolescente , Adulto , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano , Genómica , Hong Kong/epidemiología , Humanos , Lactante , Secuencias Repetitivas Esparcidas , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Fenotipo , Filogenia , Streptococcus pyogenes/efectos de los fármacos
9.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1313-1321, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32750872

RESUMEN

Shotgun metagenomics has enabled the discovery of antibiotic resistance genes (ARGs). Although there have been numerous studies benchmarking the bioinformatics methods for shotgun metagenomic data analysis, there has not yet been a study that systematically evaluates the performance of different experimental protocols on metagenomic species profiling and ARG detection. In this study, we generated 35 whole genome shotgun metagenomic sequencing data sets for five samples (three human stool and two microbial standard) using seven experimental protocols (KAPA or Flex kits at 50ng, 10ng, or 5ng input amounts; XT kit at 1ng input amount). Using this comprehensive resource, we evaluated the seven protocols in terms of robust detection of ARGs and microbial abundance estimation at various sequencing depths. We found that the data generated by the seven protocols are largely similar. The inter-protocol variability is significantly smaller than the variability between samples or sequencing depths. We found that a sequencing depth of more than 30M is suitable for human stool samples. A higher input amount (50ng) is generally favorable for the KAPA and Flex kits. This systematic benchmarking study sheds light on the impact of sequencing depth, experimental protocol, and DNA input amount on ARG detection in human stool samples.


Asunto(s)
Antibacterianos , Metagenómica , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Heces , Humanos , Metagenoma/genética , Metagenómica/métodos
10.
Cancer Res ; 82(17): 3102-3115, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35767704

RESUMEN

Accumulating evidence has demonstrated that drug resistance can be acquired in cancer through the repopulation of tumors by cancer stem cell (CSC) expansion. Here, we investigated mechanisms driving resistance and CSC repopulation in hepatocellular carcinoma (HCC) as a cancer model using two drug-resistant, patient-derived tumor xenografts that mimicked the development of acquired resistance to sorafenib or lenvatinib treatment observed in patients with HCC. RNA sequencing analysis revealed that cholesterol biosynthesis was most commonly enriched in the drug-resistant xenografts. Comparison of the genetic profiles of CD133+ stem cells and CD133- bulk cells from liver regeneration and HCC mouse models showed that the cholesterol pathway was preferentially upregulated in liver CSCs compared with normal liver stem cells. Consistently, SREBP2-mediated cholesterol biosynthesis was crucial for the augmentation of liver CSCs, and loss of SREBP2 conferred sensitivity to tyrosine kinase inhibitors, suggesting a role in regulation of acquired drug resistance in HCC. Similarly, exogenous cholesterol-treated HCC cells showed enhanced cancer stemness abilities and drug resistance. Mechanistically, caspase-3 (CASP3) mediated cleavage of SREBP2 from the endoplasmic reticulum to promote cholesterol biosynthesis, which consequently caused resistance to sorafenib/lenvatinib treatment by driving activation of the sonic hedgehog signaling pathway. Simvastatin, an FDA-approved cholesterol-lowering drug, not only suppressed HCC tumor growth but also sensitized HCC cells to sorafenib. These findings demonstrate that CSC populations in HCC expand via CASP3-dependent, SREBP2-mediated cholesterol biosynthesis in response to tyrosine kinase inhibitor therapy and that targeting cholesterol biosynthesis can overcome acquired drug resistance. SIGNIFICANCE: This study finds that cholesterol biosynthesis supports the expansion of cancer stem cell populations to drive resistance to tyrosine kinase inhibitor therapy in hepatocellular carcinoma, identifying potential therapeutic approaches for improving cancer treatment.


Asunto(s)
Carcinoma Hepatocelular , Caspasa 3 , Colesterol , Neoplasias Hepáticas , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Colesterol/biosíntesis , Resistencia a Antineoplásicos , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Células Madre Neoplásicas/patología , Inhibidores de Proteínas Quinasas/farmacología , Sorafenib/farmacología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
11.
Bioinformatics ; 26(3): 408-10, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20022974

RESUMEN

SUMMARY: The algorithm MGR enables the reconstruction of rearrangement phylogenies based on gene or synteny block order in multiple genomes. Although MGR has been successfully applied to study the evolution of different sets of species, its utilization has been hampered by the prohibitive running time for some applications. In the current work, we have designed new heuristics that significantly speed up the tool without compromising its accuracy. Moreover, we have developed a web server (webMGR) that includes elaborate web output to facilitate navigation through the results. AVAILABILITY: webMGR can be accessed via http://www.gis.a-star.edu.sg/~bourque. The source code of the improved standalone version of MGR is also freely available from the web site. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Reordenamiento Génico/genética , Genoma , Internet , Programas Informáticos , Algoritmos , Bases de Datos Genéticas , Filogenia , Sintenía
13.
PLoS Pathog ; 4(10): e1000178, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18927621

RESUMEN

Natural isolates of Burkholderia pseudomallei (Bp), the causative agent of melioidosis, can exhibit significant ecological flexibility that is likely reflective of a dynamic genome. Using whole-genome Bp microarrays, we examined patterns of gene presence and absence across 94 South East Asian strains isolated from a variety of clinical, environmental, or animal sources. 86% of the Bp K96243 reference genome was common to all the strains representing the Bp "core genome", comprising genes largely involved in essential functions (eg amino acid metabolism, protein translation). In contrast, 14% of the K96243 genome was variably present across the isolates. This Bp accessory genome encompassed multiple genomic islands (GIs), paralogous genes, and insertions/deletions, including three distinct lipopolysaccharide (LPS)-related gene clusters. Strikingly, strains recovered from cases of human melioidosis clustered on a tree based on accessory gene content, and were significantly more likely to harbor certain GIs compared to animal and environmental isolates. Consistent with the inference that the GIs may contribute to pathogenesis, experimental mutation of BPSS2053, a GI gene, reduced microbial adherence to human epithelial cells. Our results suggest that the Bp accessory genome is likely to play an important role in microbial adaptation and virulence.


Asunto(s)
Burkholderia pseudomallei/genética , Genoma Bacteriano , Islas Genómicas , Melioidosis/microbiología , Animales , Aves , Burkholderia pseudomallei/aislamiento & purificación , Burkholderia pseudomallei/patogenicidad , Análisis por Conglomerados , Perros , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Frecuencia de los Genes , Haplorrinos , Humanos , Mutación INDEL , Melioidosis/genética , Melioidosis/veterinaria , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , Porcinos , Factores de Virulencia/genética
14.
Mol Biol Evol ; 25(3): 549-58, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18162473

RESUMEN

Genome rearrangement events, including inversions and translocations, are frequently observed across related microbial species, but the impact of such events on functional diversity is unclear. To clarify this relationship, we compared 4 members of the Gram-negative Burkholderia family (Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cenocepacia) and identified a core set of 2,590 orthologs present in all 4 species (metagenes). The metagenes were organized into 255 synteny blocks whose relative order has been altered by a predicted minimum of 242 genome rearrangement events. Functionally, metagenes within individual synteny blocks were often related. The molecular divergence of metagenes adjacent to synteny breakpoints (boundary metagenes) was significantly greater compared with metagenes within blocks, suggesting an association between breakpoint locations and local fine-scale nucleotide alterations. This phenomenon, referred to as boundary element associated divergence, was also observed in Pseudomonas and Shigella, suggesting that this is a common phenomenon in prokaryotes. We also observed preferential localization of species-specific genes and insertion sequence element to synteny breakpoints in Burkholderia. Our results suggest that in prokaryotes, genome rearrangements may influence functional diversity through the enhanced divergence of boundary genes and the creation of foci for acquiring and deleting species-specific genes.


Asunto(s)
Burkholderia/genética , Evolución Molecular , Variación Genética , Genoma Bacteriano , Inestabilidad Genómica
15.
Emerg Microbes Infect ; 8(1): 662-674, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31084471

RESUMEN

Influenza defective interfering (DI) particles are replication-incompetent viruses carrying large internal deletion in the genome. The loss of essential genetic information causes abortive viral replication, which can be rescued by co-infection with a helper virus that possesses an intact genome. Despite reports of DI particles present in seasonal influenza A H1N1 infections, their existence in human infections by the avian influenza A viruses, such as H7N9, has not been studied. Here we report the ubiquitous presence of DI-RNAs in nasopharyngeal aspirates of H7N9-infected patients. Single Molecule Real Time (SMRT) sequencing was first applied and long-read sequencing analysis showed that a variety of H7N9 DI-RNA species were present in the patient samples and human bronchial epithelial cells. In several abundantly expressed DI-RNA species, long overlapping sequences have been identified around at the breakpoint region and the other side of deleted region. Influenza DI-RNA is known as a defective viral RNA with single large internal deletion. Beneficial to the long-read property of SMRT sequencing, double and triple internal deletions were identified in half of the DI-RNA species. In addition, we examined the expression of DI-RNAs in mice infected with sublethal dose of H7N9 virus at different time points. Interestingly, DI-RNAs were abundantly expressed as early as day 2 post-infection. Taken together, we reveal the diversity and characteristics of DI-RNAs found in H7N9-infected patients, cells and animals. Further investigations on this overwhelming generation of DI-RNA may provide important insights into the understanding of H7N9 viral replication and pathogenesis.


Asunto(s)
Virus Defectuosos/genética , Subtipo H7N9 del Virus de la Influenza A/crecimiento & desarrollo , Gripe Humana/patología , Gripe Humana/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Animales , Bronquios/virología , Virus Defectuosos/aislamiento & purificación , Modelos Animales de Enfermedad , Células Epiteliales/virología , Genoma Viral , Humanos , Ratones , Nasofaringe/patología , Nasofaringe/virología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , ARN Viral/aislamiento & purificación , Eliminación de Secuencia
16.
Cancer Res ; 78(9): 2332-2342, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29483095

RESUMEN

Frequent relapse and drug resistance in patients with hepatocellular carcinoma (HCC) can be attributed to the existence of tumor-initiating cells (TIC) within the tumor bulk. Therefore, targeting liver TICs may improve the prognosis of these patients. From transcriptome sequencing of 16 pairs of clinical HCC samples, we report that interleukin-1 receptor-associated kinase 1 (IRAK1) in the TLR/IRAK pathway is significantly upregulated in HCC. IRAK1 overexpression in HCC was further confirmed at the mRNA and protein levels and correlated with advanced tumor stages and poor patient survival. Interestingly, IRAK4, an upstream regulator of IRAK1, was also consistently upregulated. IRAK1 regulated liver TIC properties, including self-renewal, tumorigenicity, and liver TIC marker expression. IRAK1 inhibition sensitized HCC cells to doxorubicin and sorafenib treatment in vitro via suppression of the apoptotic cascade. Pharmacological inhibition of IRAK1 with a specific IRAK1/4 kinase inhibitor consistently suppressed liver TIC populations. We identified aldo-keto reductase family 1 member 10 (AKR1B10) as a novel downstream target of IRAK1, which was found to be overexpressed in HCC and significantly correlated with IRAK1 expression. Knockdown of AKR1B10 negated IRAK1-induced TIC functions via modulation of the AP-1 complex. Inhibition of IRAK1/4 inhibitor in combination with sorafenib synergistically suppressed tumor growth in an HCC xenograft model. In conclusion, targeting the IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway may be a potential therapeutic strategy against HCC.Significance: IRAK4/IRAK1/AP-1/AKR1B10 signaling pathway regulates cancer stemness and drug resistance and may be a novel therapeutic target in HCC. Cancer Res; 78(9); 2332-42. ©2018 AACR.


Asunto(s)
Aldehído Reductasa/metabolismo , Carcinoma Hepatocelular/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Aldo-Ceto Reductasas , Animales , Antineoplásicos/farmacología , Apoptosis/genética , Biomarcadores de Tumor , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Quinasas Asociadas a Receptores de Interleucina-1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones
17.
Front Microbiol ; 8: 1448, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28824579

RESUMEN

Although PacBio third-generation sequencers have improved the read lengths of genome sequencing which facilitates the assembly of complete genomes, no study has reported success in using PacBio data alone to completely sequence a two-chromosome bacterial genome from a single library in a single run. Previous studies using earlier versions of sequencing chemistries have at most been able to finish bacterial genomes containing only one chromosome with de novo assembly. In this study, we compared the robustness of PacBio RS II, using one SMRT cell and the latest P6-C4 chemistry, with Illumina HiSeq 1500 in sequencing the genome of Burkholderia pseudomallei, a bacterium which contains two large circular chromosomes, very high G+C content of 68-69%, highly repetitive regions and substantial genomic diversity, and represents one of the largest and most complex bacterial genomes sequenced, using a reference genome generated by hybrid assembly using PacBio and Illumina datasets with subsequent manual validation. Results showed that PacBio data with de novo assembly, but not Illumina, was able to completely sequence the B. pseudomallei genome without any gaps or mis-assemblies. The two large contigs of the PacBio assembly aligned unambiguously to the reference genome, sharing >99.9% nucleotide identities. Conversely, Illumina data assembled using three different assemblers resulted in fragmented assemblies (201-366 contigs), sharing only 92.2-100% and 92.0-100% nucleotide identities to chromosomes I and II reference sequences, respectively, with no indication that the B. pseudomallei genome consisted of two chromosomes with four copies of ribosomal operons. Among all assemblies, the PacBio assembly recovered the highest number of core and virulence proteins, and housekeeping genes based on whole-genome multilocus sequence typing (wgMLST). Most notably, assembly solely based on PacBio outperformed even hybrid assembly using both PacBio and Illumina datasets. Hybrid approach generated only 74 contigs, while the PacBio data alone with de novo assembly achieved complete closure of the two-chromosome B. pseudomallei genome without additional costly bench work and further sequencing. PacBio RS II using P6-C4 chemistry is highly robust and cost-effective and should be the platform of choice in sequencing bacterial genomes, particularly for those that are well-known to be difficult-to-sequence.

18.
BMC Microbiol ; 6: 46, 2006 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-16725056

RESUMEN

BACKGROUND: The Gram-negative bacterium Burkholderia pseudomallei (Bp) is the causative agent of the human disease melioidosis. To understand the evolutionary mechanisms contributing to Bp virulence, we performed a comparative genomic analysis of Bp K96243 and B. thailandensis (Bt) E264, a closely related but avirulent relative. RESULTS: We found the Bp and Bt genomes to be broadly similar, comprising two highly syntenic chromosomes with comparable numbers of coding regions (CDs), protein family distributions, and horizontally acquired genomic islands, which we experimentally validated to be differentially present in multiple Bt isolates. By examining species-specific genomic regions, we derived molecular explanations for previously-known metabolic differences, discovered potentially new ones, and found that the acquisition of a capsular polysaccharide gene cluster in Bp, a key virulence component, is likely to have occurred non-randomly via replacement of an ancestral polysaccharide cluster. Virulence related genes, in particular members of the Type III secretion needle complex, were collectively more divergent between Bp and Bt compared to the rest of the genome, possibly contributing towards the ability of Bp to infect mammalian hosts. An analysis of pseudogenes between the two species revealed that protein inactivation events were significantly biased towards membrane-associated proteins in Bt and transcription factors in Bp. CONCLUSION: Our results suggest that a limited number of horizontal-acquisition events, coupled with the fine-scale functional modulation of existing proteins, are likely to be the major drivers underlying Bp virulence. The extensive genomic similarity between Bp and Bt suggests that, in some cases, Bt could be used as a possible model system for studying certain aspects of Bp behavior.


Asunto(s)
Burkholderia pseudomallei/genética , Burkholderia/genética , Genoma Bacteriano , Burkholderia/clasificación , Burkholderia/metabolismo , Burkholderia pseudomallei/clasificación , Burkholderia pseudomallei/metabolismo , Filogenia , Virulencia
19.
Oncotarget ; 7(17): 24005-17, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27006468

RESUMEN

Tumor relapse after chemotherapy typifies hepatocellular carcinoma (HCC) and is believed to be attributable to residual cancer stem cells (CSCs) that survive initial treatment. Chronic infection with hepatitis B virus (HBV) has long been linked to the development of HCC. Upon infection, random HBV genome integration can lead to truncation of hepatitis B virus X (HBx) protein at the C-terminus. The resulting C-terminal-truncated HBx (HBx-ΔC) was previously shown to confer enhanced invasiveness and diminished apoptotic response in HCC cells. Here, we found HBx-ΔC to promote the appearance of a CD133 liver CSC subset and confer cancer and stem cell-like features in HCC. HBx-ΔC was exclusively detected in HCC cell lines that were raised from patients presented with a HBV background with concomitant CD133 expression. Stable overexpression of the naturally occurring HBx-ΔC mutants, HBx-Δ14 or HBx-Δ35, in HCC cells Huh7 and immortalized normal liver cells MIHA resulted in a significant increase in the cells ability to self-renew, resist chemotherapy and targeted therapy, migrate and induce angiogenesis. MIHA cells with the mutants stably overexpressed also resulted in the induction of CD133, mediated through STAT3 activation. RNA sequencing profiling of MIHA cells with or without HBx-ΔC mutants stably overexpressed identified altered FXR activation. This, together with rescue experiments using a selective FXR inhibitor suggested that C-terminal truncated HBx can mediate cancer stemness via FXR activation. Collectively, we find C-terminal truncated HBx mutants to confer cancer and stem cell-like features in vitro and to play an important role in driving tumor relapse in HCC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Hepatitis B/patología , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/patología , Transactivadores/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Proliferación Celular , Genoma Viral , Hepatitis B/genética , Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas/metabolismo , Dominios Proteicos , Transactivadores/genética , Células Tumorales Cultivadas , Proteínas Reguladoras y Accesorias Virales
20.
Cell Rep ; 15(6): 1175-89, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27134167

RESUMEN

Like normal stem cells, tumor-initiating cells (T-ICs) are regulated extrinsically within the tumor microenvironment. Because HCC develops primarily in the context of cirrhosis, in which there is an enrichment of activated fibroblasts, we hypothesized that cancer-associated fibroblasts (CAFs) would regulate liver T-ICs. We found that the presence of α-SMA(+) CAFs correlates with poor clinical outcome. CAF-derived HGF regulates liver T-ICs via activation of FRA1 in an Erk1,2-dependent manner. Further functional analysis identifies HEY1 as a direct downstream effector of FRA1. Using the STAM NASH-HCC mouse model, we find that HGF-induced FRA1 activation is associated with the fibrosis-dependent development of HCC. Thus, targeting the CAF-derived, HGF-mediated c-Met/FRA1/HEY1 cascade may be a therapeutic strategy for the treatment of HCC.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal , Animales , Biomarcadores de Tumor/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Separación Celular , Medios de Cultivo Condicionados/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Neoplasias Hepáticas/genética , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA