Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(23): 11051-11056, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38088140

RESUMEN

Terahertz (THz) field enhancement has significant applications in high-resolution imaging, next-generation wireless communications, and networking. In this work, we experimentally demonstrate a graphene metasurface for THz field enhancement that is based on the intervalley scattering theory. Each meta-atom of the metasurface is composed of one split-ring resonator (SRR) embedded in one graphene patch. The experimental results show that, by electrically adjusting the conductivity of the graphene patch, the THz field through the entire sample is enhanced by 23 times and the transmission amplitude at 0.47 THz decreases 8.4 dB. Moreover, the maximum phase difference at 0.43 THz reaches 88°. The experiment shows good agreement with simulation. This study paves a way for exploring THz-matter interactions and nonlinear optics.

2.
Appl Opt ; 62(4): 1027-1034, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821160

RESUMEN

To achieve classification and concentration detection of cancer biomarkers, we propose a method that combines terahertz (THz) spectroscopy, metasurface sensors, and machine learning. A metasurface sensor suitable for biomarker detection was designed and fabricated with five resonance frequencies in the range of 0.3-0.9 THz. We collected biomarkers of five types and nine concentrations at 100 sets of time-domain spectra per concentration. The spectrum is processed by noise reduction and fast Fourier transform to obtain the frequency-domain spectrum. Five machine learning algorithms are used to analyze time- and frequency-domain spectra and ascertain which algorithm is more suitable for the classification of the biomarker THz spectrum. Experimental results show that random forest can better distinguish five biomarkers with an accuracy of 0.984 for the time-domain spectrum. For the frequency-domain spectrum, the support vector machine performs better, with an accuracy of 0.989. For biomarkers at different concentrations, we used linear regression to fit the relationship between biomarker concentration and frequency shift. Experimental results show that machine learning can distinguish different biomarker species and their concentrations by the THz spectrum. This work provides an idea and data processing method for the application of THz technology in biomedical detection.


Asunto(s)
Algoritmos , Espectroscopía de Terahertz , Espectroscopía de Terahertz/métodos , Aprendizaje Automático , Bosques Aleatorios , Biomarcadores
3.
Appl Opt ; 62(4): 1103-1108, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821170

RESUMEN

Actively controlling the phase of a terahertz (THz) wave is of great significance for beaming, tunable focusing, and holography. We present a THz phase modulator based on an electrically triggered vanadium dioxide (V O 2) reconfigurable metasurface. The unit cell of the device consists of two split-ring resonators embedded with a V O 2 ribbon. By electrically triggering the insulator-to-metal transition of V O 2, the resonance mode and resonance intensity of the unit cell can be dynamically controlled. The simulation results show that the structure can achieve a phase shift of about 360° in the range of 1.03-1.13 THz, and the reflection amplitude can reach 80%. The device has potential applications in THz imaging, radar, broadband wireless communications, and array phase control.

4.
Langmuir ; 38(12): 3739-3747, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35298154

RESUMEN

Owing to their stability in bodily fluids, exosomes have attracted increased attention as colorectal cancer (CRC) biomarkers for early diagnosis. To validate the potential of the plasma exosomes as a novel biomarker for the monitoring of CRC, we demonstrated a terahertz (THz) metamaterials (MMs) biosensor for the detection of exosomes in this work. The biosensor with two resonant frequencies is designed using full wave electromagnetic simulation software based on the finite integration time domain (FITD) method and fabricated by a surface micromachining process. The biosensor surface is first modified using Au nanoparticles (AuNPs), and then, anti-KRAS and anti-CD147, which are specific to the exosomes, are modified on the AuNPs assembled with HS-poly(ethylene glycol)-COOH (HS-PEG-COOH). Exosomes used in the experiment are extracted via the instructions in the exosomes isolation and purification kit and identified by using transmission electron microscopy (TEM), Western blot (WB), and nanoparticle tracking analysis (NTA). The biosensor covered with plasma-derived exosomes of CRC patients has a different resonance frequency shift compared to that with healthy-control-derived exosomes. This study proposes an emerging and quick method for diagnosing the CRC.


Asunto(s)
Técnicas Biosensibles , Exosomas , Nanopartículas del Metal , Biomarcadores , Técnicas Biosensibles/métodos , Oro , Humanos , Microscopía Electrónica de Transmisión
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 292: 122413, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736050

RESUMEN

As an organic substance, n-propanol gas has been paid attention to in environmental monitoring and exhalation of lung cancer patient. In this paper a rapid detection method for n-propanol gas is developed based on molecularly imprinted polymers (MIP) and terahertz (THz) metasurface sensors. We first prepared a MIP suitable for detecting the n-propanol gas. And then the n-propanol MIP was modified to the THz metasurface sensor for detecting the n-propanol gas. Since the MIP adsorbed with n-propanol changes the dielectric environment of the sensor, the resonance frequency of the sensor also change. So we based on the n-propanol concentration was analyzed according to the change in resonance frequency. The experimental results showed that the sensor can effectively detect the n-propanol concentration in the range of 50-500 ppm (parts per million). In addition, we also verified the specificity and repeatability of the sensor. This work provides a new idea and method for the sensitive and specific detection of n-propanol gas.

6.
ACS Appl Mater Interfaces ; 15(17): 21075-21085, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37079721

RESUMEN

Conjugated microporous polymers (CMPs) with porous structure and rich polar units are favorable for high-performance lithium-sulfur (Li-S) batteries. However, understanding the role of building blocks in polysulfide catalytic conversion is still limited. In this work, two triazine-based CMPs are constructed by electron-accepting triazine with electron-donating triphenylbenzene (CMP-B) or electron-accepting triphenyltriazine (CMP-T), which can grow on a conductive carbon nanotube (CNT) to serve as separator modifiers for Li-S batteries. CMP-B@CNT features faster ion transportation than the counterpart of CMP-T@CNT. More importantly, compared with acceptor-acceptor (A-A) CMP-T, donor-acceptor (D-A) CMP-B possesses a higher degree of conjugation and a narrower band gap, which are conducive to the electron transfer along the polymer skeleton, thus accelerating the sulfur redox kinetics. Consequently, the CMP-B@CNT functional separator endows Li-S cells with an outstanding initial capacity of 1371 mAh g-1 at 0.1 C and favorable cycling stability with a capacity degradation rate of 0.048% per cycle at 1 C for 800 cycles. This work provides insight into the rational design of efficient catalysts for advanced Li-S batteries.

7.
Talanta ; 248: 123628, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35660997

RESUMEN

The cancer biomarkers including AFP, CEA, CA199 and CA125, are of great importance in the diagnosis, prognostic prediction and recurrence monitoring of malignancies. However, in clinical practical applications, most tumor cancer biomarkers are lack of sensitivity and specificity. In this study, we propose a terahertz (THz) metasurface (MS) immunosensor coupled with gold nanoparticles (AuNPs), which have good biocompatibility and high specific surface area for biomarkers. Firstly, we added AuNPs to the surface of the sensor. And then, the surface is modified with Anti-CA125 or Anti-CA199 to improve the sensitivity and specificity to the target antigen. The biosensor was fabricated using a surface micromachining process and characterized by a THz-time-domain spectroscopy (TDS) system. The sensitivity of the resonance frequency of the sensor to the refractive index was 65 GHz/RIU (refractive index unit). The detection performance of the THz immunosensor was also verified with different concentrations of CA125 and CA199. The experimental results showed that the frequency shift of the resonance peak was linearly related to the concentration of CA125 and CA199. The detection limits for both CA125 and CA199 are 0.01 U/ml, which is better than that of other common methods. Finally, serum samples were collected and detected to explore whether this method is suitable for clinical detection. The results are consistent with the results of antigen recognition. This study proves that the practicability of the THz immunosensor, which potentially provides important techniques and equipment for improving the sensitivity and specificity of cancer biomarkers.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Neoplasias , Biomarcadores de Tumor , Antígeno Ca-125 , Oro/química , Inmunoensayo , Nanopartículas del Metal/química , Neoplasias/diagnóstico
8.
ACS Appl Mater Interfaces ; 14(28): 31942-31950, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35795893

RESUMEN

Lithium-sulfur (Li-S) batteries hold great promise for new-generation energy storage technologies owing to their overwhelming energy density. However, the poor conductivity of active sulfur and the shuttle effect limit their widespread use. Herein, a carbon cloth decorated with thiol-containing UiO-66 nanoparticles (CC@UiO-66(SH)2) was developed to substitute the traditional interlayer and current collector for Li-S batteries. One side of CC@UiO-66(SH)2 acts as a current collector to load active materials, while the other side serves as an interlayer to further restrain polysulfide shuttling. This two-in-one integrated architecture endows the sulfur cathode with fast electron/ion transport and efficient chemical confinement of polysulfides. More importantly, rich thiol groups in the pores of UiO-66(SH)2 serve to tether polysulfides by both covalent interactions and lithium bonding. Therefore, the Li-S battery equipped with this integrated interlayer-current collector not only delivers an enhanced specific capability (1209 mAh g-1 at 0.1 C) but also exhibits prominent cycling stability (an attenuation rate of 0.037% per cycle for 1000 cycles at 1 C). Meanwhile, the battery achieves a high discharge capacity of 795 mAh g-1 at a sulfur loading of 3.83 mg cm-2. The new metal-organic framework (MOF)-based electrode material reported in this study undoubtedly provides insights into the exploration of functional MOFs for robust Li-S batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA