Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Langmuir ; 40(28): 14652-14662, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38949915

RESUMEN

In this paper, CH4, C2H2, H2, and CO adsorbed on intrinsic MoTe2 monolayer and transition metal atom (Ta, V)-doped MoTe2 monolayer have been investigated with density functional theory based on first-principles study. The adsorption energy, geometries, band structures, and density of states of four gases (CH4, C2H2, H2, and CO) adsorbed on the MoTe2 and doped MoTe2 surfaces were analyzed. The results shown that the gas adsorption performance of transition metal atom (Ta, V)-doped MoTe2 monolayers is more superior than that of intrinsic MoTe2, and the adsorption energy and charge transfer of the adsorbed gases on the TM-MoTe2 monolayer are significantly increased in comparison with both sides. Among them, Ta-MoTe2 has the largest Eads value in the adsorbed CO system with a very small adsorption distance, as well as a more suitable recovery time of CO at room temperature, so Ta-MoTe2 can be a candidate material for CO detection. New atoms were introduced during the doping process, which increased the carrier density and carrier mobility of the material, thus improving the charge transfer at the surface of the material. which provides a direction for the gas-sensitive properties of metal Ta-modified MoTe2 materials.

2.
Biometals ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874821

RESUMEN

The liver damage caused by Diabetes Mellitus (DM) has attracted increasing attention in recent years. Liver injury in DM can be caused by ferroptosis, a form of cell death caused by iron overload. However, the role of iron transporters in this context is still not clear. Herein, we attempted to shed light on the pathophysiological mechanism of ferroptosis. DM was induced in 8-week-old male rats by streptozotocin (STZ) before assessment of the degree of liver injury. Together with histopathological changes, variations in glutathione peroxidase 4 (GPX4), glutathione (GSH), superoxide dismutase (SOD), transferrin receptor 1 (TFR1), ferritin heavy chain (FTH), ferritin light chain (FTL), ferroportin and Prussian blue staining, were monitored in rat livers before and after treatment with Fer-1. In the liver of STZ-treated rats, GSH and SOD levels decreased, whereas those of malondialdehyde (MDA) increased. Expression of TFR1, FTH and FTL increased whereas that of glutathione peroxidase 4 (GPX4) and ferroportin did not change significantly. Prussian blue staining showed that iron levels increased. Histopathology showed liver fibrosis and decreased glycogen content. Fer-1 treatment reduced iron and MDA levels but GSH and SOD levels were unchanged. Expression of FTH and FTL was reduced whereas that of ferroportin showed a mild decrease. Fer-1 treatment alleviated liver fibrosis, increased glycogen content and mildly improved liver function. Our study demonstrates that ferroptosis is involved in DM-induced liver injury. Regulating the levels of iron transporters may become a new therapeutic strategy in ferroptosis-induced liver injury.

3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(2): 229-236, 2018 04 25.
Artículo en Zh | MEDLINE | ID: mdl-29745528

RESUMEN

Fast optic disk localization and boundary segmentation is an important research topic in computer aided diagnosis. This paper proposes a novel method to effectively segment optic disk by using human visual characteristics in analyzing and processing fundus image. After a general analysis of optic disk features in fundus images, the target of interest could be located quickly, and intensity, color and spatial distribution of the disc are used to generate saliency map based on pixel distance. Then the adaptive threshold is used to segment optic disk. Moreover, to reduce the influence of vascular, a rotary scanning method is devised to achieve complete and continuous contour of optic disk boundary. Tests in the public fundus images database Drishti-GS have good performances, which mean that the proposed method is simple and rapid, and it meets the standard of the eye specialists. It is hoped that the method could be conducive to the computer aided diagnosis of eye diseases in the future.

4.
J Affect Disord ; 353: 101-108, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37979627

RESUMEN

BACKGROUND: This study aimed to delineate the association between menopausal-related symptoms and brain cortical hemodynamics in peri-postmenopause women. METHODS: Cross-sectional data from a total of 358 Han-Chinese women who visited the Menopause Clinic in the Shanghai Sixth People's Hospital from August 2019 to August 2022. Menopausal-related symptoms were analyzed through Kupperman index (KMI) scale and PSQI scale, while cerebral blood flow was measured using a functional near-infrared spectroscopy (fNIRS). Multiple linear regression model was used to assess the risk factors for subregions of brain hemodynamic response. RESULTS: After adjusting for confounding factors, we identified that menopausal symptom (B = -1.575, 95 % CI (-2.661, -0.488), p = 0.005) and duration of menopause (B = -14.583, 95 % CI (-26.753, -4.192), p = 0.007) were independently associated with the lower brain hemodynamic response in the prefrontal lobe, while in the temporal lobe, overweight (BMI ≥ 24 kg/m2) was negatively associated with the lower brain cortical activity (B = -36.882, 95 % CI (-72.708, -1.056), p = 0.044) after adjusting for other confounding variables. CONCLUSIONS: Our findings proposed that menopausal symptom and overweight should be attached great importance to the postmenopausal women, which provides clinical evidence for the feasible early detection and effective prevention such as menopausal hormone therapy (MHT) of brain health in postmenopausal women.


Asunto(s)
Menopausia , Sobrepeso , Femenino , Humanos , Estudios Transversales , China , Encéfalo
5.
Front Pharmacol ; 15: 1372094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38910888

RESUMEN

Cisplatin-induced acute kidney injury (AKI) increases the patient mortality dramatically and results in an unfavorable prognosis. A strong correlation between AKI and ferroptosis, which is a notable type of programmed cell death, was found in recent studies. Myricitrin is a natural flavonoid compound with diverse pharmacological properties. To investigate the protective effect of myricitrin against cisplatin induced human tubular epithelium (HK-2) cell injury and the underlying anti-ferroptic mechanism by this study. Firstly, a pharmacology network analysis was proposed to explore the myricitrin's effect. HK-2 cells were employed for in vitro experiments. Ferroptosis was detected by cell viability, quantification of iron, malondialdehyde, glutathione, lipid peroxidation fluorescence, and glutathione peroxidase (GPX4) expression. Ferritinophagy was detected by related protein expression (NCOA4, FTH, LC3II/I, and SQSTM1). In our study, GO enrichment presented that myricitrin might be effective in eliminating ferroptosis. The phenomenon of ferroptosis regulated by ferritinophagy was observed in cisplatin-activated HK-2 cells. Meanwhile, pretreatment with myricitrin significantly rescued HK-2 cells from cell death, reduced iron overload and lipid peroxidation biomarkers, and improved GPX4 expression. In addition, myricitrin downregulated the expression of LC3II/LC3I and NCOA4 and elevated the expression of FTH and SQTM. Furthermore, myricitrin inhibited ROS production and preserved mitochondrial function with a lower percentage of green JC-1 monomers. However, the protection could be reserved by the inducer of ferritinophagy rapamycin. Mechanically, the Hub genes analysis reveals that AKT and NF-κB are indispensable mediators in the anti-ferroptic process. In conclusion, myricitrin ameliorates cisplatin induced HK-2 cells damage by attenuating ferritinophagy mediated ferroptosis.

6.
Breast Cancer ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977605

RESUMEN

OBJECTIVE: To develop and authenticate a neoadjuvant chemotherapy (NACT) pathological complete remission (pCR) model based on the expression of Reg IV within breast cancer tissues with the objective to provide clinical guidance for precise interventions. METHOD: Data relating to 104 patients undergoing NACT were collected. Variables derived from clinical information and pathological characteristics of patients were screened through logistic regression, random forest, and Xgboost methods to formulate predictive models. The validation and comparative assessment of these models were conducted to identify the optimal model, which was then visualized and tested. RESULT: Following the screening of variables and the establishment of multiple models based on these variables, comparative analyses were conducted using receiver operating characteristic (ROC) curves, calibration curves, as well as net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Model 2 emerged as the most optimal, incorporating variables such as HER-2, ER, T-stage, Reg IV, and Treatment, among others. The area under the ROC curve (AUC) for Model 2 in the training dataset and test dataset was 0.837 (0.734-0.941) and 0.897 (0.775-1.00), respectively. Decision curve analysis (DCA) and clinical impact curve (CIC) further underscored the potential applications of the model in guiding clinical interventions for patients. CONCLUSION: The prediction of NACT pCR efficacy based on the expression of Reg IV in breast cancer tissue appears feasible; however, it requires further validation.

7.
Lab Chip ; 24(5): 1419-1440, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38174821

RESUMEN

Human beings encompass sophisticated microcirculation and microenvironments, incorporating a broad spectrum of microfluidic systems that adopt fundamental roles in orchestrating physiological mechanisms. In vitro recapitulation of human microenvironments based on lab-on-a-chip technology represents a critical paradigm to better understand the intricate mechanisms. Moreover, the advent of micro/nanorobotics provides brand new perspectives and dynamic tools for elucidating the complex process in microfluidics. Currently, artificial intelligence (AI) has endowed micro/nanorobots (MNRs) with unprecedented benefits, such as material synthesis, optimal design, fabrication, and swarm behavior. Using advanced AI algorithms, the motion control, environment perception, and swarm intelligence of MNRs in microfluidics are significantly enhanced. This emerging interdisciplinary research trend holds great potential to propel biomedical research to the forefront and make valuable contributions to human health. Herein, we initially introduce the AI algorithms integral to the development of MNRs. We briefly revisit the components, designs, and fabrication techniques adopted by robots in microfluidics with an emphasis on the application of AI. Then, we review the latest research pertinent to AI-enhanced MNRs, focusing on their motion control, sensing abilities, and intricate collective behavior in microfluidics. Furthermore, we spotlight biomedical domains that are already witnessing or will undergo game-changing evolution based on AI-enhanced MNRs. Finally, we identify the current challenges that hinder the practical use of the pioneering interdisciplinary technology.


Asunto(s)
Inteligencia Artificial , Microfluídica , Humanos , Microfluídica/métodos , Dispositivos Laboratorio en un Chip
8.
Front Cell Infect Microbiol ; 14: 1363276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707511

RESUMEN

Introduction: Chronic kidney disease (CKD) is worldwide healthcare burden with growing incidence and death rate. Emerging evidence demonstrated the compositional and functional differences of gut microbiota in patients with CKD. As such, gut microbial features can be developed as diagnostic biomarkers and potential therapeutic target for CKD. Methods: To eliminate the outcome bias arising from factors such as geographical distribution, sequencing platform, and data analysis techniques, we conducted a comprehensive analysis of the microbial differences between patients with CKD and healthy individuals based on multiple samples worldwide. A total of 980 samples from six references across three nations were incorporated from the PubMed, Web of Science, and GMrepo databases. The obtained 16S rRNA microbiome data were subjected to DADA2 processing, QIIME2 and PICRUSt2 analyses. Results: The gut microbiota of patients with CKD differs significantly from that of healthy controls (HC), with a substantial decrease in the microbial diversity among the CKD group. Moreover, a significantly reduced abundance of bacteria Faecalibacterium prausnitzii (F. prausnitzii) was detected in the CKD group through linear discriminant analysis effect size (LEfSe) analysis, which may be associated with the alleviating effects against CKD. Notably, we identified CKD-depleted F. prausnitzii demonstrated a significant negative correlation with three pathways based on predictive functional analysis, suggesting its potential role in regulating systemic acidbase disturbance and pro-oxidant metabolism. Discussion: Our findings demonstrated notable alterations of gut microbiota in CKD patients. Specific gut-beneficial microbiota, especially F. prausnitzii, may be developed as a preventive and therapeutic tool for CKD clinical management.


Asunto(s)
Microbioma Gastrointestinal , ARN Ribosómico 16S , Insuficiencia Renal Crónica , Microbioma Gastrointestinal/genética , Humanos , ARN Ribosómico 16S/genética , Insuficiencia Renal Crónica/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Heces/microbiología , Filogenia , Faecalibacterium prausnitzii/genética , Biodiversidad , Disbiosis/microbiología
9.
Int J Ophthalmol ; 17(3): 401-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721512

RESUMEN

AIM: To investigate a pioneering framework for the segmentation of meibomian glands (MGs), using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis. METHODS: Totally 203 infrared meibomian images from 138 patients with dry eye disease, accompanied by corresponding annotations, were gathered for the study. A rectified scribble-supervised gland segmentation (RSSGS) model, incorporating temporal ensemble prediction, uncertainty estimation, and a transformation equivariance constraint, was introduced to address constraints imposed by limited supervision information inherent in scribble annotations. The viability and efficacy of the proposed model were assessed based on accuracy, intersection over union (IoU), and dice coefficient. RESULTS: Using manual labels as the gold standard, RSSGS demonstrated outcomes with an accuracy of 93.54%, a dice coefficient of 78.02%, and an IoU of 64.18%. Notably, these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%, 2.06%, and 2.69%, respectively. Furthermore, despite achieving a substantial 80% reduction in annotation costs, it only lags behind fully annotated methods by 0.72%, 1.51%, and 2.04%. CONCLUSION: An innovative automatic segmentation model is developed for MGs in infrared eyelid images, using scribble annotation for training. This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs. It holds substantial utility for calculating clinical parameters, thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction.

10.
Front Cell Dev Biol ; 11: 1197262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37427374

RESUMEN

Introduction: To investigate the effects of an orthokeratology lens on the tear film and tarsal glands and myopia control in children with unilateral myopia using an intelligent analysis model. Methods: We retrospectively reviewed the medical records from November 2020 to November 2022 of 68 pediatric patients with unilateral myopia in Fujian Provincial Hospital who had been wearing an orthokeratology lens for more than 1 year. The 68 myopic eyes were included in the treatment group, while the 68 healthy, untreated contralateral eyes were included in the control group. Tear film break-up times (TBUTs) were compared between the two groups at various intervals, and an intelligent analysis model was used to compare the deformation coefficients of 10 meibomian glands in the central area and the different positions of the glands in the two groups after 12 months of treatment. Changes in axial length and equivalent spherical power were also compared between the groups before and after 12 months of treatment. Results: In the treatment group, TBUTs differed significantly between 1 and 12 months after treatment, although no significant differences from baseline were observed at 3 or 6 months. No significant differences in TBUTs were observed at any time point in the control group. After 12 months of treatment, significant between-group differences were observed for glands 2, 3, 4, 5, 6, 7, 8, and 10 (numbered from the temporal to nasal regions). The treatment group also exhibited significant differences in deformation coefficients at different detection positions in the central region, with glands 5 and 6 exhibiting the highest deformation coefficients. Increases in axial length and equivalent spherical power were significantly greater in the control group than in the treatment group after 12 months of treatment. Discussion: Wearing orthokeratology lenses at night can effectively control myopia progression in children with unilateral myopia. However, long-term use of these lenses may lead to meibomian gland deformation and impact tear film function, and the extent of deformation may vary at different positions in the central region.

11.
Endocrinol Metab (Seoul) ; 38(2): 226-244, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37150518

RESUMEN

BACKGRUOUND: Ferroptosis, which is caused by an iron-dependent accumulation of lipid hydroperoxides, is a type of cell death linked to diabetic kidney disease (DKD). Previous research has shown that fatty acid binding protein 4 (FABP4) is involved in the regulation of ferroptosis in diabetic retinopathy. The present study was constructed to explore the role of FABP4 in the regulation of ferroptosis in DKD. METHODS: We first detected the expression of FABP4 and proteins related to ferroptosis in renal biopsies of patients with DKD. Then, we used a FABP4 inhibitor and small interfering RNA to investigate the role of FABP4 in ferroptosis induced by high glucose in human renal proximal tubular epithelial (HG-HK2) cells. RESULTS: In kidney biopsies of DKD patients, the expression of FABP4 was elevated, whereas carnitine palmitoyltransferase-1A (CP-T1A), glutathione peroxidase 4, ferritin heavy chain, and ferritin light chain showed reduced expression. In HG-HK2 cells, the induction of ferroptosis was accompanied by an increase in FABP4. Inhibition of FABP4 in HG-HK2 cells changed the redox state, sup-pressing the production of reactive oxygen species, ferrous iron (Fe2+), and malondialdehyde, increasing superoxide dismutase, and reversing ferroptosis-associated mitochondrial damage. The inhibition of FABP4 also increased the expression of CPT1A, reversed lipid deposition, and restored impaired fatty acid ß-oxidation. In addition, the inhibition of CPT1A could induce ferroptosis in HK2 cells. CONCLUSION: Our results suggest that FABP4 mediates ferroptosis in HG-HK2 cells by inhibiting fatty acid ß-oxidation.


Asunto(s)
Ferroptosis , Humanos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos , Glucosa/farmacología , Hierro/metabolismo , Peróxidos Lipídicos/metabolismo
12.
J Environ Pathol Toxicol Oncol ; 41(3): 33-43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993954

RESUMEN

Breast carcinoma, one of the most lethal variants of carcinogenesis, significantly diagnosed type of cancer amongst the female population. Sinigrin, also known as glucosinolate, is found in the seeds of Brassica nigra and shown to enhance various cancer cells potentially. Nevertheless, the mechanistic explanation of sinigrin (SGN)-mediated breast cancer growth and augmentation is still to be investigated. Therefore, we contended in this study that SGN impedes PI3K/AKT/mTOR phosphorylation-mediated cell cycle arrest in MCF-7 cells. SGN (20 M) was implemented to treat MCF-7 cells for 24 and 48 hours of incubation. A significant increase in cytotoxicity, reactive oxygen species (ROS) generation, cell cycle arrest, mitochondrion membrane alteration, lipid peroxidation, and antioxidant depletion was found in MCF-7 cells. The PI3K/AKT/mTOR events are crucial pathways that participate in survival, proliferation, and cell cycle regulation. Inhibition of PI3K/AKT/mTOR expression thought to be novel approach for alleviating breast cancer growth. We noticed that SGN inhibits PI3K, AKT, and mTOR phosphorylation, resulting in the downregulation of proliferative and cell cycle regulatory proteins, such as cyclin-Dl, PCNA, CDK4, and CDK6. SGN also causes apoptosis in MCF-7 cells by increasing nuclear fragmentation and by inducing pro-apoptotic gene expression. As a result, SGN inhibits breast cancer growth by impeding PI3K/AKT/mTOR phosphorylation-mediated cell cycle arrest in MCF-7 cells.


Asunto(s)
Neoplasias de la Mama , Fosfatidilinositol 3-Quinasas , Apoptosis , Neoplasias de la Mama/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Glucosinolatos , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
13.
Colloids Surf B Biointerfaces ; 219: 112809, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067680

RESUMEN

The development of fast, safe and effective hemostatic materials is crucial for pre-hospital first aid. In this study, diatomite hemostatic granules (Dhp) were developed by rotating granulation method using silica sol as binder. During rotating granulation process, the Pre-Dhp were prepared by rolling snowball effect, in which nano-silica in silica sol uniformly distributed on the surface of diatomite and polymerized through hydrogen bond to produce strong adhesion. After high-temperature calcination, the hydrogen bond transformed to silica oxygen bond and the three-dimensional gel network formed by silica sol was destroyed to exposed the pores of diatomite. Dhp retained the porous structure of diatomite with hierarchical porous structure (from nano to micro scale). Dhp could quickly adsorb the tangible components in the blood, exhibited rapid hemostatic ability (clotting time was shortened by 43 % than that of control group), and good biocompatibility (hemolysis rate < 7 %, no cytotoxicity). Dhp residue was not found in the wound of rat tail amputation model, indicating that the adhesion of silica sol and high-temperature curing treatment enhanced the stability of Dhp and reduced the hidden danger of micro thrombosis caused by residual substances entering blood vessels. Our study proved that Dhp prepared by silica sol bonding and rotary granulation was excellent hemostatic material with non-toxic side effects and rapid coagulation promotion.


Asunto(s)
Quitosano , Hemostáticos , Ratas , Animales , Hemostáticos/farmacología , Hemostáticos/química , Porosidad , Quitosano/química , Hemostasis , Dióxido de Silicio/química
14.
Infect Genet Evol ; 87: 104678, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33321225

RESUMEN

New Delhi metallo-ß-lactamase (NDM) is a series of enzyme conferring resistance to ß-lactam antibiotics including the carbapenems. The blaNDM gene has been reported in a variety of Gram-negative bacilli, especially in the Enterobacteriaceae and Acinetobacter spp., which is deeply disconcerting for public health worldwide. In this study, recombinase polymerase amplification assays using a basic detection (Basic-RPA) and a real-time fluorescent detection (Exo-RPA) were established for detecting blaNDM gene. The RPA reactions were performed at 39 °C and finished within 20 min. Using different copy numbers of pMD18T-NDM plasmid DNA as templates, we identified the detection limit of Basic-RPA assay (1.85 × 103 copies/µL), conventional PCR assay (1.85 × 104 copies/µL), Exo-RPA assay (1.85 × 102 copies/µL) and real-time PCR assay (1.85 × 102 copies/µL). Both Basic-RPA and Exo-RPA assays were highly specific for detecting blaNDM, as there were no cross-reactions with the strains without blaNDM gene. Examination of 62 clinical samples by RPA assays and PCR assays showed the same results, suggesting that RPA assays are reliable in clinical diagnosis. The amplification time of RPA is much shorter than that of other molecular techniques, it is easy to implement and has the potential for clinical application.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Recombinasas/genética , beta-Lactamasas/genética , Humanos , Recombinasas/metabolismo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA