Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO Rep ; 23(12): e55044, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36278408

RESUMEN

FBXW7, which encodes a substrate-specific receptor of an SCF E3 ligase complex, is a frequently mutated human tumor suppressor gene known to regulate the post-translational stability of various proteins involved in cellular proliferation. Here, using genome-wide CRISPR screens, we report a novel synthetic lethal genetic interaction between FBXW7 and CCNL1 and describe CCNL1 as a new substrate of the SCF-FBXW7 E3 ligase. Further analysis showed that the CCNL1-CDK11 complex is critical at the G2-M phase of the cell cycle since defective CCNL1 accumulation, resulting from FBXW7 mutation, leads to shorter mitotic time. Cells harboring FBXW7 loss-of-function mutations are hypersensitive to treatment with a CDK11 inhibitor, highlighting a genetic vulnerability that could be leveraged for cancer treatment.


Asunto(s)
Ciclinas , Proteína 7 que Contiene Repeticiones F-Box-WD , Ubiquitina-Proteína Ligasas , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Mutación , Ubiquitina-Proteína Ligasas/genética , Ciclinas/metabolismo , Ubiquitinación
2.
Nano Lett ; 23(13): 5877-5885, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37040490

RESUMEN

Nanoneedles are a useful tool for delivering exogenous biomolecules to cells. Although therapeutic applications have been explored, the mechanism regarding how cells interact with nanoneedles remains poorly studied. Here, we present a new approach for the generation of nanoneedles, validated their usefulness in cargo delivery, and studied the underlying genetic modulators during delivery. We fabricated arrays of nanoneedles based on electrodeposition and quantified its efficacy of delivery using fluorescently labeled proteins and siRNAs. Notably, we revealed that our nanoneedles caused the disruption of cell membranes, enhanced the expression of cell-cell junction proteins, and downregulated the expression of transcriptional factors of NFκB pathways. This perturbation trapped most of the cells in G2 phase, in which the cells have the highest endocytosis activities. Taken together, this system provides a new model for the study of interactions between cells and high-aspect-ratio materials.


Asunto(s)
Endocitosis , Proteínas , Membrana Celular
3.
Nano Lett ; 22(12): 4774-4783, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35639489

RESUMEN

Magnetic cell sorting is an enabling tool for the isolation of specific cellular subpopulations for downstream applications and requires the cells to be labeled by a sufficient number of magnetic nanoparticles to leverage magnetophoresis for efficient separation. This requirement makes it challenging to target weakly expressed biomarkers. Here, we developed a new approach that selectively and efficiently amplifies the magnetic labeling on cells through sequentially connected antibodies and nanoparticles delivered to the surface or interior of the cell. Using this approach, we achieved amplification up to 100-fold for surface and intracellular markers. We also demonstrated the utility of this assay for enabling high-performance magnetic cell sorting when it is applied to the analysis of rare tumor cells for cancer diagnosis and the purification of transfected CAR T cells for immunotherapy. The data presented demonstrate a useful tool for the stratification of rare cell subpopulations.


Asunto(s)
Magnetismo , Nanopartículas , Separación Celular , Fenómenos Magnéticos , Fenómenos Físicos
4.
EMBO Rep ; 15(11): 1163-74, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25252681

RESUMEN

DNA double-strand breaks (DSBs) activate a signaling pathway known as the DNA damage response (DDR) which via protein-protein interactions and post-translational modifications recruit signaling proteins, such as 53BP1, to chromatin flanking the lesion. Depletion of the SET8 methyltransferase prevents accumulation of 53BP1 at DSBs; however, this phenotype has been attributed to the role of SET8 in generating H4K20 methylation across the genome, which is required for 53BP1 binding to chromatin, prior to DNA damage. Here, we report that SET8 acts directly at DSBs during the DNA damage response (DDR). SET8 accumulates at DSBs and is enzymatically active at DSBs. Depletion of SET8 just prior to the induction of DNA damage abrogates 53BP1's accumulation at DSBs, suggesting that SET8 acts during DDR. SET8's occupancy at DSBs is regulated by histone deacetylases (HDACs). Finally, SET8 is functionally required for efficient repair of DSBs specifically via the non-homologous end-joining pathway (NHEJ). Our findings reveal that SET8's active role during DDR at DSBs is required for 53BP1's accumulation.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , N-Metiltransferasa de Histona-Lisina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Línea Celular Tumoral , Células HEK293 , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Unión Proteica , Transporte de Proteínas , Proteína 1 de Unión al Supresor Tumoral P53
5.
Nucleic Acids Res ; 40(9): 3975-89, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22266654

RESUMEN

Ataxia telangiectasia mutated (ATM), a PI-3 kinase essential for maintaining genomic stability, has been shown to regulate TRF1, a negative mediator of telomerase-dependent telomere extension. However, little is known about ATM-mediated TRF1 phosphorylation site(s) in vivo. Here, we report that ATM phosphorylates S367 of TRF1 and that this phosphorylation renders TRF1 free of chromatin. We show that phosphorylated (pS367)TRF1 forms distinct non-telomeric subnuclear foci and that these foci occur predominantly in S and G2 phases, implying that their formation is cell cycle regulated. We show that phosphorylated (pS367)TRF1-containing foci are sensitive to proteasome inhibition. We find that a phosphomimic mutation of S367D abrogates TRF1 binding to telomeric DNA and renders TRF1 susceptible to protein degradation. In addition, we demonstrate that overexpressed TRF1-S367D accumulates in the subnuclear domains containing phosphorylated (pS367)TRF1 and that these subnuclear domains overlap with nuclear proteasome centers. Taken together, these results suggest that phosphorylated (pS367)TRF1-containing foci may represent nuclear sites for TRF1 proteolysis. Furthermore, we show that TRF1 carrying the S367D mutation is unable to inhibit telomerase-dependent telomere lengthening or to suppress the formation of telomere doublets and telomere loss in TRF1-depleted cells, suggesting that S367 phosphorylation by ATM is important for the regulation of telomere length and stability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Homeostasis del Telómero , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Línea Celular , Núcleo Celular/química , Núcleo Celular/enzimología , Humanos , Mutación , Fosforilación , Inhibidores de Proteasoma , Telomerasa/metabolismo , Telómero/química , Proteína 1 de Unión a Repeticiones Teloméricas/análisis , Proteína 1 de Unión a Repeticiones Teloméricas/genética
6.
Sci Adv ; 10(19): eadj1468, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718125

RESUMEN

Genome-wide CRISPR screens have provided a systematic way to identify essential genetic regulators of a phenotype of interest with single-cell resolution. However, most screens use live/dead readout of viability to identify factors of interest. Here, we describe an approach that converts cell proliferation into the degree of magnetization, enabling downstream microfluidic magnetic sorting to be performed. We performed a head-to-head comparison and verified that the magnetic workflow can identify the same hits from a traditional screen while reducing the screening period from 4 weeks to 1 week. Taking advantage of parallelization and performance, we screened multiple mesenchymal cancer cell lines for their dependency on cell proliferation. We found and validated pan- and cell-specific potential therapeutic targets. The method presented provides a nanoparticle-enabled approach means to increase the breadth of data collected in CRISPR screens, enabling the rapid discovery of drug targets for treatment.


Asunto(s)
Proliferación Celular , Nanopartículas de Magnetita , Humanos , Proliferación Celular/efectos de los fármacos , Nanopartículas de Magnetita/química , Línea Celular Tumoral , Fenotipo , Sistemas CRISPR-Cas
7.
Nat Biomed Eng ; 8(3): 263-277, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012306

RESUMEN

The identification of genetic regulators of cell secretions is challenging because it requires the sorting of a large number of cells according to their secretion patterns. Here we report the development and applicability of a high-throughput microfluidic method for the analysis of the secretion levels of large populations of immune cells. The method is linked with a kinome-wide loss-of-function CRISPR screen, immunomagnetically sorting the cells according to their secretion levels, and the sequencing of their genomes to identify key genetic modifiers of cell secretion. We used the method, which we validated against flow cytometry for cytokines secreted from primary mouse CD4+ (cluster of differentiation 4-positive) T cells, to discover a subgroup of highly co-expressed kinase-coding genes that regulate interferon-gamma secretion by these cells. We validated the function of the kinases identified using RNA interference, CRISPR knockouts and kinase inhibitors and confirmed the druggability of selected kinases via the administration of a kinase inhibitor in an animal model of colitis. The technique may facilitate the discovery of regulatory mechanisms for immune-cell activation and of therapeutic targets for autoimmune diseases.


Asunto(s)
Inhibidores de Proteínas Quinasas , Animales , Ratones , Interferencia de ARN , Inhibidores de Proteínas Quinasas/farmacología
8.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746105

RESUMEN

Complexes that control mRNA stability and translation promote timely cell-state transitions during differentiation by ensuring appropriate expression patterns of key developmental regulators. The Drosophila RNA-binding protein Brain tumor (Brat) promotes degradation of target transcripts during the maternal-to-zygotic transition in syncytial embryos and in uncommitted intermediate neural progenitors (immature INPs). We identified Ubiquitin-specific protease 5 (Usp5) as a Brat interactor essential for the degradation of Brat target mRNAs in both cell types. Usp5 promotes Brat-dedadenylase pre-complex assembly in mitotic neural stem cells (neuroblasts) by bridging Brat and the scaffolding components of deadenylase complexes lacking their catalytic subunits. The adaptor protein Miranda binds the RNA-binding domain of Brat, limiting its ability to bind target mRNAs in mitotic neuroblasts. Cortical displacement of Miranda activates Brat-mediated mRNA decay in immature INPs. We propose that the assembly of an enzymatically inactive and RNA-binding-deficient pre-complex poises mRNA degradation machineries for rapid activation driving timely developmental transitions.

9.
Cell Death Discov ; 9(1): 459, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104154

RESUMEN

CDK12 is a transcriptional cyclin-dependent kinase (CDK) that interacts with cyclin K to regulate different aspects of gene expression. The CDK12-cyclin K complex phosphorylates several substrates, including RNA polymerase II (Pol II), and thereby regulates transcription elongation, RNA splicing, as well as cleavage and polyadenylation. Because of its implication in cancer, including breast cancer and melanoma, multiple pharmacological inhibitors of CDK12 have been identified to date, including THZ531 and SR-4835. While both CDK12 inhibitors affect Poll II phosphorylation, we found that SR-4835 uniquely promotes cyclin K degradation via the proteasome. Using loss-of-function genetic screening, we found that SR-4835 cytotoxicity depends on a functional CUL4-RBX1-DDB1 ubiquitin ligase complex. Consistent with this, we show that DDB1 is required for cyclin K degradation, and that SR-4835 promotes DDB1 interaction with the CDK12-cyclin K complex. Docking studies and structure-activity relationship analyses of SR-4835 revealed the importance of the benzimidazole side-chain in molecular glue activity. Together, our results indicate that SR-4835 acts as a molecular glue that recruits the CDK12-cyclin K complex to the CUL4-RBX1-DDB1 ubiquitin ligase complex to target cyclin K for degradation.

10.
Cancer Res Commun ; 3(12): 2596-2607, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38032106

RESUMEN

FBXW7 is a commonly mutated tumor suppressor gene that functions to regulate numerous oncogenes involved in cell-cycle regulation. Genome-wide CRISPR fitness screens identified a signature of DNA repair and DNA damage response genes as required for the growth of FBXW7-knockout cells. Guided by these findings, we show that FBXW7-mutant cells have high levels of replication stress, which results in a genotype-specific vulnerability to inhibition of the ATR signaling pathway, as these mutant cells become heavily reliant on a robust S-G2 checkpoint. ATR inhibition induces an accelerated S-phase, leading to mitotic catastrophe and cell death caused by the high replication stress present in FBXW7-/- cells. In addition, we provide evidence in cell and organoid studies, and mining of publicly available high-throughput drug screening efforts, that this genotype-specific vulnerability extends to multiple types of cancer, providing a rational means of identifying responsive patients for targeted therapy. SIGNIFICANCE: We have elucidated the synthetic lethal interactions between FBXW7 mutation and DNA damage response genes, and highlighted the potential of ATR inhibitors as targeted therapies for cancers harboring FBXW7 alterations.


Asunto(s)
Reparación del ADN , Neoplasias , Humanos , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Mutación , Neoplasias/genética , Muerte Celular
11.
Genetics ; 220(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34757425

RESUMEN

During the maternal-to-zygotic transition (MZT), which encompasses the earliest stages of animal embryogenesis, a subset of maternally supplied gene products is cleared, thus permitting activation of zygotic gene expression. In the Drosophila melanogaster embryo, the RNA-binding protein Smaug (SMG) plays an essential role in progression through the MZT by translationally repressing and destabilizing a large number of maternal mRNAs. The SMG protein itself is rapidly cleared at the end of the MZT by a Skp/Cullin/F-box (SCF) E3-ligase complex. Clearance of SMG requires zygotic transcription and is required for an orderly MZT. Here, we show that an F-box protein, which we name Bard (encoded by CG14317), is required for degradation of SMG. Bard is expressed zygotically and physically interacts with SMG at the end of the MZT, coincident with binding of the maternal SCF proteins, SkpA and Cullin1, and with degradation of SMG. shRNA-mediated knock-down of Bard or deletion of the bard gene in the early embryo results in stabilization of SMG protein, a phenotype that is rescued by transgenes expressing Bard. Bard thus times the clearance of SMG at the end of the MZT.


Asunto(s)
Drosophila melanogaster , Animales
12.
ACS Cent Sci ; 8(12): 1618-1626, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36589880

RESUMEN

Genome-wide loss-of-function screens are critical tools to identify novel genetic regulators of intracellular proteins. However, studying the changes in the organelle-specific expression profile of intracellular proteins can be challenging due to protein localization differences across the whole cell, hindering context-dependent protein expression and activity analyses. Here, we describe nuPRISM, a microfluidics chip specifically designed for large-scale isolated nuclei sorting. The new device enables rapid genome-wide loss-of-function phenotypic CRISPR-Cas9 screens directed at intranuclear targets. We deployed this technology to identify novel genetic regulators of ß-catenin nuclear accumulation, a phenotypic hallmark of APC-mutated colorectal cancer. nuPRISM expands our ability to capture aberrant nuclear morphological and functional traits associated with distinctive signal transduction and subcellular localization-driven functional processes with substantial resolution and high throughput.

13.
Sci Adv ; 8(35): eabo7792, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054348

RESUMEN

Circulating tumor cells (CTCs) break free from primary tumors and travel through the circulation system to seed metastatic tumors, which are the major cause of death from cancer. The identification of the major genetic factors that enhance production and persistence of CTCs in the bloodstream at a whole genome level would enable more comprehensive molecular mechanisms of metastasis to be elucidated and the identification of novel therapeutic targets, but this remains a challenging task due to the heterogeneity and extreme rarity of CTCs. Here, we describe an in vivo genome-wide CRISPR knockout screen using CTCs directly isolated from a mouse xenograft. This screen elucidated SLIT2-a gene encoding a secreted protein acting as a cellular migration cue-as the most significantly represented gene knockout in the CTC population. SLIT2 knockout cells are highly metastatic with hypermigratory and mesenchymal phenotype, resulting in enhanced cancer progression in xenograft models.


Asunto(s)
Células Neoplásicas Circulantes , Animales , Transición Epitelial-Mesenquimal , Xenoinjertos , Humanos , Ratones , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología
14.
Nat Commun ; 13(1): 6457, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309522

RESUMEN

Melanoma is the deadliest form of skin cancer and considered intrinsically resistant to chemotherapy. Nearly all melanomas harbor mutations that activate the RAS/mitogen-activated protein kinase (MAPK) pathway, which contributes to drug resistance via poorly described mechanisms. Herein we show that the RAS/MAPK pathway regulates the activity of cyclin-dependent kinase 12 (CDK12), which is a transcriptional CDK required for genomic stability. We find that melanoma cells harbor constitutively high CDK12 activity, and that its inhibition decreases the expression of long genes containing multiple exons, including many genes involved in DNA repair. Conversely, our results show that CDK12 inhibition promotes the expression of short genes with few exons, including many growth-promoting genes regulated by the AP-1 and NF-κB transcription factors. Inhibition of these pathways strongly synergize with CDK12 inhibitors to suppress melanoma growth, suggesting promising drug combinations for more effective melanoma treatment.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Línea Celular Tumoral
15.
Cell Cycle ; 19(1): 15-23, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31760894

RESUMEN

The DNA damage response (DDR) associated post-translational modifications recruit chromatin remodelers, signaling proteins such as 53BP1 and repair factors to chromatin flanking DNA double strand breaks (DSBs) to promote its repair. Although localization of both RNF168 ubiquitin ligase and SET8 methyltransferase at DSBs is essential for 53BP1's recruitment to DSBs, it is unclear if they do so via the same pathways. Here we report that RNF168 mediates SET8's recruitment to DSBs. Depletion of cellular pool of ubiquitin through proteasome inhibition abolished RNF168 and SET8's localization to DNA damage. Knockdown of RNF8 or RNF168 abolished SET8's recruitment to DNA damage. Moreover, RNF168 and SET8 form stable complexes in vivo. Based on these results we propose a model in which SET8, which despite being a pan-chromatin binding protein, can accumulate several folds at chromatin flanking DSBs through tethering to other proteins that specifically localize to chromatin regions with specific modifications.


Asunto(s)
Cromatina/metabolismo , Daño del ADN , N-Metiltransferasa de Histona-Lisina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Humanos , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Ubiquitina/metabolismo
16.
J Cell Biol ; 219(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31881079

RESUMEN

Activation of Wnt signaling entails ßcatenin protein stabilization and translocation to the nucleus to regulate context-specific transcriptional programs. The majority of colorectal cancers (CRCs) initiate following APC mutations, resulting in Wnt ligand-independent stabilization and nuclear accumulation of ßcatenin. The mechanisms underlying ßcatenin nucleocytoplasmic shuttling remain incompletely defined. Using a novel, positive selection, functional genomic strategy, DEADPOOL, we performed a genome-wide CRISPR screen and identified IPO11 as a required factor for ßcatenin-mediated transcription in APC mutant CRC cells. IPO11 (Importin-11) is a nuclear import protein that shuttles cargo from the cytoplasm to the nucleus. IPO11-/- cells exhibit reduced nuclear ßcatenin protein levels and decreased ßcatenin target gene activation, suggesting IPO11 facilitates ßcatenin nuclear import. IPO11 knockout decreased colony formation of CRC cell lines and decreased proliferation of patient-derived CRC organoids. Our findings uncover a novel nuclear import mechanism for ßcatenin in cells with high Wnt activity.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/genética , beta Catenina/genética , beta Carioferinas/genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Mutación , Vía de Señalización Wnt/genética
17.
Nat Commun ; 11(1): 3701, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709883

RESUMEN

Despite its importance in human cancers, including colorectal cancers (CRC), oncogenic KRAS has been extremely challenging to target therapeutically. To identify potential vulnerabilities in KRAS-mutated CRC, we characterize the impact of oncogenic KRAS on the cell surface of intestinal epithelial cells. Here we show that oncogenic KRAS alters the expression of a myriad of cell-surface proteins implicated in diverse biological functions, and identify many potential surface-accessible therapeutic targets. Cell surface-based loss-of-function screens reveal that ATP7A, a copper-exporter upregulated by mutant KRAS, is essential for neoplastic growth. ATP7A is upregulated at the surface of KRAS-mutated CRC, and protects cells from excess copper-ion toxicity. We find that KRAS-mutated cells acquire copper via a non-canonical mechanism involving macropinocytosis, which appears to be required to support their growth. Together, these results indicate that copper bioavailability is a KRAS-selective vulnerability that could be exploited for the treatment of KRAS-mutated neoplasms.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Cobre/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Disponibilidad Biológica , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ATPasas Transportadoras de Cobre/metabolismo , Femenino , Humanos , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Mutación
18.
Cell Rep ; 30(10): 3353-3367.e7, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160542

RESUMEN

G3BP RNA-binding proteins are important components of stress granules (SGs). Here, we analyze the role of the Drosophila G3BP Rasputin (RIN) in unstressed cells, where RIN is not SG associated. Immunoprecipitation followed by microarray analysis identifies over 550 mRNAs that copurify with RIN. The mRNAs found in SGs are long and translationally silent. In contrast, we find that RIN-bound mRNAs, which encode core components of the transcription, splicing, and translation machinery, are short, stable, and highly translated. We show that RIN is associated with polysomes and provide evidence for a direct role for RIN and its human homologs in stabilizing and upregulating the translation of their target mRNAs. We propose that when cells are stressed, the resulting incorporation of RIN/G3BPs into SGs sequesters them away from their short target mRNAs. This would downregulate the expression of these transcripts, even though they are not incorporated into stress granules.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Biosíntesis de Proteínas , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Humanos , Ratones , Mitocondrias/metabolismo , Mutación/genética , Células 3T3 NIH , Polirribosomas/metabolismo , Motivo de Reconocimiento de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Transcriptoma/genética , Cigoto/metabolismo
19.
Cell Rep ; 31(12): 107783, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32579915

RESUMEN

In animal embryos, the maternal-to-zygotic transition (MZT) hands developmental control from maternal to zygotic gene products. We show that the maternal proteome represents more than half of the protein-coding capacity of Drosophila melanogaster's genome, and that 2% of this proteome is rapidly degraded during the MZT. Cleared proteins include the post-transcriptional repressors Cup, Trailer hitch (TRAL), Maternal expression at 31B (ME31B), and Smaug (SMG). Although the ubiquitin-proteasome system is necessary for clearance of these repressors, distinct E3 ligase complexes target them: the C-terminal to Lis1 Homology (CTLH) complex targets Cup, TRAL, and ME31B for degradation early in the MZT and the Skp/Cullin/F-box-containing (SCF) complex targets SMG at the end of the MZT. Deleting the C-terminal 233 amino acids of SMG abrogates F-box protein interaction and confers immunity to degradation. Persistent SMG downregulates zygotic re-expression of mRNAs whose maternal contribution is degraded by SMG. Thus, clearance of SMG permits an orderly MZT.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Represoras/genética , Transcripción Genética , Cigoto/metabolismo , Animales , Regulación hacia Abajo/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Femenino , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Biosíntesis de Proteínas/genética , Subunidades de Proteína/metabolismo , Proteolisis , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Ribonucleoproteínas/metabolismo , Factores de Tiempo , Transcriptoma/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA