Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Plant Biol ; 24(1): 590, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902595

RESUMEN

BACKGROUND: The Prunus sibirica seeds with rich oils has great utilization, but contain amygdalin that can be hydrolyzed to release toxic HCN. Thus, how to effectively reduce seed amygdalin content of P. sibirica is an interesting question. Mandelonitrile is known as one key intermediate of amygdalin metabolism, but which mandelonitrile lyase (MDL) family member essential for its dissociation destined to low amygdalin accumulation in P. sibirica seeds still remains enigmatic. An integration of our recent 454 RNA-seq data, amygdalin and mandelonitrile content detection, qRT-PCR analysis and function determination is described as a critical attempt to determine key MDL and to highlight its function in governing mandelonitrile catabolism with low amygdalin accumulation in Prunus sibirica seeds for better developing edible oil and biodiesel in China. RESULTS: To identify key MDL and to unravel its function in governing seed mandelonitrile catabolism with low amygdalin accumulation in P. sibirica. Global identification of mandelonitrile catabolism-associated MDLs, integrated with the across-accessions/developing stages association of accumulative amount of amygdalin and mandelonitrile with transcriptional level of MDLs was performed on P. sibirica seeds of 5 accessions to determine crucial MDL2 for seed mandelonitrile catabolism of P. sibirica. MDL2 gene was cloned from the seeds of P. sibirica, and yeast eukaryotic expression revealed an ability of MDL2 to specifically catalyze the dissociation of mandelonitrile with the ideal values of Km (0.22 mM) and Vmax (178.57 U/mg). A combination of overexpression and mutation was conducted in Arabidopsis. Overexpression of PsMDL2 decreased seed mandelonitrile content with an increase of oil accumulation, upregulated transcript of mandelonitrile metabolic enzymes and oil synthesis enzymes (involving FA biosynthesis and TAG assembly), but exhibited an opposite situation in mdl2 mutant, revealing a role of PsMDL2-mediated regulation in seed amygdalin and oil biosynthesis. The PsMDL2 gene has shown as key molecular target for bioengineering high seed oil production with low amygdalin in oilseed plants. CONCLUSIONS: This work presents the first integrated assay of genome-wide identification of mandelonitrile catabolism-related MDLs and the comparative association of transcriptional level of MDLs with accumulative amount of amygdalin and mandelonitrile in the seeds across different germplasms and developmental periods of P. sibirica to determine MDL2 for mandelonitrile dissociation, and an effective combination of PsMDL2 expression and mutation, oil and mandelonitrile content detection and qRT-PCR assay was performed to unravel a mechanism of PsMDL2 for controlling amygdalin and oil production in P. sibirica seeds. These findings could offer new bioengineering strategy for high oil production with low amygdalin in oil plants.


Asunto(s)
Amigdalina , Prunus , Semillas , Amigdalina/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/enzimología , Semillas/metabolismo , Semillas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Aceites de Plantas/metabolismo , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Regulación de la Expresión Génica de las Plantas
2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542472

RESUMEN

In recent years, the field of biology has witnessed a surge of interest in genomics research due to the advancements in biotechnology. Gene expression pattern analysis plays a crucial role in this research, as it enables us to understand the regulatory mechanism of gene expression and the associated biological processes. Real-time quantitative polymerase chain reaction (q-PCR) is an efficient method to analyze the gene expression patterns, for which accuracy relies on the standardized analysis of reference genes. However, numerous studies have shown that no reference gene is universal in all conditions, so screening a suitable reference gene under certain conditions is of great importance. Cinnamomum burmannii (C. burmannii) is rich in volatile components and has high medicinal and economic value. However, knowledge of the screening of reference genes for the gene expression analysis of C. burmannii is insufficient. Aiming at this problem, we evaluated and screened the reference genes in C. burmannii under different experimental conditions, including different abiotic stresses (Cold-treated, PEG-treated and Nacl-treated), different tissues, leaves at different developmental stages and different chemical types. In this study, different algorithms (∆Ct, geNorm, NormFinder and BestKeeper) were used to evaluate the stability of the candidate reference genes, and RefFinder further merged the output data to screen out the optimum reference gene under various experimental conditions in C. burmannii. The results showed that the optimal reference gene number for gene standardization was 2 under different experimental conditions. RPL27|RPS15 was the most suitable combination under the Nacl-treated and PEG-treated samples. RPL27|APT was the optimum combination under the Cold-treated samples. The optimal combinations of other samples were EF1α|ACT7 for different tissues, eIF-5A|Gllα for different borneol clones in C. burmannii, RPS15|ACT7 for leaves at different developmental stages and RPS15|TATA for all samples. Additionally, two terpenoid synthesis-related genes (CbWRKY4 and CbDXS2) were standardized to verify the feasibility of the selected reference genes under different experimental conditions. This study will be helpful for the subsequent molecular genetic mechanism study of C. burmannii.


Asunto(s)
Cinnamomum , Regulación de la Expresión Génica de las Plantas , Cloruro de Sodio , Cinnamomum/genética , Perfilación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia
3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474323

RESUMEN

This work aimed to identify the chemical compounds of Cinnamomum burmannii leaf essential oil (CBLEO) and to unravel the antibacterial mechanism of CBLEO at the molecular level for developing antimicrobials. CBLEO had 37 volatile compounds with abundant borneol (28.40%) and showed good potential to control foodborne pathogens, of which Staphylococcus aureus had the greatest inhibition zone diameter (28.72 mm) with the lowest values of minimum inhibitory concentration (1.0 µg/mL) and bactericidal concentration (2.0 µg/mL). To unravel the antibacterial action of CBLEO on S. aureus, a dynamic exploration of antibacterial growth, material leakage, ROS formation, protein oxidation, cell morphology, and interaction with genome DNA was conducted on S. aureus exposed to CBLEO at different doses (1/2-2×MIC) and times (0-24 h), indicating that CBLEO acts as an inducer for ROS production and the oxidative stress of S. aureus. To highlight the antibacterial action of CBLEO on S. aureus at the molecular level, we performed a comparative association of ROS accumulation with some key virulence-related gene (sigB/agrA/sarA/icaA/cidA/rsbU) transcription, protease production, and biofilm formation in S. aureus subjected to CBLEO at different levels and times, revealing that CBLEO-induced oxidative stress caused transcript suppression of virulence regulators (RsbU and SigB) and its targeted genes, causing a protease level increase destined for the biofilm formation and growth inhibition of S. aureus, which may be a key bactericidal action. Our findings provide valuable information for studying the antibacterial mechanism of essential oil against pathogens.


Asunto(s)
Cinnamomum , Aceites Volátiles , Aceites Volátiles/farmacología , Cinnamomum/genética , Staphylococcus aureus/fisiología , Virulencia , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Biopelículas , Estrés Oxidativo , Transcripción Genética , Péptido Hidrolasas/genética , Pruebas de Sensibilidad Microbiana
4.
BMC Plant Biol ; 23(1): 268, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208597

RESUMEN

BACKGROUND: Based on our previous studied on different provenances of Pistacia chinensis, some accessions with high quality and quantity of seed oils has emerged as novel source of biodiesel. To better develop P. chinensis seed oils as woody biodiesel, a concurrent exploration of oil content, FA profile, biodiesel yield, and fuel properties was conducted on the seeds from 5 plus germplasms to determine superior genotype for ideal biodiesel production. Another vital challenge is to unravel mechanism that govern the differences in oil content and FA profile of P. chinensis seeds across different accessions. FA biosynthesis and oil accumulation of oil plants are known to be highly controlled by the transcription factors. An integrated analysis of our recent transcriptome data, qRT-PCR detection and functional identification was performed as an attempt to highlight LEC1/WRI1-mediated transcription regulatory mechanism for high-quality oil accumulation in P. chinensis seeds. RESULTS: To select ideal germplasm and unravel high oil accumulative mechanism for developing P. chinensis seed oils as biodiesel, five plus trees (accession PC-BJ/PC-AH/PC-SX/PC-HN/PC-HB) with high-yield seeds were selected to assess the variabilities in weight, oil content, FA profile, biodiesel yield and fuel property, revealing a variation in the levels of seed oil (50.76-60.88%), monounsaturated FA (42.80-70.72%) and polyunsaturated FA (18.78-43.35%), and biodiesel yield (84.98-98.15%) across different accessions. PC-HN had a maximum values of seed weight (26.23 mg), oil (60.88%) and biodiesel yield (98.15%), and ideal proportions of C18:1 (69.94%), C18:2 (17.65%) and C18:3 (1.13%), implying that seed oils of accession PC-HN was the most suitable for ideal biodiesel production. To highlight molecular mechanism that govern such differences in oil content and FA profile of different accessions, a combination of our recent transcriptome data, qRT-PCR detection and protein interaction analysis was performed to identify a pivotal role of LEC1/WRI1-mediated transcription regulatory network in high oil accumulation of P. chinensis seeds from different accessions. Notably, overexpression of PcWRI1 or PcLEC1 from P. chinensis seeds in Arabidopsis could facilitate seed development and upregulate several genes relevant for carbon flux allocation (plastidic glycolysis and acetyl-CoA generation), FA synthesis, TAG assembly and oil storage, causing an increase in seed oil content and monounsaturated FA level, destined for biodiesel fuel property improvement. Our findings may present strategies for better developing P. chinensis seed oils as biodiesel feedstock and bioengineering its high oil accumulation. CONCLUSIONS: This is the first report on the cross-accessions assessments of P. chinensis seed oils to determine ideal accession for high-quality biodiesel production, and an effective combination of PcWRI1 or PcLEC1 overexpression, morphological assay, oil accumulation and qRT-PCR detection was applied to unravel a role of LEC1/WRI1-mediated regulatory network for oil accumulation in P. chinensis seeds, and to highlight the potential application of PcWRI1 or PcLEC1 for increasing oil production. Our finding may provide new strategies for developing biodiesel resource and molecular breeding.


Asunto(s)
Biocombustibles , Pistacia , Aceites de Plantas , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Pistacia/genética , Pistacia/metabolismo , Aceites de Plantas/metabolismo , Semillas
5.
J Exp Bot ; 71(4): 1527-1539, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31680166

RESUMEN

Plasma membrane proton pumps play a crucial role in maintaining ionic homeostasis in salt-resistant Populus euphratica under saline conditions. High levels of NaCl (200 mM) induced PeHA1 expression in P. euphratica roots and leaves. We isolated a 2022 bp promoter fragment upstream of the translational start of PeHA1 from P. euphratica. The promoter-reporter construct PeHA1-pro::GUS was transferred to tobacco plants, demonstrating that ß-glucuronidase activities increased in root, leaf, and stem tissues under salt stress. DNA affinity purification sequencing revealed that PeWRKY1 protein targeted the PeHA1 gene. We assessed the salt-induced transcriptional response of PeWRKY1 and its interaction with PeHA1 in P. euphratica. PeWRKY1 binding to the PeHA1 W-box in the promoter region was verified by a yeast one-hybrid assay, EMSA, luciferase reporter assay, and virus-induced gene silencing. Transgenic tobacco plants overexpressing PeWRKY1 had improved expression of NtHA4, which has a cis-acting W-box in the regulatory region, and improved H+ pumping activity in both in vivo and in vitro assays. We conclude that salt stress up-regulated PeHA1 transcription due to the binding of PeWRKY1 to the W-box in the promoter region of PeHA1. Thus, we conclude that enhanced H+ pumping activity enabled salt-stressed plants to retain Na+ homeostasis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Populus , Regiones Promotoras Genéticas , ATPasas de Translocación de Protón/genética , Tolerancia a la Sal , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Populus/genética , Populus/metabolismo , Tolerancia a la Sal/genética , Factores de Transcripción/genética
6.
New Phytol ; 222(4): 1951-1964, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30756398

RESUMEN

Salt stress is an important environmental cue impeding poplar nitrogen nutrition. Here, we characterized the impact of salinity on proton-driven nitrate fluxes in ectomycorrhizal roots and the importance of a Hartig net for nitrate uptake. We employed two Paxillus involutus strains for root colonization: MAJ, which forms typical ectomycorrhizal structures (mantle and Hartig net), and NAU, colonizing roots with a thin, loose hyphal sheath. Fungus-colonized and noncolonized Populus × canescens were exposed to sodium chloride and used to measure root surface pH, nitrate (NO3- ) flux and transcription of NO3- transporters (NRTs; PcNRT1.1, -1.2, -2.1), and plasmalemma proton ATPases (HAs; PcHA4, -8, -11). Paxillus colonization enhanced root NO3- uptake, decreased surface pH, and stimulated NRTs and HA4 of the host regardless the presence or absence of a Hartig net. Under salt stress, noncolonized roots exhibited strong net NO3- efflux, whereas beneficial effects of fungal colonization on surface pH and HAs prevented NO3- loss. Inhibition of HAs abolished NO3- influx under all conditions. We found that stimulation of HAs was crucial for the beneficial influence of ectomycorrhiza on NO3- uptake, whereas the presence of a Hartig net was not required for improved NO3- translocation. Mycorrhizas may contribute to host adaptation to salt-affected environments by keeping up NO3- nutrition.


Asunto(s)
Micorrizas/metabolismo , Nitratos/metabolismo , Salinidad , Estrés Fisiológico , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/metabolismo , Nitrato-Reductasa/metabolismo , Nitrito Reductasas/metabolismo , Populus/microbiología , ATPasas de Translocación de Protón/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Vanadatos/farmacología
7.
Int J Mol Sci ; 20(4)2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769802

RESUMEN

Sodium chloride (NaCl) induced expression of a jacalin-related mannose-binding lectin (JRL) gene in leaves, roots, and callus cultures of Populus euphratica (salt-resistant poplar). To explore the mechanism of the PeJRL in salinity tolerance, the full length of PeJRL was cloned from P. euphratica and was transformed into Arabidopsis. PeJRL was localized to the cytoplasm in mesophyll cells. Overexpression of PeJRL in Arabidopsis significantly improved the salt tolerance of transgenic plants, in terms of seed germination, root growth, and electrolyte leakage during seedling establishment. Under NaCl stress, transgenic plants retained K⁺ and limited the accumulation of Na⁺. PeJRL-transgenic lines increased Na⁺ extrusion, which was associated with the upward regulation of SOS1, AHA1, and AHA2 genes encoding plasma membrane Na⁺/proton (H⁺) antiporter and H⁺-pumps. The activated H⁺-ATPases in PeJRL-overexpressed plants restricted the channel-mediated loss of K⁺ that was activated by NaCl-induced depolarization. Under salt stress, PeJRL⁻transgenic Arabidopsis maintained reactive oxygen species (ROS) homeostasis by activating the antioxidant enzymes and reducing the production of O2- through downregulation of NADPH oxidases. Of note, the PeJRL-transgenic Arabidopsis repressed abscisic acid (ABA) biosynthesis, thus reducing the ABA-elicited ROS production and the oxidative damage during the period of salt stress. A schematic model was proposed to show the mediation of PeJRL on ABA response, and ionic and ROS homeostasis under NaCl stress.


Asunto(s)
Arabidopsis/genética , Lectinas de Unión a Manosa/genética , Plantas Modificadas Genéticamente/genética , Estrés Salino/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Citoplasma/efectos de los fármacos , Citoplasma/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , Lectinas de Unión a Manosa/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Lectinas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Populus , Especies Reactivas de Oxígeno/química , Tolerancia a la Sal/genética , Cloruro de Sodio/efectos adversos
8.
BMC Plant Biol ; 18(1): 21, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29368590

RESUMEN

BACKGROUND: Auxin response factors (ARFs) in auxin signaling pathway are an important component that can regulate the transcription of auxin-responsive genes involved in almost all aspects of plant growth and development. To our knowledge, the comprehensive and systematic characterization of ARF genes has never been reported in Prunus sibirica, a novel woody biodiesel feedstock in China. RESULTS: In this study, we identified 14 PsARF genes with a perfect open reading frame (ORF) in P. sibirica by using its previous transcriptomic data. Conserved motif analysis showed that all identified PsARF proteins had typical DNA-binding and ARF domain, but 5 members (PsARF3, 8 10, 16 and 17) lacked the dimerization domain. Phylogenetic analysis of the ARF proteins generated from various plant species indicated that ARFs could be categorized into 4 major groups (Class I, II, III and IV), in which all identified ARFs from P. sibirica showed a closest relationship with those from P. mume. Comparison of the expression profiles of 14 PsARF genes in different developmental stages of Siberian apricot mesocarp (SAM) and kernel (SAK) reflected distinct temporal or spatial expression patterns for PsARF genes. Additionally, based on the expressed data from fruit and seed development of multiple plant species, we identified 1514 ARF-correlated genes using weighted gene co-expression network analysis (WGCNA). And the major portion of ARF-correlated gene was characterized to be involved in protein, nucleic acid and carbohydrate metabolic, transport and regulatory processes. CONCLUSIONS: In summary, we systematically and comprehensively analyzed the structure, expression pattern and co-expression network of ARF gene family in P. sibirica. All our findings provide theoretical foundation for the PsARF gene family and will pave the way for elucidating the precise role of PsARF genes in SAM and SAK development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes/genética , Proteínas de Plantas/genética , Prunus/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Frutas/genética , Frutas/crecimiento & desarrollo , Sistemas de Lectura Abierta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Prunus/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
Int J Biol Macromol ; 264(Pt 2): 130763, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467223

RESUMEN

Lindera glauca with rich resource and fruit terpene has emerged as potential material for utilization in China, but different germplasms show a variation for essential oil content and volatile profiling. This work aimed to determine key regulators (enzymes or transporters) and unravel mechanism of governing high production of essential oil of L. glauca fruit (EO-LGF). Temporal analysis of fruit growth and EO-LGF accumulation (yield, volatile compounds and contents) during development revealed a notable change in the contents of EO-LGF and its 45 compounds in developing fruits, and the major groups were monoterpene and sesquiterpene, showing good antioxidant and antimicrobial activities. To highlight molecular mechanism that govern such difference in terpene content and compound in developing fruits, Genome-wide assay was used to annotate 104 genes for terpene-synthesis pathway based on recent transcriptome data, and the comparative associations of terpene accumulative amount with gene transcriptional level were conducted on developing fruits to identify some crucial determinants (enzymes and transporters) with metabolic regulation model for high-quality terpene accumulation, involving in carbon allocation (sucrose cleavage, glycolysis and OPP pathway), metabolite transport, isoprene precursor production, C5-unit formation (MEP and MVA pathways), and mono-/sesqui-terpene synthesis. Our findings may present strategy for engineering terpene accumulation for utilization.


Asunto(s)
Lindera , Aceites Volátiles , Terpenos/metabolismo , Frutas , Lindera/genética , Lindera/metabolismo , Aceites Volátiles/metabolismo , Monoterpenos/metabolismo
10.
Biotechnol Lett ; 35(9): 1509-18, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23690038

RESUMEN

A 1,697-bp cDNA sequence, designated as PsG6PDH, was amplified from Populus suaveolens. Multiple sequence alignment and phylogenetic analysis indicated that PsG6PDH encodes a cytosolic G6PDH isoform, with Southern blot analysis demonstrating that the gene is single or low copy in Populus. Transgenic tobacco plants over-expressing PsG6PDH exhibited enhanced cold tolerance. In both transgenic and wild-type (WT) tobacco plants, cold stress increased leaf malondialdehyde (MDA) content, electrolyte leakage (EL), and peroxide (POD) and superoxide dismutase (SOD) activities; relative to WT, however, transgenic lines had lower MDA content and EL and higher SOD and POD activities. In addition, PsG6PDH activated the expression of stress-related genes, including NtERD10b, NtERD10c, and NtSOD, in tobacco plants. Our results provide evidence regarding PsG6PDH regulatory function in plants during low temperature stress.


Asunto(s)
Glucosafosfato Deshidrogenasa/metabolismo , Nicotiana/enzimología , Nicotiana/efectos de la radiación , Plantas Modificadas Genéticamente , Populus/enzimología , Estrés Fisiológico , Frío , Expresión Génica , Perfilación de la Expresión Génica , Glucosafosfato Deshidrogenasa/genética , Malondialdehído/análisis , Peróxidos/análisis , Filogenia , Hojas de la Planta/química , Populus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Superóxido Dismutasa/análisis , Nicotiana/genética
11.
Medicine (Baltimore) ; 102(33): e34489, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37603518

RESUMEN

BACKGROUND: The efficacy of acupoint application in the treatment of ulcerative colitis (UC) is still controversial. The purpose of this study is to systematically evaluate the clinical efficacy and safety of acupoint application in the treatment of ulcerative colitis. METHODS: The databases of China National Knowledge Infrastructure (CNKI), Chinese Biology Medicine (CBM), VIP, Wanfang, Embase, PubMed, the Cochrane Library and Web of Science were searched. The time limit was from the establishment of the database to July 2022. The published randomized controlled trials of acupoint application in the treatment of UC were analyzed by meta-analysis and trial sequential analysis. RESULTS: A total of 13 studies were included, with a total sample size of 878 cases. Compared with conventional western medicine, acupoint application can effectively improve the effective rates of clinical comprehensive (risk ratio [RR] 1.13, 95% confidence interval [CI] 1.06-1.20, P = .0003), syndrome (RR 1.13, 95% CI 1.03-1.24, P = .009), and interleukin-4 (IL-4) (mean differences 2.62, 95% CI 1.96-3.28, P < .00001) in the treatment of UC, and reduce interferon-γ (mean differences -5.38, 95% CI -6.81 to -3.94, P < .00001). The effective rates of colonoscopy (RR 0.94, 95% CI 0.84-1.05, P = .25), pathological examination (RR 1.04, 95% CI 0.90-1.20, P = .60) and rate of adverse reaction (RR 0.55, 95% CI 0.25-1.21, P = .14) were the same. Trial sequential analysis indicated that the benefits of effective rates of clinical comprehensive and syndrome, IL-4, and interferon-γ were conclusive. Harbord regression showed no publication bias (P = .98). The evaluation of evidence quality suggested that the evidence quality of effective rates of clinical comprehensive and syndrome was moderate and the evidence quality of other indicators was low or very low. CONCLUSION: Acupoint application is a safe and effective method for the treatment of UC, and has the prospect of clinical application.


Asunto(s)
Colitis Ulcerosa , Medicina , Humanos , Colitis Ulcerosa/terapia , Interleucina-4 , Puntos de Acupuntura , Interferón gamma
12.
Biotechnol Biofuels Bioprod ; 16(1): 14, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698212

RESUMEN

BACKGROUND: Lindera glauca with rich resource and fruit oil has emerged as novel source of biodiesel in China, but different germplasms show a variation for fruit oil content and FA profile. To develop L. glauca fruit oils as biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield, fuel property and prediction model construction was conducted on the fruits from 8 plus germplasms to select superior genotype for ideal biodiesel production. Another vital focus was to highlight mechanism that govern the differences in oil content and FA profile of different germplasms. The cross-accessions comparisons associated with oil-synthesized gene transcriptional level and oil accumulative amount led to the identification of potential determinants (enzymes, transporters or transcription factors) and regulatory mechanisms responsible for high-quality oil accumulation. RESULTS: To select superior germplasm and unravel regulatory mechanism of high oil production for developing L. glauca fruit oils as biodiesel, 8 plus trees (accession LG01/02/03/04/05/06/07/08) with high-yield fruits were selected to evaluate the differences in oil content, FA profile, biodiesel yield and fuel property, and to construct fuel property prediction model, revealing a variation in the levels of fruit oil (45.12-60.95%), monounsaturated FA (52.43-78.46%) and polyunsaturated FA (17.69-38.73%), and biodiesel yield (80.12-98.71%) across different accessions. Of note, LG06 had a maximum yield of oil (60.95%) and biodiesel (98.71%), and ideal proportions of C18:1 (77.89%), C18:2 (14.16%) and C18:3 (1.55%), indicating that fruit oils from accession LG06 was the most suitable for high-quality biodiesel production. To highlight molecular mechanism that govern such differences in oil content and FA composition of different accessions, the quantitative relationship between oil-synthesized gene transcription and oil accumulative amount were conducted on different accessions to identify some vital determinants (enzymes, transporters or transcription factors) with a model of carbon metabolic regulatory for high-quality oil accumulation by an integrated analysis of our recent transcriptome data and qRT-PCR detection. Our findings may present strategies for developing L. glauca fruit oils as biodiesel feedstock and engineering its oil accumulation. CONCLUSIONS: This is the first report on the cross-accessions evaluations of L. glauca fruit oils to determine ideal accession for producing ideal biodiesel, and the associations of oil accumulative amount with oil-synthesized gene transcription was performed to identify some crucial determinants (enzymes, transporters or transcription factors) with metabolic regulation model established for governing high oil production. Our finding may provide molecular basis for new strategies of developing biodiesel resource and engineering oil accumulation.

13.
Int J Biol Macromol ; 253(Pt 1): 126650, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37666400

RESUMEN

Oleosin (OLE) is vital to stabilize lipid droplet for seed triacylglycerol (TAG) storage. This work aimed to determine key OLE and to unravel mechanism that governed seed oil accumulation of Prunus sibirica for developing biodiesel. An integrated assay of global identification of LD-related protein and the cross-accessions/developing stages comparisons associated with oil accumulative amount and OLE transcript level was performed on seeds of 12 plus trees of P. sibirica to identify OLE1 (15.5 kDa) as key oleosin protein crucial for high seed oil accumulation. The OLE1 gene and its promoter were cloned from P. sibirica seeds, and overexpression of PsOLE1 in Arabidopsis was conducted under the controls of native promoter and constitutive CaMV35S promoter, respectively. PsOLE1 promoter had seed-specific cis-elements and showed seed specificity, by which PsOLE1 was specifically expressed in seeds. Ectopic overexpression of PsOLE1, especially driven by its promoter, could facilitate seed development and oil accumulation with an increase in unsaturated FAs, and upregulate transcript of TAG assembly enzymes, but suppress transcript of LD/TAG-hydrolyzed lipases and transporters, revealing a role of native promoter-mediated transcription of PsOLE1 in seed development and oil accumulation. PsOLE1 and its promoter have considerable potential for engineering oil accumulation in oilseed plants.


Asunto(s)
Arabidopsis , Prunus , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica , Arabidopsis/genética , Arabidopsis/metabolismo , Semillas , Aceites de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Biotechnol Lett ; 33(2): 387-93, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20953667

RESUMEN

A unidirectional promoter can be transformed into a bidirectional module by artificial methods. Here we report the bidirectionalization of the methyl jasmonate (MeJA)-inducible PtDrl02 promoter derived from poplar [(Populus tomentosa × P. bolleana) × P. tomentosa] in planta. Construction of the bidirectional PtDrl02 promoter (designated as mPtDrl02) was rapidly achieved by introducing a minimal 35S promoter in the opposite orientation to the 5' end of PtDrl02. ß-Glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes were also interchangeably linked to the 3'-and 5'-ends of mPtDrl02 to produce GFP/mPtDrl02/GUS and GUS/mPtDrl02/GFP vectors, respectively. Using the Agrobacterium-mediated transient expression approach, we demonstrated that the mPtDrl02 module was able to drive gene (GUS and GFP) expression in both orientations simultaneously. Furthermore, the cooperative and concurrent activity from both directions of the mPtDrl02 module was demonstrated following MeJA induction. To our knowledge, this is the first report of an artificial MeJA-responsive bidirectional promoter in perennial plants.


Asunto(s)
Acetatos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Populus/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Activación Transcripcional , Fusión Artificial Génica , Genes Reporteros , Glucuronidasa/genética , Glucuronidasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Recombinación Genética , Rhizobium/genética
15.
Sci Rep ; 11(1): 3570, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574357

RESUMEN

Chinese chestnut (Castanea mollissima Blume) seed kernels (CCSK) with high quality and quantity of starch has emerged as a potential raw material for food industry, but the molecular regulatory mechanism of starch accumulation in developing CCSK is still unclear. In this study, we firstly analyzed the fruit development, starch accumulation, and microscopic observation of dynamic accumulation of starch granules of developing CCSK from 10 days after flowering (DAF) to 100 DAF, of which six representative CCSK samples (50-100 DAF) were selected for transcriptome sequencing analysis. Approximately 40 million valid reads were obtained, with an average length of 124.95 bp, which were searched against a reference genome, returning 38,146 unigenes (mean size = 1164.19 bp). Using the DESeq method, 1968, 1573, 1187, 1274, and 1494 differentially expressed unigenes were identified at 60:50, 70:60, 80:70, 90:80 and 100:90 DAF, respectively. The relationship between the unigene transcriptional profiles and starch dynamic patterns in developing CCSK was comparatively analyzed, and the specific unigenes encoding for metabolic enzymes (SUSY2, PGM, PGI, GPT, NTT, AGP3, AGP2, GBSS1, SS1, SBE1, SBE2.1, SBE2.2, ISA1, ISA2, ISA3, and PHO) were characterized to be involved potentially in the biosynthesis of G-1-P, ADPG, and starch. Finally, the temporal transcript profiles of genes encoding key enzymes (susy2, pgi2, gpt1, agp2, agp3, gbss1, ss1, sbe1, sbe2.1, sbe2.2, isa1, isa2, isa3, and pho) were validated by quantitative real-time PCR (qRT-PCR). Our findings could help to reveal the molecular regulatory mechanism of starch accumulation in developing CCSK and may also provide potential candidate genes for increasing starch content in Chinese chestnut or other starchy crops.


Asunto(s)
Cyperaceae/genética , Almidón/biosíntesis , Transcriptoma/genética , Metabolismo de los Hidratos de Carbono/genética , China , Regulación de la Expresión Génica de las Plantas/genética , Semillas/genética , Almidón/genética
16.
Plant Cell Rep ; 29(5): 449-60, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20179934

RESUMEN

The PtDrl02 gene belongs to the TIR-NBS gene family in triploid white poplar (Populus tomentosa x P. bolleana) x P. tomentosa. Its expression pattern displays tissue-specificity, and the transcript level can be induced by wounding, methyl jasmonate (MeJA), and salicylic acid (SA). To understand the regulatory mechanism controlling PtDrl02 gene expression, we functionally characterized the PtDrl02 promoter region. Using the beta-glucuronidase as a reporter, we found that the PtDrl02 promoter directed gene expression mainly in the aerial parts of the plants and was confined to the cortex tissues of leaf veins, petioles, stems, and stem piths, showing a typical tissue-specific expression pattern. Deletion analysis revealed two positive regulatory regions (-985 to -669 and -669 to -467) responsible for the basal activity of the PtDrl02 promoter. Impressively, the sequence from -669 to -467 was shown to contain cis-element (s) responding to wounding and MeJA, while the promoter region between -244 and 0 could individually display wounding-responsiveness, and the fragment from -467 to -244 was required for SA- and NaCl-inducible expression of the PtDrl02 promoter. Additionally, it was found that the -985 to -669 sequence was the ABA-responding promoter fragment. These results suggested that the PtDrl02 promoter was modulated by multiple cis-regulatory elements in distinct and complex patterns to regulate PtDrl02 gene expression. Our study also suggested that the PtDrl02 gene 5' untranslated region, as well as a Populus WRKY transcription factor, PtWRKY1, was involved in the regulation of PtDrl02 promoter activities.


Asunto(s)
Hojas de la Planta/metabolismo , Populus/genética , Regiones Promotoras Genéticas , Acetatos/farmacología , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Oxilipinas/farmacología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Populus/metabolismo , ARN de Planta/genética , Ácido Salicílico/farmacología , Cloruro de Sodio/farmacología , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/metabolismo , Transformación Genética
17.
Tree Physiol ; 40(6): 731-745, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32159803

RESUMEN

Remorins (REMs) play an important role in the ability of plants to adapt to adverse environments. PeREM6.5, a protein of the REM family in Populus euphratica (salt-resistant poplar), was induced by NaCl stress in callus, roots and leaves. We cloned the full-length PeREM6.5 from P. euphratica and transformed it into Escherichia coli and Arabidopsis thaliana. PeREM6.5 recombinant protein significantly increased the H+-ATPase hydrolytic activity and H+ transport activity in P. euphratica plasma membrane (PM) vesicles. Yeast two-hybrid assay showed that P. euphratica REM6.5 interacted with RPM1-interacting protein 4 (PeRIN4). Notably, the PeREM6.5-induced increase in PM H+-ATPase activity was enhanced by PeRIN4 recombinant protein. Overexpression of PeREM6.5 in Arabidopsis significantly improved salt tolerance in transgenic plants in terms of survival rate, root growth, electrolyte leakage and malondialdehyde content. Arabidopsis plants overexpressing PeREM6.5 retained high PM H+-ATPase activity in both in vivo and in vitro assays. PeREM6.5-transgenic plants had reduced accumulation of Na+ due to the Na+ extrusion promoted by the H+-ATPases. Moreover, the H+ pumps caused hyperpolarization of the PM, which reduced the K+ loss mediated by the depolarization-activated channels in the PM of salinized roots. Therefore, we conclude that PeREM6.5 regulated H+-ATPase activity in the PM, thus enhancing the plant capacity to maintain ionic homeostasis under salinity.


Asunto(s)
Populus/genética , Tolerancia a la Sal , Membrana Celular , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente
18.
Mol Genet Genomics ; 282(4): 381-94, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19618215

RESUMEN

Genome-wide analyses have identified a set of TIR-NBS-encoding genes in plants. However, the molecular mechanism underlying the expression of these genes is still unknown. In this study, we presented a TIR-NBS-encoding gene, PtDrl02, that displayed a low level of tissue-specific expression in a triploid white poplar [(Populus tomentosa x P. bolleana) x P. tomentosa], and analyzed the effects of the 5' untranslated region (UTR) on gene expression. The 5' UTR sequence repressed the reporter activity of beta-glucuronidase (GUS) gene under PtDrl02 promoter by 113.5-fold with a staining ratio of 2.97% in the transgenic tobacco plants. Quantitative RT-PCR assays revealed that the 5' UTR sequence decreased the transcript level of the GUS reporter gene by 13.3-fold, implying a regulatory role of 5' UTR in transcription and/or mRNA destabilization. The comparison of GUS activity with the transcript abundance indicated that the 5' UTR sequence decreased the translation efficiency of target gene by 88.3%. Additionally, the analysis of the transgenic P-985/UTRDelta/GUS plants showed that both the exon1 sequence and the leading intron within the 5' UTR region were responsible for the regulation of gene expression. Our results suggested a negative effect of the 5' UTR of PtDrl02 gene on gene expression.


Asunto(s)
Regiones no Traducidas 5'/genética , Genes de Plantas/fisiología , Poliploidía , Populus/genética , Regiones no Traducidas 5'/fisiología , Secuencia de Aminoácidos , Células Cultivadas , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Estructura Terciaria de Proteína/genética , Rhizobium/citología , Rhizobium/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Nicotiana/citología , Nicotiana/genética , Transfección
19.
Mitochondrial DNA B Resour ; 4(2): 3831-3833, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33366208

RESUMEN

Cinnamomum aromaticum has long been recognized and cultivated in tropical and subtropical Asia for their aromatic bark to produce cinnamon. We reported for the first time the complete plastid genome of C. aromaticum and reconstructed its phylogenetic position. The complete plastid genome is 152,754 bp in length with a quadripartite organization: a large single copy (LSC) region of 93,706 bp and a small single copy (SSC) region of 18,916 bp. Each of the two inverted repeat regions (IRa and IRb) is 20,066 bp. We recovered 128 functional genes, including 84 protein-coding genes, 36 tRNA genes and 8 rRNA genes. The phylogenetic analysis suggested that C. aromaticum and two samples of C. camphora forms a strongly supported clade, which is sister to another cinnamon species of C. verum native to Sri Lanka with strong ultrafast bootstrap support.

20.
Biotechnol Biofuels ; 12: 6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30622648

RESUMEN

BACKGROUND: Based on our previous studies of 17 Prunus sibirica germplasms, one plus tree with high quality and quantity of seed oils has emerged as novel potential source of biodiesel. To better develop P. sibirica seed oils as woody biodiesel, a concurrent exploration of oil content, FA composition, biodiesel yield and fuel properties as well as prediction model construction for fuel properties was conducted on developing seeds to determine the optimal seed harvest time for producing high-quality biodiesel. Oil synthesis required supply of carbon source, energy and FA, but their transport mechanisms still remains enigmatic. Our recent 454 sequencing of P. sibirica could provide long-read sequences to identify membrane transporters for a better understanding of regulatory mechanism for high oil production in developing seeds. RESULTS: To better develop the seed oils of P. sibirica as woody biodiesel, we firstly focused on a temporal and comparative evaluation of growth tendency, oil content, FA composition, biodiesel yield and fuel properties as well as model construction for biodiesel property prediction in different developing seeds from P. sibirica plus tree (accession AS-80), revealing that the oils from developing seeds harvested after 60 days after flowering (DAF) could be as novel potential feedstock for producing biodiesel with ideal fuel property. To gain new insight into membrane transport mechanism for high oil yield in developing seeds of P. sibirica, we presented a global analysis of transporter based on our recent 454 sequencing data of P. sibirica. We annotated a total of 116 genes for membrane-localized transporters at different organelles (plastid, endoplasmatic reticulum, tonoplast, mitochondria and peroxisome), of which some specific transporters were identified to be involved in carbon allocation, metabolite transport and energy supply for oil synthesis by both RT-PCR and qRT-PCR. Importantly, the transporter-mediated model was well established for high oil synthesis in developing P. sibirica seeds. Our findings could help to reveal molecular mechanism of increased oil production and may also present strategies for engineering oil accumulation in oilseed plants. CONCLUSIONS: This study presents a temporal and comparative evaluation of developing P. sibirica seed oils as a potential feedstock for producing high-quality biodiesel and a global identification for membrane transporters was to gain better insights into regulatory mechanism of high oil production in developing seeds of P. sibirica. Our findings may present strategies for developing woody biodiesel resources and engineering oil accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA