Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Oral Health ; 24(1): 625, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807101

RESUMEN

BACKGROUND: Oral squamous cell cancer (OSCC) is a prevalent malignancy in oral cavity, accounting for nearly 90% of oral malignancies. It ranks sixth among the most common types of cancer worldwide and is responsible for approximately 145,000 deaths each year. It is widely accepted that noncoding RNAs participate cancer development in competitive regulatory interaction, knowing as competing endogenous RNA (ceRNA) network, whereby long non-coding RNA (lncRNA) function as decoys of microRNAs to regulate gene expression. LncRNA FOXD2-AS1 was reported to exert an oncogenic role in OSCC. Nevertheless, the ceRNA network mediated by FOXD2-AS1 was not investigated yet. This study aimed to explore the effect of FOXD2-AS1 on OSCC cell process and the underlying ceRNA mechanism. METHODS: FOXD2-AS1 expression in OSCC cells were determined via reverse transcription and quantitative polymerase chain reaction. Short hairpin RNA targeting FOXD2-AS1 was transfected into OSCC cells to silence FOXD2-AS1 expression. Then, loss-of-function experiments (n = 3 each assay) were performed to measure cell proliferation, apoptosis, migration, and invasion using colony formation, TdT-mediated dUTP Nick-End Labeling, wound healing and Transwell assays, respectively. RNA binding relation was verified by RNA immunoprecipitation and luciferase reporter assays. Rescue experiments were designed to validate whether FOXD2-AS1 affects cell behavior via the gene cellular retinoic acid binding protein 2 (CRABP2). Statistics were processed by GraphPad Prism 6.0 Software and SPSS software. RESULTS: FOXD2-AS1 was significantly upregulated in Cal27 and SCC9 cells (6.8 and 6.4 folds). In response to FOXD2-AS1 knockout, OSCC cell proliferation, migration and invasion were suppressed (approximately 50% decrease) while OSCC cell apoptosis was enhanced (more than two-fold increase). FOXD2-AS1 interacted with miR-378 g to alter CRABP2 expression. CRABP2 upregulation partly rescued (*p < 0.05, **p < 0.01, ***p < 0.001) the inhibitory impact of FOXD2-AS1 depletion on malignant characteristics of OSCC cells. CONCLUSION: FOXD2-AS1 enhances OSCC malignant cell behaviors by interacting with miR-378 g to regulate CRABP2 expression.


Asunto(s)
Apoptosis , Carcinoma de Células Escamosas , Movimiento Celular , Proliferación Celular , MicroARNs , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular/genética , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
2.
Skin Res Technol ; 29(7): e13405, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37522491

RESUMEN

OBJECTIVE: To investigate the effects of secukinumab treatment for psoriasis on different functional cytokines and inflammatory mediators in patients' serum METHODS: Enzyme-linked immunosorbent assay was used to detect interleukin (IL)-1ß and IL-1RA associated with intrinsic immunity; IL-6, IL-18, and growth regulated oncogene alpha (GROα) associated with neutrophils; IL-12, tumour necrosis factor (TNF)-α, and interferon (IFN)-γ associated with Th1; IL-23, IL-17A, and IL-22 associated with Th17; Thymus activation regulated chemokine (TARC), IL-13, and defensin beta 2 (DEFB2) associated with Th2; Vascular endothelial growth factor (VEGF)-A and IL-10 associated with angiogenesis; and IFN-γ associated with sepsis in the peripheral blood of 12 patients with common psoriasis treated with secukinumab and 15 healthy controls. IL-23, IL-17A, IL-22 associated with Th17; TARC, IL-13, DEFB2 associated with Th2; VEGF-A, IL-10 associated with angiogenesis and procalcitonin (PCT) associated with sepsis. The differences in expression of the above cytokines before and after treatment and the correlation with psoriasis disease severityï¼»Psoriasis Area Severity Index(PASI) scoreï¼½, age, and disease duration were analyzed. RESULTS: The mean PASI score of the enrolled patients with moderate to severe psoriasis was 21.6 ± 11.0 before treatment and decreased to below 1 after treatment. Serum IL-6; IL-18, GROα, IFN-γ, TNF-α, VEGF-A, and IL-17A were significantly higher than normal. And IL-17A and IFN-γ were positively correlated with disease duration and age, and IL-18 was positively correlated with PASI score. The expression levels of IL-6, GROα, VEGF-A, IFN-γ, TNF-α, IL-17A and IL-23 were significantly lower after secukinumab treatment compared with those before treatment, but the expression levels of IFN-γ, VEGF-A, TARC, IL-13, and DEFB2 were still significantly higher than those of normal subjects after treatment CONCLUSIONS: secukinumab clears skin lesions by antagonizing IL-17A and simultaneously decreasing the expression levels of IL-6, GRO α, VEGF-A, IFN-γ, TNF-α, IL-17A, and IL-23.

3.
Angew Chem Int Ed Engl ; 62(26): e202305287, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37118881

RESUMEN

Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm-2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.


Asunto(s)
Litio , Metales , Electrólitos , Ácidos Carboxílicos , Éteres Cíclicos , Polímeros
4.
Mol Med ; 27(1): 81, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294046

RESUMEN

BACKGROUND: Fibrous dysplasia (FD) is a bone marrow stromal cell (BMSC) disease caused by activating mutations of guanine nucleotide-binding protein alpha-stimulating activity polypeptide (GNAS) and is characterized by increased proliferative activity and disrupted osteogenesis of BMSCs. However, the molecular mechanisms regulating the pathophysiologic features of BMSCs in FD remain unknown. This study aimed to identify and verify the roles of the CREB1-miR-181a-5p regulatory loop in FD pathophysiology. METHODS: MicroRNA (miRNA) sequencing analysis was used to identify the possible miRNAs implicated in FD. The proliferation, apoptosis, and osteogenic differentiation of BMSCs, as well as the osteoclast-induced phenotype, were measured and compared after exogenous miR-181a-5p transfection into FD BMSCs or miR-181a-5p inhibitor transfection into normal BMSCs. Chromatin immunoprecipitation and luciferase reporter assays were performed to verify the interactions between CREB1 and miR-181a-5p and their effects on the FD pathological phenotype. RESULTS: Compared to normal BMSCs, FD BMSCs showed decreased miR-181a-5p levels and exhibited increased proliferative activity, decreased apoptotic capacity, and impaired osteogenesis. FD BMSCs also showed a stronger osteoclast activation effect. miR-181a-5p overexpression reversed the pathophysiologic features of FD BMSCs, whereas miR-181a-5p suppression induced an FD-like phenotype in normal BMSCs. Mechanistically, miR-181a-5p was the downstream target of CREB1, and CREB1 was posttranscriptionally regulated by miR-181a-5p. CONCLUSIONS: Our study identifies that the interaction loop between CREB1 and miR-181a-5p plays a crucial role in regulating the pathophysiologic features of FD BMSCs. MiR-181a-5p may be a potential therapeutic target for the treatment of FD.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Displasia Fibrosa Ósea/etiología , Displasia Fibrosa Ósea/metabolismo , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Apoptosis , Biomarcadores , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Susceptibilidad a Enfermedades , Displasia Fibrosa Ósea/patología , Humanos , Modelos Biológicos , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/genética
5.
J Cell Physiol ; 234(5): 6611-6623, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30230544

RESUMEN

Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl- channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Neoplasias de la Mama/metabolismo , Canales de Cloruro/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Células MCF-7 , FN-kappa B/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
6.
Clin Infect Dis ; 66(5): 676-685, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29040419

RESUMEN

Background: mcr-1-mediated colistin resistance in Enterobacteriaceae is concerning, as colistin is used in treating multidrug-resistant Enterobacteriaceae infections. We identified trends in human fecal mcr-1-positivity rates and colonization with mcr-1-positive, third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae in Guangzhou, China, and investigated the genetic contexts of mcr-1 in mcr-1-positive 3GC-R strains. Methods: Fecal samples were collected from in-/out-patients submitting specimens to 3 hospitals (2011-2016). mcr-1 carriage trends were assessed using iterative sequential regression. A subset of mcr-1-positive isolates was sequenced (whole-genome sequencing [WGS], Illumina), and genetic contexts (flanking regions, plasmids) of mcr-1 were characterized. Results: Of 8022 fecal samples collected, 497 (6.2%) were mcr-1 positive, and 182 (2.3%) harbored mcr-1-positive 3GC-R Enterobacteriaceae. We observed marked increases in mcr-1 (0% [April 2011] to 31% [March 2016]) and more recent (since January 2014; 0% [April 2011] to 15% [March 2016]) increases in human colonization with mcr-1-positive 3GC-R Enterobacteriaceae (P < .001). mcr-1-positive 3GC-R isolates were commonly multidrug resistant. WGS of mcr-1-positive 3GC-R isolates (70 Escherichia coli, 3 Klebsiella pneumoniae) demonstrated bacterial strain diversity; mcr-1 in association with common plasmid backbones (IncI, IncHI2/HI2A, IncX4) and sometimes in multiple plasmids; frequent mcr-1 chromosomal integration; and high mobility of the mcr-1-associated insertion sequence ISApl1. Sequence data were consistent with plasmid spread among animal/human reservoirs. Conclusions: The high prevalence of mcr-1 in multidrug-resistant E. coli colonizing humans is a clinical threat; diverse genetic mechanisms (strains/plasmids/insertion sequences) have contributed to the dissemination of mcr-1, and will facilitate its persistence.


Asunto(s)
Portador Sano/microbiología , Colistina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Portador Sano/epidemiología , Cefalosporinas/farmacología , China/epidemiología , Enterobacteriaceae/aislamiento & purificación , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Heces/microbiología , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Prevalencia , Secuenciación Completa del Genoma
7.
Micromachines (Basel) ; 15(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793237

RESUMEN

Magnetic microrobots, with their small size and agile maneuverability, are well-suited for navigating the intricate and confined spaces within the human body. In vivo cargo delivery within the context of microrobotics involves the use of microrobots to transport and administer drugs and cells directly to the targeted regions within a living organism. The principal aim is to enhance the precision, efficiency, and safety of therapeutic interventions. Despite their potential, there is a shortage of comprehensive reviews on the use of magnetic microrobots for in vivo cargo delivery from both research and engineering perspectives, particularly those published after 2019. This review addresses this gap by disentangling recent advancements in magnetic microrobots for in vivo cargo delivery. It summarizes their actuation platforms, structural designs, cargo loading and release methods, tracking methods, navigation algorithms, and degradation and retrieval methods. Finally, it highlights potential research directions. This review aims to provide a comprehensive summary of the current landscape of magnetic microrobot technologies for in vivo cargo delivery. It highlights their present implementation methods, capabilities, and prospective research directions. The review also examines significant innovations and inherent challenges in biomedical applications.

8.
Diabetol Metab Syndr ; 16(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172998

RESUMEN

BACKGROUND: Glycemic control for patients with diabetes in the surgical department is often unsatisfactory. Compounding this issue is the fact that conventional glucose management models are often inefficient and difficult to monitor over time. OBJECTIVE: To investigate the impact of inpatient glucose team-based management on glycemic control and hospital days in surgical patients with diabetes. METHODS: A retrospective analysis was conducted on 4156 patients with diabetes in the surgical department who received inpatient management of diabetes at a tertiary medical center from June 2020 to May 2022. Based on whether they received inpatient glucose team-based management, the surgical patients with diabetes were divided into two groups: the inpatient glucose team-based management (GM group, consisting of 1698 participants) and the conventional blood glucose management group (control group, consisting of 2458 participants). We compared the two groups in terms of glycemic control, hospital days, and health-care costs. Multiple logistic regression analysis was performed to build the hospital days prediction model and nomogram. Finally, the performance of the model was evaluated. RESULTS: The rate of glucose detection was higher in the GM group at 2 h postprandial (P < 0.01). The incidence of hypoglycemia and severe hyperglycemia, blood glucose attainment time, pre-operative preparation days, hospital days, and health-care costs were lower in the GM group than in the control group (P < 0.01). The linear regression model revealed that blood glucose attainment time, incidence of hypoglycemia (< 3.9mmol/L), preoperative preparation days, perioperative complications, and health-care costs were the factors influencing the hospital days (Total Point 83.4 points, mean hospital days 9.37 days). Receiver operating characteristic (ROC) curve analysis demonstrated that the nomogram had good accuracy for predicting hospital days (area under the ROC curve 0.83, 95% confidence interval [CI], 0.74 to 0.92). CONCLUSION: Inpatient glucose team-based management demonstrated significant improvements in glycemic control among surgical patients with diabetes, resulting in reduced hospital days and associated costs. The developed nomogram also exhibited promising potential in predicting hospital days, offering valuable clinical applications.

9.
Colloids Surf B Biointerfaces ; 226: 113317, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37105064

RESUMEN

Phototherapies, in the form of photodynamic therapy (PDT) and photothermal therapy (PTT), have great application prospects in the field of biomedical science due to high precision and non-invasiveness. Because of the limited therapeutic efficacy of single phototherapy, researchers start to focus on combined PTT-PDT. Here, we designed a composite nanomaterial for PTT-PDT. H-TiO2 mesoporous spheres were prepared by sol-gel method and hydrogenation treatment. After modification with polydopamine (PDA), they were combined with indocyanine green (ICG) and NPe6 photosensitizers and coated by thermosensitive liposomes to prepare H-TiO2 @PDA@ICG@NPe6 @Lipo nanocomposite component. The results indicated a substantial improvement of the component in the aspects of spectral response range, photothermal conversion efficiency and light absorption performance by modification and photosensitizers, in the absence of any toxicities on cells. Thermal induction and sequential irradiation with 808 nm and 664 nm lasers induced the aggregation of H-TiO2 @PDA@ICG@NPe6 @Lipo at the tumor site to generate hyperthermia and massive reactive oxygen species (ROS), resulting in decreased cell activity or even cell apoptosis and restrained growth of allograft tumors. These findings underscore the favorable effects of H-TiO2 @PDA@ICG@NPe6 @Lipo on the combined phototherapies and provide approaches for the development of nano-drugs in the context of liver cancer.


Asunto(s)
Hipertermia Inducida , Neoplasias Hepáticas , Nanocompuestos , Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Hipertermia Inducida/métodos , Fototerapia/métodos , Verde de Indocianina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/uso terapéutico , Línea Celular Tumoral
10.
Cell Death Dis ; 14(4): 245, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024465

RESUMEN

CMTR1, also called IFN-stimulated gene 95 kDa protein (ISG95), is elevated by viral infection in a variety of cells. However, the functions of CMTR1 in colorectal cancer (CRC), especially its roles in tumorigenesis and immune regulation, remain unclear. Here, we first identified CMTR1 as a novel oncogene in colorectal cancer. Based on The Cancer Genome Atlas (TCGA) database exploration and human tissue microarray (TMA) analysis, we found that CMTR1 expression was markedly higher in CRC tissues than in adjacent normal tissues. High CMTR1 expression was correlated with poor prognosis in CRC patients. Knockdown (KD) of CMTR1 significantly suppressed cell proliferation and tumorigenicity both in vitro and in vivo, whereas overexpression of CMTR1 resulted in the opposite effects. KEGG pathway analysis revealed differential enrichment in the JAK/STAT signaling pathway in colorectal cancer cells with CMTR1 KD. Mechanistically, suppression of CMTR1 expression inhibited RNAPII recruitment to the transcription start site (TSS) of STAT3 and suppressed STAT3 expression and activation. Furthermore, the efficacy of PD1 blockade immunotherapy was prominently enhanced in the presence of CMTR1 KD via increased infiltration of CD8 + T cells into the tumor microenvironment. Overall, it appears that CMTR1 plays a key role in regulating tumor cell proliferation and antitumor immunity.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Evasión Inmune , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Microambiente Tumoral
11.
ACS Nano ; 17(20): 20315-20324, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37787661

RESUMEN

The development of lithium (Li) metal batteries (LMBs) has been limited by problems, such as severe dendrite growth, drastic interfacial reactions, and large volume change. Herein, an LMB (8AP@LiB) combining agraphene oxide-poly(ethylene oxide) (PEO) functionalized polypropylene separator (8AP) with a lithium-boron (LiB) anode is designed to overcome these problems. Raman results demonstrate that the PEO chain on 8AP can influence the Li+ solvation structure in the electrolyte, resulting in Li+ homogeneous diffusion and Li+ deposition barrier reduction. 8AP exhibits good ionic conductivity (4.9 × 10-4 S cm-1), a high Li+ migration number (0.88), and a significant electrolyte uptake (293%). The 3D LiB skeleton can significantly reduce the anode volume changes and local current density during the charging/discharging process. Therefore, 8AP@LiB effectively regulates the Li+ flux and promotes the uniform Li deposition without dendrites. The Li||Li symmetrical cells of 8AP@LiB exhibit a high electrochemical stability of up to 1000 h at 1 mA cm-2 and 5 mAh cm-2. Importantly, the Li||LiFePO4 full cells of 8AP@LiB achieve an impressive 2000 cycles at 2C, while maintaining a high-capacity retention of 86%. The synergistic effect of the functionalized separator and LiB anode might provide a direction for the development of high-performance LMBs.

12.
Sci Rep ; 11(1): 6802, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762666

RESUMEN

Poly(butylene succinate) (PBS)/polytetrafluoroethylene (PTFE) composites, including three types of PTFE powders, were prepared by melt blending using a HAAKE torque rheometer. Microcellular foams were successfully fabricated by batch foaming with supercritical fluids (scCO2). The effects of PTFE powder type on crystallization, rheological properties and foaming behavior were studied. PTFE L-5 and PTFE JH-220 powders showed good dispersion in the PBS matrix, and PTFE FA-500 powder underwent fibrillation during the melt blending process. All three PTFE powders gradually increased the crystallization temperature of PBS from 78.2 to 91.8 â„ƒ and the crystallinity from 45.6 to 61.7% without apparent changes in the crystal structure. Rheological results revealed that PBS/PTFE composites had a higher storage modulus, loss modulus, and complex viscosity than those of pure PBS. In particular, the complex viscosity of the PBS/P500 composite increased by an order of magnitude in the low-frequency region. The foamed structure of PBS was obviously improved by adding PTFE powder, and the effect of fibrillated PTFE FA-500 was the most remarkable, with a pore mean diameter of 5.46 µm and a pore density of 1.86 × 109 cells/cm3 (neat PBS foam: 32.49 µm and 1.95 × 107 cells/cm3). Moreover, PBS/P500 foam always guarantees hydrophobicity.

13.
Chemosphere ; 282: 131068, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34107421

RESUMEN

Metal organic framework (MOF) nanoparticles are recognized for their effective removal of metal ions from aqueous systems. However, the application of nanoparticles in a powder form as synthesized is not practical and recovery is not easy. We prepared a recyclable magnetic MOF nanoparticle phase and used a widely available waste biomass to generate biochar to support magnetic nanoparticles applied in the treatment of aqueous antimony pollution. A mushroom waste biochar was used to support a magnetic UIO-66-2COOH (denoted as BSMU). Adsorption of trivalent antimony (Sb (III)) onto the BSMU was evaluated. The results showed that optimum conditions for preparation of the BSMU were the mass ratio of MMOF to biochar 4:1, the temperature 70 °C, the time 4 h, and the initiator 4 mM. Under such conditions, sorption capacity reached 56.49 mg/g for treatment of Sb (III) solution at 100 mg/L and pH 9.1. Alkaline conditions (such as pH 9.1) are more favorable for adsorption than acidic conditions, and coexisting ions including NO3-, Cl-, SO42-, and PO43- had no significant negative effect in adsorption, and with the use of low dose, higher adsorption density achieved. The adsorption followed a pseudo second order kinetics model and Freundlich isotherm model. It resulted in a higher enthalpy changes (ΔHθ) and activation energy (Ea) of 97.56 and 8.772 kJ/mol, respectively, and enhanced the rate pf random contact between antimony and the BSMU, as indicated by a higher entropy change (ΔSθ) up to 360 J/mol·K. As a result, it readily absorbs antimony. These adsorption properties identified in this study would provide a valuable insights into the application of nanoparticles loaded biochar from abundant biomass in environmental remediation.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Adsorción , Antimonio , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Fenómenos Magnéticos , Termodinámica , Contaminantes Químicos del Agua/análisis
14.
Carbohydr Polym ; 249: 116836, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32933680

RESUMEN

Polyethylene glycol (PEG)-based composite phase change materials (PCMs) containing hydroxylated boron nitride (BN-OH), cellulose nanofiber (CNF), and chitosan (CS) were prepared by the method of interfacial polyelectrolyte complex spinning, based on in-situ ionic cross-linking between CNF and CS. The wrapping effect of cross-linked CNF/CS networks and the strong interfacial interactions contributed to superior shape-stability throughout the phase change process. Furthermore, the homogeneously dispersed BN-OHs was beneficial to the construction of the continuous thermal conductive paths, and the excellent interfacial interactions between BN-OH and the matrix would lower the heat loss caused by phonon scattering in the interface. As a result, the thermal conductivity of the PCMs containing 47.5 wt% BN-OH reached 4.005 W/mK, which was 22.56 times higher than that of the pure PEG. Combined with the excellent thermal reliability and thermal stability, the form-stable PCMs showed a promising application potential in the fields of electronic cooling or temperature-adaptable textiles.

15.
Aging (Albany NY) ; 12(3): 2084-2100, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32017705

RESUMEN

The dysfunction of bone marrow stromal cells (BMSCs) may be a core factor in Type 2 diabetes mellitus (T2DM) associated osteoporosis. However, the underlying mechanism is not well understood. Here, we delineated the critical role of insulin impeding osteogenesis of BMSCs in T2DM. Compared with BMSCs from healthy people (H-BMSCs), BMSCs from T2DM patient (DM-BMSCs) showed decreased osteogenic differentiation and autophagy level, and increased senescent phenotype. H-BMSCs incubated in hyperglycemic and hyperinsulinemic conditions similarly showed these phenotypes of DM-BMSCs. Notably, enhanced TGF-ß1 expression was detected not only in DM-BMSCs and high-glucose and insulin-treated H-BMSCs, but also in bone callus of streptozocin-induced diabetic rats. Moreover, inhibiting TGF-ß1 signaling not only enhanced osteogenic differentiation and autophagy level of DM-BMSCs, but also delayed senescence of DM-BMSCs, as well as promoted mandible defect healing of diabetic rats. Finally, we further verified that it was TGF-ß receptor II (TßRII), not TßRI, markedly increased in both DM-BMSCs and insulin-treated H-BMSCs. Our data revealed that insulin impeded osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence, which it should be responsible for T2DM-induced bone loss, at least in part. These findings suggest that inhibiting TGF-ß1 pathway may be a potential therapeutic target for T2DM associated bone disorders.


Asunto(s)
Autofagia/fisiología , Senescencia Celular/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/fisiología , Osteoporosis/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Autofagia/efectos de los fármacos , Callo Óseo/metabolismo , Estudios de Casos y Controles , Senescencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Humanos , Hiperglucemia , Hiperinsulinismo , Insulina/farmacología , Masculino , Mandíbula/cirugía , Fracturas Mandibulares/diagnóstico por imagen , Fracturas Mandibulares/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Osteogénesis/efectos de los fármacos , Osteoporosis/complicaciones , Ratas , Receptor Tipo II de Factor de Crecimiento Transformador beta/efectos de los fármacos , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores
16.
Sci Rep ; 9(1): 13106, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511602

RESUMEN

The El Nino-Southern Oscillation (ENSO) is the dominant interannual variability of Earth's climate system, and strongly modulates global temperature, precipitation, atmospheric circulation, tropical cyclones and other extreme events. However, forecasting ENSO is one of the most difficult problems in climate sciences affecting both interannual climate prediction and decadal prediction of near-term global climate change. The key question is what cause the switch between El Nino and La Nina. For the past 30 years, ENSO forecasts have been limited to short lead times after ENSO sea surface temperature (SST) anomaly has already developed, but unable to predict the switch between El Nino and La Nina. Here, we demonstrate that the switch between El Nino and La Nina is caused by a subsurface ocean wave propagating from western Pacific to central and eastern Pacific and then triggering development of SST anomaly. This is based on analysis of all ENSO events in the past 136 years using multiple long-term observational datasets. The wave's slow phase speed and decoupling from atmosphere indicate that it is a forced wave. Further analysis of Earth's angular momentum budget and NASA's Apollo Landing Mirror Experiment suggests that the subsurface wave is likely driven by lunar tidal gravitational force.

17.
Data Brief ; 27: 104719, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31737760

RESUMEN

This data article reports the global datasets of land surface state changes including daily maximum and minimum temperature, diurnal temperature range, surface precipitation, snow cover, soil moisture and outgoing longwave radiation associated with the Madden-Julian Oscillation (MJO), which are related to the research article entitled "Variation of Global Diurnal Temperature Range Associated with the Madden-Julian Oscillation" published in the Journal of Atmospheric and Solar-Terrestrial Physics by Lin and Qian (2019). The changes of surface air temperature and diurnal temperature range are calculated from two datasets: the Berkeley surface air temperature and the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) surface air temperature. The change of surface precipitation is derived from the NOAA CPC daily surface precipitation. The change of snow cover is calculated from the MODIS satellite data. The change of soil moisture is derived from the European Space Agency combined satellite data. The change of outgoing longwave radiation is calculated from NOAA satellite measurements. All of the data are stored in separate netcdf files and deposited at PANGAEA. These datasets can be used as observational benchmarks for evaluating the MJO simulations in global climate models, and in studies of MJO's impacts on global physical systems, public health, and ecosystems.

18.
Sci Rep ; 9(1): 17543, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772238

RESUMEN

The El Nino-Southern Oscillation (ENSO) is the dominant interannual variability of Earth's climate system and plays a central role in global climate prediction. Outlooks of ENSO and its impacts often follow a two-tier approach: predicting ENSO sea surface temperature anomaly in tropical Pacific and then predicting its global impacts. However, the current picture of ENSO global impacts widely used by forecasting centers and atmospheric science textbooks came from two earliest surface station datasets complied 30 years ago, and focused on the extreme phases rather than the whole ENSO lifecycle. Here, we demonstrate a new picture of the global impacts of ENSO throughout its whole lifecycle based on the rich latest satellite, in situ and reanalysis datasets. ENSO impacts are much wider than previously thought. There are significant impacts unknown in the previous picture over Europe, Africa, Asia and North America. The so-called "neutral years" are not neutral, but are associated with strong sea surface temperature anomalies in global oceans outside the tropical Pacific, and significant anomalies of land surface air temperature and precipitation over all the continents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA