Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 46(6): 6267-6283, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38921045

RESUMEN

Autoantibodies against apolipoprotein A-I (ApoA-I) are associated with cardiovascular disease risks. We aimed to examine the 4-hydroxy-2-nonenal (HNE) modification of ApoA-I in coronary artery disease (CAD) and evaluate the potential risk of autoantibodies against their unmodified and HNE-modified peptides. We assessed plasma levels of ApoA-I, HNE-protein adducts, and autoantibodies against unmodified and HNE-peptide adducts, and significant correlations and odds ratios (ORs) were examined. Two novel CAD-specific HNE-peptide adducts, ApoA-I251-262 and ApoA-I70-83, were identified. Notably, immunoglobulin G (IgG) anti-ApoA-I251-262 HNE, IgM anti-ApoA-I70-83 HNE, IgG anti-ApoA-I251-262, IgG anti-ApoA-I70-83, and HNE-protein adducts were significantly correlated with triglycerides, creatinine, or high-density lipoprotein in CAD with various degrees of stenosis (<30% or >70%). The HNE-protein adduct (OR = 2.208-fold, p = 0.020) and IgM anti-ApoA-I251-262 HNE (2.046-fold, p = 0.035) showed an increased risk of progression from >30% stenosis in CAD. HNE-protein adducts and IgM anti-ApoA-I251-262 HNE may increase the severity of CAD at high and low levels, respectively.

2.
Ecotoxicol Environ Saf ; 277: 116368, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669874

RESUMEN

Perfluorooctane sulfonate (PFOS) is a persistent chemical that has long been a threat to human health. However, the molecular effects of PFOS on various organs are not well studied. In this study, male Sprague-Dawley rats were treated with various doses of PFOS through gavage for 21 days. Subsequently, the liver, lung, heart, kidney, pancreas, testis, and serum of the rats were harvested for lipid analysis. We applied a focusing lipidomic analytical strategy to identify key lipid responses of phosphorylcholine-containing lipids, including phosphatidylcholines and sphingomyelins. Partial least squares discriminant analysis revealed that the organs most influenced by PFOS exposure were the liver, kidney, and testis. Changes in the lipid profiles of the rats indicated that after exposure, levels of diacyl-phosphatidylcholines and 22:6-containing phosphatidylcholines in the liver, kidney, and testis of the rats decreased, whereas the level of 20:3-containing phosphatidylcholines increased. Furthermore, levels of polyunsaturated fatty acids-containing plasmenylcholines decreased. Changes in sphingomyelin levels indicated organ-dependent responses. Decreased levels of sphingomyelins in the liver, nonmonotonic dose responses in the kidney, and irregular responses in the testis after PFOS exposure are observed. These lipid responses may be associated with alterations pertaining to phosphatidylcholine synthesis, fatty acid metabolism, membrane properties, and oxidative stress in the liver, kidney, and testis. Lipid responses in the liver could have contributed to the observed increase in liver to body weight ratios. The findings suggest potential toxicity and possible mechanisms associated with PFOS in multiple organs.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Riñón , Hígado , Ratas Sprague-Dawley , Testículo , Animales , Ácidos Alcanesulfónicos/toxicidad , Fluorocarburos/toxicidad , Masculino , Ratas , Hígado/efectos de los fármacos , Hígado/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Contaminantes Ambientales/toxicidad , Esfingomielinas , Fosfatidilcolinas , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica , Pulmón/efectos de los fármacos , Pulmón/metabolismo
3.
Pediatr Cardiol ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438790

RESUMEN

Ventricular septal defect (VSD) is a common congenital heart disease. However, consensus on the utility of echocardiography in predicting spontaneous closure (SC) of VSD remains lacking. This study aimed to identify and validate significant predictors of SC through a predictive scoring system. This retrospective study included medical records of 712 echocardiography instances performed on 304 patients diagnosed with VSD from 2016 to 2020 in their first year of life. A novel scoring system for predicting the SC of VSD was developed and validated using another dataset from different hospitals. Of the 304 patients, 215 (70.7%) had perimembranous (PM) VSDs and 89 had muscular (29.3%) VSDs. The median follow-up periods were 36.2 (interquartile range [IQR], 13-59) months and 13.7 9 (IQR, 5-37.4) days for PM and muscular VSDs, respectively. The overall SC rate during follow-up was 29.3%. Pulmonary hypertension (HTN), concomitant left ventricle (LV)-right atrium (RA) shunt, VSD size to aortic valve (AV) annulus size ratio, and left ventricular end-diastolic dimension (LVEDD) z-score were significant risk factors affecting SC of VSD. The "P-VSD" score, a new scoring system, demonstrated an area under the curve for predictability of 0.769. Pulmonary HTN, concomitant LV-RA shunt, LVEDD z-score, and VSD size-to-AV annulus size ratio at diagnosis were significantly associated with non-SC VSD after infancy. The P-VSD score can predict the SC of VSD in clinical settings and simplify the identification and appropriate management of high-risk patients.

4.
J Biomed Sci ; 29(1): 16, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197069

RESUMEN

BACKGROUND: Docetaxel has been approved by USFDA as a first-line treatment for castration-resistant prostate cancer (CRPC) patients. Patients receiving androgen deprivation therapy along with docetaxel result in superior survival, lower serum prostate specific antigen (PSA) level, and better quality of life. However, a significant proportion of these patients ultimately develop resistance to docetaxel within months. Caffeic acid phenethyl ester (CAPE), one of the main bioactive components extracted from the propolis, has been reported to be effective for repressing the tumor growth, the migration and invasion of prostate cancer (PCa) cells, as well as the downstream signaling and stability of androgen receptor (AR). We hence determined if combination treatment of docetaxel with CAPE can suppress the proliferation and the survival of docetaxel-resistant PCa cells. METHODS: We established docetaxel-resistant PC/DX25 and DU/DX50 CRPC cell lines from PC-3 and DU-145 human PCa cells, respectively. Proliferation assay, MTT assay, flow cytometry with Annexin V staining, Comet Assay, and nude mice xenograft model were applied to determine the effects of combination treatment on cell proliferation and survival of the docetaxel-resistant PCa cells. Micro-Western Array (MWA) and qRT-PCR were used to investigate the molecular mechanism lying underneath. RESULTS: Combination treatment effectively suppressed the proliferation, survival and tumor growth of docetaxel-resistant PCa cells both in vitro and in nude mice. Comet assay and flow cytometry indicated that combination treatment induced apoptosis in docetaxel-resistant PCa cells. MWA and Western blotting assay revealed that combination treatment suppressed protein expression of Bcl-2, AKT2, c-Myc, apoptosis and caspase activation inhibitor (AVEN), pyruvate kinase M2 (PKM2) but increased protein expression of Bax, caspase 3, cytochrome c, glucose-6-phosphate dehydrogenase (G6PD) and acylglycerol kinase (AGK). Overexpression of Bcl-2 in the docetaxel-resistant PCa cells enhanced cell proliferation of docetaxel-resistant PCa cells under combination treatment. Analysis with qRT-PCR suggested that combination treatment decreased cholesterol biosynthesis genes DHCR24 (24-dehydrocholesterol reductase) and LSS (lanosterol synthase) but increased genes involved in glycolysis and TCA cycle. CONCLUSIONS: Combination treatment of docetaxel with CAPE effectively suppressed the proliferation and survival of docetaxel-resistant PCa cells via inhibition of Bcl-2 and c-Myc as well as induction of metabolism interference. Combination treatment can be beneficial for patients with docetaxel-resistant PCa.


Asunto(s)
Neoplasias de la Próstata , Antagonistas de Andrógenos/farmacología , Animales , Apoptosis , Ácidos Cafeicos , Línea Celular Tumoral , Proliferación Celular , Docetaxel/farmacología , Humanos , Masculino , Ratones , Ratones Desnudos , Alcohol Feniletílico/análogos & derivados , Calidad de Vida
5.
BMC Med Inform Decis Mak ; 21(1): 49, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568149

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disorder with systemic inflammation and may be induced by oxidative stress that affects an inflamed joint. Our objectives were to examine isotypes of autoantibodies against 4-hydroxy-2-nonenal (HNE) modifications in RA and associate them with increased levels of autoantibodies in RA patients. METHODS: Serum samples from 155 female patients [60 with RA, 35 with osteoarthritis (OA), and 60 healthy controls (HCs)] were obtained. Four novel differential HNE-modified peptide adducts, complement factor H (CFAH)1211-1230, haptoglobin (HPT)78-108, immunoglobulin (Ig) kappa chain C region (IGKC)2-19, and prothrombin (THRB)328-345, were re-analyzed using tandem mass spectrometric (MS/MS) spectra (ProteomeXchange: PXD004546) from RA patients vs. HCs. Further, we determined serum protein levels of CFAH, HPT, IGKC and THRB, HNE-protein adducts, and autoantibodies against unmodified and HNE-modified peptides. Significant correlations and odds ratios (ORs) were calculated. RESULTS: Levels of HPT in RA patients were greatly higher than the levels in HCs. Levels of HNE-protein adducts and autoantibodies in RA patients were significantly greater than those of HCs. IgM anti-HPT78-108 HNE, IgM anti-IGKC2-19, and IgM anti-IGKC2-19 HNE may be considered as diagnostic biomarkers for RA. Importantly, elevated levels of IgM anti-HPT78-108 HNE, IgM anti-IGKC2-19, and IgG anti-THRB328-345 were positively correlated with the disease activity score in 28 joints for C-reactive protein (DAS28-CRP). Further, the ORs of RA development through IgM anti-HPT78-108 HNE (OR 5.235, p < 0.001), IgM anti-IGKC2-19 (OR 12.655, p < 0.001), and IgG anti-THRB328-345 (OR 5.761, p < 0.001) showed an increased risk. Lastly, we incorporated three machine learning models to differentiate RA from HC and OA, and performed feature selection to determine discriminative features. Experimental results showed that our proposed method achieved an area under the receiver operating characteristic curve of 0.92, which demonstrated that our selected autoantibodies combined with machine learning can efficiently detect RA. CONCLUSIONS: This study discovered that some IgG- and IgM-NAAs and anti-HNE M-NAAs may be correlated with inflammation and disease activity in RA. Moreover, our findings suggested that IgM anti-HPT78-108 HNE, IgM anti-IGKC2-19, and IgG anti-THRB328-345 may play heavy roles in RA development.


Asunto(s)
Artritis Reumatoide , Autoanticuerpos , Aldehídos , Artritis Reumatoide/diagnóstico , Femenino , Humanos , Péptidos , Espectrometría de Masas en Tándem
6.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34948229

RESUMEN

Increasing evidence suggests that tumor development requires not only oncogene/tumor suppressor mutations to drive the growth, survival, and metastasis but also metabolic adaptations to meet the increasing energy demand for rapid cellular expansion and to cope with the often nutritional and oxygen-deprived microenvironment. One well-recognized strategy is to shift the metabolic flow from oxidative phosphorylation (OXPHOS) or respiration in mitochondria to glycolysis or fermentation in cytosol, known as Warburg effects. However, not all cancer cells follow this paradigm. In the development of prostate cancer, OXPHOS actually increases as compared to normal prostate tissue. This is because normal prostate epithelial cells divert citrate in mitochondria for the TCA cycle to the cytosol for secretion into seminal fluid. The sustained level of OXPHOS in primary tumors persists in progression to an advanced stage. As such, targeting OXPHOS and mitochondrial activities in general present therapeutic opportunities. In this review, we summarize the recent findings of the key regulators of the OXPHOS pathway in prostate cancer, ranging from transcriptional regulation, metabolic regulation to genetic regulation. Moreover, we provided a comprehensive update of the current status of OXPHOS inhibitors for prostate cancer therapy. A challenge of developing OXPHOS inhibitors is to selectively target cancer mitochondria and spare normal counterparts, which is also discussed.


Asunto(s)
Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Mitocondrias , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias de la Próstata , Transducción de Señal , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Humanos , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
7.
Mol Carcinog ; 59(11): 1269-1279, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32914490

RESUMEN

Despite considerable knowledge of viral pathogenesis, the pathophysiological changes related to the multifactorial, multistep process of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) development remains unclear. Longitudinal metabolomics study can reveal biological process for disease progression. We performed metabolite profiling with longitudinal prediagnostic plasma samples from two nested case-control studies of hepatitis B surface antigen carriers participating in ultrasound screening for HCC, one within a government employee cohort (870 samples from 109 HCC cases and 107 controls) and the other within a hospital-based cohort (266 samples from 63 HCC cases and 114 controls). Of the 34 measured metabolites, tyrosine, isoleucine, and glutamine were consistently associated with HCC. In analyses combining longitudinal data, a high metabolic risk score based on the three amino acids was robustly associated with increased risk of HCC (OR = 3.71, 95% confidence interval: 2.53-5.42), even after adjustment for clinical factors, or when assessed for different times up to ≥8 years before diagnosis. Similar association was observed in an independent, prospective analysis comprising 633 randomly selected individuals of the government employee cohort. More importantly, this metabolite signature was longitudinally influenced by HBV-infection phase and involved in gradual progression to liver fibrosis and cirrhosis. Furthermore, mediation analysis showed that the score mediated substantial proportions of the associations of key viral factors, insulin resistance, and diabetes status with HCC risk. Our results suggest that an amino-acid dysregulation metabotype may play a role in HBV-related HCC development, and may also be linked to common pathways that mediate increased HCC risks.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Metaboloma , Adulto , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/metabolismo , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/metabolismo , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Tasa de Supervivencia
8.
Cell Microbiol ; 21(4): e12981, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30428163

RESUMEN

Xenophagy, also known as antibacterial autophagy, plays a role in host defence against invading pathogens such as Group A Streptococcus (GAS) and Salmonella. In xenophagy, autophagy receptors are used in the recognition of invading pathogens and in autophagosome maturation and autolysosome formation. However, the mechanism by which autophagy receptors are regulated during bacterial infection remains poorly elucidated. In this study, we identified LAMTOR2 and LAMTOR1, also named p14 and p18, respectively, as previously unrecognised xenophagy regulators that modulate the autophagy receptor TAX1BP1 in response to GAS and Salmonella invasion. LAMTOR1 was localized to bacterium-containing endosomes, and LAMTOR2 was recruited to bacterium-containing damaged endosomes in a LAMTOR1-dependent manner. LAMTOR2 was dispensable for the formation of autophagosomes targeting damaged membrane debris surrounding cytosolic bacteria, but it was critical for autolysosome formation, and LAMTOR2 interacted with the autophagy receptors NBR1, TAX1BP1, and p62 and was necessary for TAX1BP1 recruitment to pathogen-containing autophagosomes. Notably, knockout of TAX1BP1 caused a reduction in autolysosome formation and subsequent bacterial degradation. Collectively, our findings demonstrated that the LAMTOR1/2 complex is required for recruiting TAX1BP1 to autophagosomes and thereby facilitating autolysosome formation during bacterial infection.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macroautofagia/fisiología , Proteínas de Neoplasias/metabolismo , Salmonella/patogenicidad , Western Blotting , Sistemas CRISPR-Cas/genética , Línea Celular , Células HeLa , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Macroautofagia/genética , Microscopía Fluorescente , Proteínas de Neoplasias/genética
9.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33353006

RESUMEN

Glycated hemoglobin (HbA1c) levels are an important index for the diagnosis and long-term control of diabetes. This study is the first to use a direct and label-free photoelectric biosensor to determine HbA1c using bacteriorhodopsin-embedded purple membranes (PM) as a transducer. A biotinylated PM (b-PM) coated electrode that is layered with protein A-oriented antibodies against hemoglobin (Hb) readily captures non-glycated Hb (HbA0) and generates less photocurrent. The spectra of bacteriorhodopsin and Hb overlap so the photocurrent is reduced because of the partial absorption of the incident light by the captured Hb molecules. Two HbA0 and HbA1c aptasensors that are prepared by conjugating specific aptamers on b-PM coated electrodes single-step detect HbA0 and HbA1c in 15 min, without cross reactivity, with detection limits of ≤0.1 µg/mL and a dynamic range of 0.1-100 µg/mL. Both aptasensors exhibit high selectivity and long-term stability. For the clinical samples, HbA0 concentrations and HbA1c levels that are measured with aptasensors correlate well with total Hb concentrations and the HbA1c levels that are determined using standard methods (correlation gradient = 0.915 ± 0.004 and 0.981 ± 0.001, respectively). The use of these aptasensors for diabetes care is demonstrated.


Asunto(s)
Bacteriorodopsinas , Técnicas Biosensibles , Animales , Hemoglobina Glucada/análisis , Humanos , Conejos , Transductores
10.
Cell Commun Signal ; 17(1): 100, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31429764

RESUMEN

BACKGROUND: Androgen receptor (AR) plays important role in the development, progression, and metastasis of prostate cancer (PCa). Caffeic acid phenethyl ester (CAPE) is the main component of honey bee propolis. We determined if CAPE affects the signaling and stability of AR in PCa cells. METHODS: Effects of CAPE on AR transcriptional activity and localization were determined by reporter gene assay and immunofluorescent microscopy. Western blotting, fluorescent polarization, computer simulation, and animal experiment were performed to investigate the molecular mechanism how CAPE reduces the stability of AR. RESULTS: CAPE treatment dose-dependently suppressed the transcriptional activity of AR as well as the protein levels of AR and its target gene PSA. Cyclohexamide treatment revealed that androgen stabilized AR protein, but AR stability was diminished by CAPE. Fluorescence microscopy demonstrated that androgen promoted the nucleus translocation of AR in PCa cells, while treatment with CAPE reduced protein level of AR in both nucleus and cytoplasm. CAPE treatment suppressed the phosphorylation of Ser81 and Ser213 on AR, which regulates the stability of AR. CDK1 and AKT are the kinases phosphorylating Ser81 and Ser213 on AR, respectively. CAPE treatment significantly reduced the protein level and activity of CDK1 and AKT in PCa cells. Overexpression of CDK1 or AKT rescued the AR protein level under CAPE treatment. CONCLUSIONS: Our results suggested that CAPE treatment reduced AR stability and AR transcriptional activity in PCa cells, implying the possibility of using CAPE as a treatment for advanced PCa.


Asunto(s)
Ácidos Cafeicos/farmacología , Alcohol Feniletílico/análogos & derivados , Receptores Androgénicos/metabolismo , Serina/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Alcohol Feniletílico/farmacología , Fosforilación/efectos de los fármacos , Receptores Androgénicos/genética , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas
11.
Molecules ; 24(9)2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31027344

RESUMEN

The objective of this study was to identify novel acetylation (Ac) modifications of the C1-inhibitor (C1-INH) and explain the association of the levels of autoantibodies against acetylated C1-INH peptides with the risk of developing systemic lupus erythematosus (SLE). Ac modifications of the C1-INH were identified and validated through in-gel digestion, nano-liquid chromatography-tandem mass spectrometry, immunoprecipitation, and Western blotting by using serum protein samples obtained from patients with SLE and age-matched healthy controls (HCs). In addition, the levels of serum C1-INH, Ac-protein adducts, and autoantibodies against unmodified and acetylated C1-INH peptides were measured. C1-INH levels in patients with SLE were significantly lower than those in HCs by 1.53-fold (p = 0.0008); however, Ac-protein adduct concentrations in patients with SLE were significantly higher than those in HCs by 1.35-fold (p = 0.0009). Moreover, immunoglobulin M (IgM) anti-C1-INH367-385 Ac and IgA anti-C1-INH367-385 Ac levels in patients with SLE were significantly lower than those in HCs. The low levels of IgM anti-C1-INH367-385 (odds ratio [OR] = 4.725, p < 0.001), IgM anti-C1-INH367-385 Ac (OR = 4.089, p = 0.001), and IgA anti-C1-INH367-385 Ac (OR = 5.566, p < 0.001) indicated increased risks for the development of SLE compared with HCs.


Asunto(s)
Proteína Inhibidora del Complemento C1/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina M/inmunología , Lupus Eritematoso Sistémico/inmunología , Péptidos/inmunología , Acetilación , Secuencia de Aminoácidos , Autoanticuerpos/inmunología , Autoantígenos/inmunología , Proteína Inhibidora del Complemento C1/química , Proteína Inhibidora del Complemento C1/metabolismo , Femenino , Humanos , Lupus Eritematoso Sistémico/sangre , Peso Molecular , Péptidos/química , Unión Proteica/inmunología , Curva ROC , Taiwán
12.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 463-474, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27979767

RESUMEN

Neural crest cells are multipotent progenitors that migrate extensively and differentiate into numerous derivatives. The developmental plasticity and migratory ability of neural crest cells render them an attractive model for studying numerous aspects of cell progression. We observed that zebrafish rgs2 was expressed in neural crest cells. Disrupting Rgs2 expression by using a dominant negative rgs2 construct or rgs2 morpholinos reduced GTPase-activating protein activity, induced the formation of neural crest progenitors, increased the proliferation of nonectomesenchymal neural crest cells, and inhibited the formation of ectomesenchymal neural crest derivatives. The transcription of pparda (which encodes Pparδ, a Wnt-activated transcription factor) was upregulated in Rgs2-deficient embryos, and Pparδ inhibition using a selective antagonist in the Rgs2-deficient embryos repaired neural crest defects. Our results clarify the mechanism through which the Rgs2-Pparδ cascade regulates neural crest development; specifically, Pparδ directly binds to the promoter and upregulates the transcription of the neural crest specifier sox10. This study reveals a unique regulatory mechanism, the Rgs2-Pparδ-Sox10 signaling cascade, and defines a key molecular regulator, Rgs2, in neural crest development.


Asunto(s)
Cresta Neural/metabolismo , Neurogénesis/genética , PPAR delta/genética , Proteínas RGS/genética , Factores de Transcripción SOXE/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Cresta Neural/crecimiento & desarrollo , PPAR delta/metabolismo , Regiones Promotoras Genéticas , Proteínas RGS/metabolismo , Factores de Transcripción SOXE/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Activación Transcripcional , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
13.
Cancer Sci ; 109(11): 3564-3574, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30142696

RESUMEN

Androgen receptor (AR), an androgen-activated transcription factor, belongs to the nuclear receptor superfamily. AR plays an important role in the development and progression of prostate cancer (PCa). However, the role of AR in PCa metastasis is not fully understood. To investigate the role of AR in PCa metastasis, we examined AR expression level in primary and metastatic PCa by analyzing gene array data of 378 primary prostate tumors and 120 metastatic prostate tumors from Oncomine, as well as carrying out immunohistochemical (IHC) staining of 56 prostate cancer samples. Expression of mRNA and protein of AR as well as its target gene prostate-specific antigen (PSA) was much higher in metastatic prostate tumors than in primary prostate tumors. Knockdown of AR with siRNA or treating with anti-androgen Casodex reduced migration and invasion ability of C4-2B PCa cells. Knockdown of AR increased protein expression of E-cadherin and AR coregulator KAT5 but reduced expression of epithelial-mesenchymal transition (EMT) marker proteins Slug, Snail, MMP-2, vimentin, and ß-catenin. Knockdown of KAT5 increased migration of C4-2B cells, whereas overexpression of KAT5 suppressed cell migration. KAT5 knockdown rescues the suppressive effect of AR knockdown on migration of C4-2B cells. Gene expression level of AR and KAT5 showed a negative correlation. PCa patients with higher AR expression or lower KAT5 expression correlated with shorter recurrence-free survival. Our study suggested that elevation of AR expression and AR signaling in prostate tumors promotes PCa metastasis by induction of EMT and reduction of KAT5.


Asunto(s)
Lisina Acetiltransferasa 5/genética , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Regulación hacia Arriba , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Lisina Acetiltransferasa 5/metabolismo , Masculino , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Neoplasias de la Próstata/metabolismo , Análisis de Supervivencia
14.
Eur J Clin Invest ; 48(6): e12937, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29675916

RESUMEN

BACKGROUND: Among multiple causes, diabetic nephropathy (DN) is the major underlying renal disease that leads to end-stage renal disease (ESRD), and early diagnosis can effectively prevent or delay the progression to ESRD. Therefore, the current study aimed to develop noninvasive, accurate detection markers. MATERIALS & METHODS: For this study, 62 diabetes mellitus (DM) patients, 59 DN patients and 21 healthy controls (HCs) were recruited. All participants' serum samples were subjected to concavanalin (Con) A affinity chromatography, which utilizes glycoproteins to discover potential markers. RESULTS: From nano LC-MS and Western blot analysis, apolipoprotein A-IV (ApoA4) was selected which featured a gradual, almost twofold increase in the order of HC, DM and DN. In the Con A-based ELISA, the DM group was 1.91-fold higher than the HC group, while the DN group was 2.56-fold higher than the HCs and 1.33-fold higher than the DM group. In addition, significant positive correlations were observed between ApoA4 and blood urea nitrogen levels and between ApoA4 and creatine levels, while significant negative correlations were seen between serum protein levels and between serum albumin levels in comparisons of DM and DN samples. CONCLUSIONS: Serum Con A-bound ApoA4 levels were higher in the DM group than in HCs, and further increased in the DN group. Levels of ApoA4 were positively correlated with blood urea nitrogen and creatine, but negatively correlated with serum protein and albumin. This evidence supports serum Con A-bound ApoA4 as a circulating marker for predicting the progression of renal impairment in DM patients.


Asunto(s)
Apolipoproteínas A/sangre , Diabetes Mellitus Tipo 2/sangre , Nefropatías Diabéticas/sangre , Anciano , Proteínas Sanguíneas/metabolismo , Nitrógeno de la Urea Sanguínea , Western Blotting , Estudios de Casos y Controles , Cromatografía Liquida , Concanavalina A/metabolismo , Creatinina/sangre , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etiología , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Pronóstico , Albúmina Sérica/metabolismo
15.
FASEB J ; 31(12): 5568-5576, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28842423

RESUMEN

Liver X receptors (LXRs) are important sensors and regulators for cholesterol, fatty acid, and glucose. LXRs play essential roles in the development and progression of cardiovascular diseases. We examined the effects of T0901317, a potent LXR agonist, on angiogenesis of human umbilical vein endothelial cells (HUVECs). Treatment with T0901317 inhibited the tube formation and migration of HUVECs and reduced the in vivo angiogenesis, as determined by chorioallantoic membrane assay. T0901317 stimulated gene and protein expression of LXR target gene apolipoprotein D (ApoD). Overexpression of ApoD suppressed the tube formation of HUVECs. ApoD interacted with scavenger receptor class B member 1 (SR-B1), while knockdown of SR-B1 blocked suppressive effects of T0901317 on HUVEC migration. T0901317 treatment or overexpression of ApoD lessened expression of proteins regulating angiogenesis, including phospho-eNOS S1177, phospho-Akt T308, phospho-Akt S473, eNOS, mammalian target of rapamycin, VEGF-A, VEGF-C, IL-8, RhoB, matrix metalloproteinase (MMP)-8, -9, and monocyte chemoattractant protein 1. Our study suggested that activation of LXR interferes with angiogenesis through induction of LXR target gene ApoD, which in turn suppresses PI3K-Akt-eNOS signaling, an essential pathway regulating angiogenesis. ApoD may be a potential therapeutic target for tumor angiogenesis.-Lai, C.-J., Cheng, H.-C., Lin, C.-Y., Huang, S.-H., Chen, T.-H., Chung, C.-J., Chang, C.-H., Wang, H.-D., Chuu, C.-P. Activation of liver X receptor suppresses angiogenesis via induction of ApoD.


Asunto(s)
Apolipoproteínas D/metabolismo , Receptores X del Hígado/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hidrocarburos Fluorados/farmacología , Interleucina-8/metabolismo , Receptores X del Hígado/agonistas , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptores Depuradores de Clase B/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo
16.
Langmuir ; 34(1): 359-365, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29232146

RESUMEN

The interaction between methylene blue (MB) and sodium dodecyl sulfate (SDS) has been widely studied spectroscopically, but details about their interactions remain unclear. Here, we combined photoacoustic (PA) imaging with nanoparticle tracking analysis (NTA) and spectroscopy to further elucidate this interaction. PA imaging of 0.05 mM MB showed a 492-fold increase in intensity upon the addition of 3.47 mM SDS. Higher concentrations above SDS's critical micelle concentration (CMC) at 8.67 mM decreased the PA intensity by 54 times. Relative quantum yield measurements indicated that PA intensity increased as a result of fluorescence quenching. Meanwhile, NTA indicated an increased number of nonmicellar MB/SDS clusters at SDS concentrations below the CMC varying in size from 80 to 400 nm as well as a decreased number above the CMC. This trend suggested that MB/SDS clusters are responsible for the PA intensity enhancement. Comparison of PA intensities and spectral shifts with MB/hexadecyltrimethylammonium bromide, MB/sodium octyl sulfate, and MB/sodium chloride demonstrated that MB was bound to the sulfate moiety of SDS before and after micellization. Our observations suggest that MB forms aggregates with SDS at premicellar concentrations, and the MB aggregates disassociate as monomers that are bound to the sulfate moiety of SDS at micellar concentrations. These findings further clarify the process by which MB and SDS interact and demonstrate the potential for developing MB-/SDS-based contrast agents.


Asunto(s)
Azul de Metileno/química , Micelas , Técnicas Fotoacústicas/métodos , Dodecil Sulfato de Sodio/química , Tensoactivos/química
17.
Zoo Biol ; 37(6): 440-451, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30457161

RESUMEN

Integrating multifactor blood analysis is a key step toward a precise diagnosis of the health status of marine mammals. Variations in the circulating lipid profile reflect changes in the metabolism and physiology of an individual. To demonstrate the practicability of lipid profiling for physiological assessment, the phosphorylcholine-containing lipids in the plasma of long-term managed beluga whales (Delphinapterus leucas) were profiled using a lipidomics methodology. Using a multivariate analysis, the mean corpuscular volume, cholesterol, potassium, and γ-glutamyltranspeptidase levels were well modeled with the lipid profile of the female whales. In the models, the correlated lipids provided information about blood parameter-related metabolism and physiological regulation, in particular relating to cholesterol and inflammation. In the males, the levels of cholesterol, triglycerides, blood urea nitrogen, creatinine, plasma iron, and segmented neutrophil were well modeled with the lipid profile. In addition to providing information about the related metabolism and regulation, through a cross-linked analysis of the blood parameters, the correlated lipids indicated a parallel regulation involved in the energy metabolism of the male whales. Lipidomics as a method for revealing the context of physiological change shows practical potential for the health care of managed whales.


Asunto(s)
Crianza de Animales Domésticos/métodos , Animales de Zoológico , Metabolismo de los Lípidos/fisiología , Lípidos/análisis , Ballenas/fisiología , Animales , Lípidos/genética
18.
PLoS Pathog ; 11(7): e1004985, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26132276

RESUMEN

Collaboration between heterogeneous pattern recognition receptors (PRRs) leading to synergistic coordination of immune response is important for the host to fight against invading pathogens. Although complement receptor 3 (CR3) and Dectin-1 are major PRRs to detect fungi, crosstalk between these two receptors in antifungal immunity is largely undefined. Here we took advantage of Histoplasma capsulatum which is known to interact with both CR3 and Dectin-1 and specific particulate ligands to study the collaboration of CR3 and Dectin-1 in macrophage cytokine response. By employing Micro-Western Array (MWA), genetic approach, and pharmacological inhibitors, we demonstrated that CR3 and Dectin-1 act collaboratively to trigger macrophage TNF and IL-6 response through signaling integration at Syk kinase, allowing subsequent enhanced activation of Syk-JNK-AP-1 pathway. Upon engagement, CR3 and Dectin-1 colocalize and form clusters on lipid raft microdomains which serve as a platform facilitating their cooperation in signaling activation and cytokine production. Furthermore, in vivo studies showed that CR3 and Dectin-1 cooperatively participate in host defense against disseminated histoplasmosis and instruct adaptive immune response. Taken together, our findings define the mechanism of receptor crosstalk between CR3 and Dectin-1 and demonstrate the importance of their collaboration in host defense against fungal infection.


Asunto(s)
Histoplasmosis/inmunología , Lectinas Tipo C/inmunología , Antígeno de Macrófago-1/inmunología , Macrófagos/inmunología , Microdominios de Membrana/inmunología , Transducción de Señal/inmunología , Animales , Western Blotting , Citocinas/biosíntesis , Citocinas/inmunología , Técnica del Anticuerpo Fluorescente , Histoplasma , Péptidos y Proteínas de Señalización Intracelular/inmunología , MAP Quinasa Quinasa 4/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Proteínas Tirosina Quinasas/inmunología , ARN Interferente Pequeño , Receptor Cross-Talk/inmunología , Quinasa Syk , Factor de Transcripción AP-1/inmunología , Transfección
20.
Exp Cell Res ; 345(2): 150-7, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-26103139

RESUMEN

Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas Nucleares/metabolismo , Benzofenantridinas/farmacología , Proteína Quinasa CDC2/metabolismo , Línea Celular , ADN Complementario/genética , Proteínas de Unión al ADN/deficiencia , Fibroblastos/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/deficiencia , Humanos , Isoquinolinas/farmacología , FN-kappa B/metabolismo , Proteínas Nucleares/deficiencia , Fenotipo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA