Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 299(12): 105426, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926281

RESUMEN

S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Animales , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Histidina/metabolismo , Lipoilación , Ratones Transgénicos , Miocitos Cardíacos/metabolismo
2.
Nature ; 509(7500): 337-41, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24805242

RESUMEN

If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine whether endogenous c-kit(+) cells contribute differentiated cardiomyocytes to the heart during development, with ageing or after injury in adulthood. A complementary DNA encoding either Cre recombinase or a tamoxifen-inducible MerCreMer chimaeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit(+) cells did produce new cardiomyocytes within the heart, although at a percentage of approximately 0.03 or less, and if a preponderance towards cellular fusion is considered, the percentage falls to below approximately 0.008. By contrast, c-kit(+) cells amply generated cardiac endothelial cells. Thus, endogenous c-kit(+) cells can generate cardiomyocytes within the heart, although probably at a functionally insignificant level.


Asunto(s)
Linaje de la Célula , Lesiones Cardíacas/patología , Mioblastos Cardíacos/citología , Mioblastos Cardíacos/metabolismo , Miocardio/citología , Miocitos Cardíacos/citología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Envejecimiento/fisiología , Animales , Diferenciación Celular , Fusión Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Corazón/crecimiento & desarrollo , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Tamoxifeno/farmacología
3.
Circulation ; 138(25): 2931-2939, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29991486

RESUMEN

BACKGROUND: The adult mammalian heart displays a cardiomyocyte turnover rate of ≈1%/y throughout postnatal life and after injuries such as myocardial infarction (MI), but the question of which cell types drive this low level of new cardiomyocyte formation remains contentious. Cardiac-resident stem cells marked by stem cell antigen-1 (Sca-1, gene name Ly6a) have been proposed as an important source of cardiomyocyte renewal. However, the in vivo contribution of endogenous Sca-1+ cells to the heart at baseline or after MI has not been investigated. METHODS: Here we generated Ly6a gene-targeted mice containing either a constitutive or an inducible Cre recombinase to perform genetic lineage tracing of Sca-1+ cells in vivo. RESULTS: We observed that the contribution of endogenous Sca-1+ cells to the cardiomyocyte population in the heart was <0.005% throughout all of cardiac development, with aging, or after MI. In contrast, Sca-1+ cells abundantly contributed to the cardiac vasculature in mice during physiological growth and in the post-MI heart during cardiac remodeling. Specifically, Sca-1 lineage-traced endothelial cells expanded postnatally in the mouse heart after birth and into adulthood. Moreover, pulse labeling of Sca-1+ cells with an inducible Ly6a-MerCreMer allele also revealed a preferential expansion of Sca-1 lineage-traced endothelial cells after MI injury in the mouse. CONCLUSIONS: Cardiac-resident Sca-1+ cells are not significant contributors to cardiomyocyte renewal in vivo. However, cardiac Sca-1+ cells represent a subset of vascular endothelial cells that expand postnatally with enhanced responsiveness to pathological stress in vivo.


Asunto(s)
Células Madre Adultas/fisiología , Envejecimiento/fisiología , Antígenos Ly/metabolismo , Endotelio Vascular/fisiología , Corazón/fisiología , Proteínas de la Membrana/metabolismo , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/fisiología , Animales , Antígenos Ly/genética , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Vasos Coronarios/cirugía , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Modelos Animales , Desarrollo de Músculos , Infarto del Miocardio/genética
5.
J Biol Chem ; 291(19): 9920-8, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26966179

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease caused by mutations in the gene encoding dystrophin. Loss of dystrophin protein compromises the stability of the sarcolemma membrane surrounding each muscle cell fiber, leading to membrane ruptures and leakiness that induces myofiber necrosis, a subsequent inflammatory response, and progressive tissue fibrosis with loss of functional capacity. Cathepsin S (Ctss) is a cysteine protease that is actively secreted in areas of tissue injury and ongoing inflammation, where it participates in extracellular matrix remodeling and healing. Here we show significant induction of Ctss expression and proteolytic activity following acute muscle injury or in muscle from mdx mice, a model of DMD. To examine the functional ramifications associated with greater Ctss expression, the Ctss gene was deleted in the mdx genetic background, resulting in protection from muscular dystrophy pathogenesis that included reduced myofiber turnover and histopathology, reduced fibrosis, and improved running capacity. Mechanistically, deletion of the Ctss gene in the mdx background significantly increased myofiber sarcolemmal membrane stability with greater expression and membrane localization of utrophin, integrins, and ß-dystroglycan, which anchor the membrane to the basal lamina and underlying cytoskeletal proteins. Consistent with these results, skeletal muscle-specific transgenic mice overexpressing Ctss showed increased myofiber necrosis, muscle histopathology, and a functional deficit reminiscent of muscular dystrophy. Hence, Ctss induction during muscular dystrophy is a pathologic event that partially underlies disease pathogenesis, and its inhibition might serve as a new therapeutic strategy in DMD.


Asunto(s)
Catepsinas/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Fibras Musculares Esqueléticas/enzimología , Distrofia Muscular Animal/enzimología , Distrofia Muscular de Duchenne/enzimología , Animales , Citoesqueleto/enzimología , Citoesqueleto/genética , Citoesqueleto/patología , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Fibras Musculares Esqueléticas/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Necrosis , Proteolisis , Sarcolema/enzimología , Sarcolema/genética , Sarcolema/patología
6.
Development ; 137(23): 3953-63, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20980403

RESUMEN

Kruppel-like transcription factors (Klfs) are essential for the induction and maintenance of pluripotency of embryonic stem cells (ESCs), yet little is known about their roles in establishing the three lineages of the pre-implantation embryo. Here, we show that Klf5 is required for the formation of the trophectoderm (TE) and the inner cell mass (ICM), and for repressing primitive endoderm (PE) development. Although cell polarity appeared normal, Klf5 mutant embryos arrested at the blastocyst stage and failed to hatch due to defective TE development. Klf5 acted cell-autonomously in the TE, downstream of Fgf4 and upstream of Cdx2, Eomes and Krt8. In the ICM, loss of Klf5 resulted in reduced expression of pluripotency markers Oct4 and Nanog, but led to increased Sox17 expression in the PE, suggesting that Klf5 suppresses the PE lineage. Consistent with this, overexpression of Klf5 in transgenic embryos was sufficient to suppress the Sox17(+) PE lineage in the ICM. Klf5 overexpression led to a dose-dependent decrease in Sox17 promoter activity in reporter assays in cultured cells. Moreover, in chimeric embryos, Klf5(-/-) cells preferentially contributed to the Sox17(+) PE lineage and Cdx2 expression was not rescued in Klf5(-/-) outer cells. Finally, outgrowths from Klf5(-/-) embryos failed to form an ICM/pluripotent colony, had very few Oct4(+) or Cdx2(+) cells, but showed an increase in the percentage of Sox17(+) PE cells. These findings demonstrate that Klf5 is a dynamic regulator of all three lineages in the pre-implantation embryo by promoting the TE and epiblast lineages while suppressing the PE lineage.


Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Linaje de la Célula , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Biomarcadores/metabolismo , Factor de Transcripción CDX2 , Recuento de Células , Muerte Celular , Proliferación Celular , Ensayo de Unidades Formadoras de Colonias , Cruzamientos Genéticos , Ectodermo/citología , Ectodermo/metabolismo , Endodermo/citología , Endodermo/metabolismo , Femenino , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genotipo , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Front Physiol ; 14: 1054169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733907

RESUMEN

Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.

8.
Cancer Res ; 64(10): 3525-32, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15150107

RESUMEN

Approximately 70% of human breast cancers are estrogen receptor alpha (ERalpha)-positive, but the origins of ERalpha-positive and -negative tumors remain unclear. Hormonal regulation of mammary gland development in mice is similar to that in humans; however, most mouse models produce only ERalpha-negative tumors. In addition, these mouse tumors metastasize at a low rate relative to human breast tumors. We report here that somatic mutations of p53 in mouse mammary epithelial cells using the Cre/loxP system leads to ERalpha-positive and -negative tumors. p53 inactivation under a constitutive active WAPCre(c) in prepubertal/pubertal mice, but not under MMTVCre in adult mice, leads to the development of ERalpha-positive tumors, suggesting that target cells or developmental stages can determine ERalpha status in mammary tumors. Importantly, these tumors have a high rate of metastasis. An inverse relationship between the number of targeted cells and median tumor latency was also observed. Median tumor latency reaches a plateau when targeted cell numbers exceed 20%, implying the existence of saturation kinetics for breast carcinogenesis. Genetic alterations commonly observed in human breast cancer including c-myc amplification and Her2/Neu/erbB2 activation were seen in these mouse tumors. Thus, this tumor system reproduces many important features of human breast cancer and provides tools for the study of the origins of ERalpha-positive and -negative breast tumors in mice.


Asunto(s)
Genes p53/genética , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Mutación , Receptores de Estrógenos/biosíntesis , Alelos , Animales , Modelos Animales de Enfermedad , Receptor alfa de Estrógeno , Femenino , Silenciador del Gen , Integrasas/genética , Neoplasias Mamarias Experimentales/metabolismo , Virus del Tumor Mamario del Ratón/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Metástasis de la Neoplasia , Proteínas Virales/genética
9.
PLoS One ; 11(10): e0164897, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27764156

RESUMEN

Nemo-like kinase (NLK) is an evolutionary conserved serine/threonine protein kinase implicated in development, proliferation and apoptosis regulation. Here we identified NLK as a gene product induced in the hearts of mice subjected to pressure overload or myocardial infarction injury, suggesting a potential regulatory role with pathological stimulation to this organ. To examine the potential functional consequences of increased NLK levels, cardiac-specific transgenic mice with inducible expression of this gene product were generated, as well as cardiac-specific Nlk gene-deleted mice. NLK transgenic mice demonstrated baseline cardiac hypertrophy, dilation, interstitial fibrosis, apoptosis and progression towards heart failure in response to two surgery-induced cardiac disease models. In contrast, cardiac-specific deletion of Nlk from the heart, achieved by crossing a Nlk-loxP allele containing mouse with either a mouse containing a ß-myosin heavy chain promoter driven Cre transgene or a tamoxifen inducible α-myosin heavy chain promoter containing transgene driving a MerCreMer cDNA, protected the mice from cardiac dysfunction following pathological stimuli. Mechanistically, NLK interacted with multiple proteins including the transcription factor Stat1, which was significantly increased in the hearts of NLK transgenic mice. These results indicate that NLK is a pathological effector in the heart.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/genética , Miocardio/metabolismo , Animales , Cardiomiopatías/etiología , Células Cultivadas , Ecocardiografía , Femenino , Células HEK293 , Corazón/diagnóstico por imagen , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/deficiencia , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/genética , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Serina-Treonina Quinasas , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal
10.
Nat Commun ; 6: 10084, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26670661

RESUMEN

The differentiation of fibroblasts into myofibroblasts mediates tissue wound healing and fibrotic remodelling, although the molecular programme underlying this process remains poorly understood. Here we perform a genome-wide screen for genes that control myofibroblast transformation, and identify the RNA-binding protein muscleblind-like1 (MBNL1). MBNL1 overexpression promotes transformation of fibroblasts into myofibroblasts, whereas loss of Mbnl1 abrogates transformation and impairs the fibrotic phase of wound healing in mouse models of myocardial infarction and dermal injury. Mechanistically, MBNL1 directly binds to and regulates a network of differentiation-specific and cytoskeletal/matrix-assembly transcripts to promote myofibroblast differentiation. One of these transcripts is the nodal transcriptional regulator serum response factor (SRF), whereas another is calcineurin Aß. CRISPR-Cas9-mediated gene-editing of the MBNL1-binding site within the Srf 3'UTR impairs myofibroblast differentiation, whereas in vivo deletion of Srf in fibroblasts impairs wound healing and fibrosis. These data establish a new RNA-dependent paradigm for myofibroblast formation through MBNL1.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , Miofibroblastos/citología , Miofibroblastos/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas de Unión al ADN/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Fibrosis/fisiopatología , Humanos , Ratones , Ratones Endogámicos C57BL , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Cicatrización de Heridas
11.
Dev Cell ; 17(1): 62-74, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19619492

RESUMEN

The ventral pancreas, biliary system, and liver arise from the posterior ventral foregut, but the cell-intrinsic pathway by which these organ lineages are separated is not known. Here we show that the extrahepatobiliary system shares a common origin with the ventral pancreas and not the liver, as previously thought. These pancreatobiliary progenitor cells coexpress the transcription factors PDX1 and SOX17 at E8.5 and their segregation into a PDX1+ ventral pancreas and a SOX17+ biliary primordium is Sox17-dependent. Deletion of Sox17 at E8.5 results in the loss of biliary structures and ectopic pancreatic tissue in the liver bud and common duct, while Sox17 overexpression suppresses pancreas development and promotes ectopic biliary-like tissue throughout the PDX1+ domain. Restricting SOX17+ biliary progenitor cells to the ventral region of the gut requires the notch effector Hes1. Our results highlight the role of Sox17 and Hes1 in patterning and morphogenetic segregation of ventral foregut lineages.


Asunto(s)
Sistema Biliar/embriología , Hígado/embriología , Organogénesis/fisiología , Páncreas/embriología , Células Madre/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Biliar/citología , Biomarcadores/metabolismo , Linaje de la Célula , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Proteínas HMGB , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hígado/citología , Ratones , Ratones Noqueados , Morfogénesis/fisiología , Páncreas/citología , Factores de Transcripción SOXF , Células Madre/citología , Transactivadores/genética , Transactivadores/metabolismo , Factor de Transcripción HES-1 , Transgenes
12.
Dev Dyn ; 236(7): 1997-2003, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17576135

RESUMEN

Little is known about how the endoderm germ layer is patterned along the anterior-posterior (A-P) axis before the formation of a gut tube (embryonic day [e] 7.5-8.5 in mouse), largely due to a paucity of molecular markers of endoderm. In particular, there are few genes that mark posterior domains of endoderm that give rise to the midgut and hindgut. We have identified 8 molecular markers that are expressed in discrete domains of the gastrula stage endoderm (e7.5), suggesting that a significant level of pattern exists in the endoderm before the formation of a gut tube. Three genes Tmprss2, NM_029639, and Dsp are expressed in a presumptive midgut domain overlying the node, a domain for which molecular markers have not previously been identified. Two genes, Klf5 and Epha2 are expressed in posterior endoderm associated with the primitive streak. Expression of these five genes persists in the midgut and/or hindgut at e8.5, 9.5 and 10.5, suggesting that these genes are markers of these domains throughout these stages of development. We have identified three genes Slc39a8, Amot, and Dp1l1, which are expressed in the visceral endoderm at e7.5. Starting at e9.5, Dp1l1 is expressed de novo in the liver, midgut, and hindgut. Our findings suggest that presumptive midgut and hindgut domains are being established at the molecular level by the end of gastrulation, earlier than previously thought, and emphasize the importance of endoderm patterning before the formation of the fetal gut.


Asunto(s)
Biomarcadores , Endodermo/metabolismo , Feto/metabolismo , Gástrula/metabolismo , Animales , Femenino , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Ratones , Ratones Endogámicos ICR , Embarazo
13.
Mol Cell Biol ; 27(22): 7802-15, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17875931

RESUMEN

The canonical Wnt pathway is necessary for gut epithelial cell proliferation, and aberrant activation of this pathway causes intestinal neoplasia. We report a novel mechanism by which the Sox family of transcription factors regulate the canonical Wnt signaling pathway. We found that some Sox proteins antagonize while others enhance beta-catenin/T-cell factor (TCF) activity. Sox17, which is expressed in the normal gut epithelium but exhibits reduced expression in intestinal neoplasia, is antagonistic to Wnt signaling. When overexpressed in SW480 colon carcinoma cells, Sox17 represses beta-catenin/TCF activity in a dose-dependent manner and inhibits proliferation. Sox17 and Sox4 are expressed in mutually exclusive domains in normal and neoplastic gut tissues, and gain- and loss-of-function studies demonstrate that Sox4 enhances beta-catenin/TCF activity and the proliferation of SW480 cells. In addition to binding beta-catenin, both Sox17 and Sox4 physically interact with TCF/lymphoid enhancer factor (LEF) family members via their respective high-mobility-group box domains. Results from gain- and loss-of-function experiments suggest that the interaction of Sox proteins with beta-catenin and TCF/LEF proteins regulates the stability of beta-catenin and TCF/LEF. In particular, Sox17 promotes the degradation of both beta-catenin and TCF proteins via a noncanonical, glycogen synthase kinase 3beta-independent mechanism that can be blocked by proteasome inhibitors. In contrast, Sox4 may function to stabilize beta-catenin protein. These findings indicate that Sox proteins can act as both antagonists and agonists of beta-catenin/TCF activity, and this mechanism may regulate Wnt signaling responses in many developmental and disease contexts.


Asunto(s)
Carcinoma/metabolismo , Proliferación Celular , Neoplasias del Colon/metabolismo , Proteínas HMGB/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Transcripción TCF/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Línea Celular , Embrión no Mamífero/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas HMGB/genética , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción SOXC , Factores de Transcripción SOXF , Transducción de Señal/fisiología , Factores de Transcripción TCF/genética , Transactivadores/genética , Proteína 2 Similar al Factor de Transcripción 7 , Factores de Transcripción/genética , Transcripción Genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus , Xenopus laevis , beta Catenina/genética
14.
Science ; 314(5804): 1467-70, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17138902

RESUMEN

Women with mutations in the breast cancer susceptibility gene BRCA1 are predisposed to breast and ovarian cancers. Why the BRCA1 protein suppresses tumor development specifically in ovarian hormone-sensitive tissues remains unclear. We demonstrate that mammary glands of nulliparous Brca1/p53-deficient mice accumulate lateral branches and undergo extensive alveologenesis, a phenotype that occurs only during pregnancy in wild-type mice. Progesterone receptors, but not estrogen receptors, are overexpressed in the mutant mammary epithelial cells because of a defect in their degradation by the proteasome pathway. Treatment of Brca1/p53-deficient mice with the progesterone antagonist mifepristone (RU 486) prevented mammary tumorigenesis. These findings reveal a tissue-specific function for the BRCA1 protein and raise the possibility that antiprogesterone treatment may be useful for breast cancer prevention in individuals with BRCA1 mutations.


Asunto(s)
Genes BRCA1 , Antagonistas de Hormonas/farmacología , Neoplasias Mamarias Animales/prevención & control , Mifepristona/farmacología , Progesterona/antagonistas & inhibidores , Receptores de Progesterona/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Estradiol/farmacología , Ciclo Estral , Femenino , Genes p53 , Antagonistas de Hormonas/uso terapéutico , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/genética , Ratones , Mifepristona/uso terapéutico , Mutación , Fosforilación , Progesterona/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Interferente Pequeño , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Ubiquitina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA