Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Exp Bot ; 73(9): 2952-2970, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560187

RESUMEN

Phosphatidylglycerol (PG) is the only major phospholipid in the thylakoid membrane of chloroplasts. PG is essential for photosynthesis, and loss of PG in Arabidopsis thaliana results in severe defects of growth and chloroplast development, with decreased chlorophyll accumulation, impaired thylakoid formation, and down-regulation of photosynthesis-associated genes encoded in nuclear and plastid genomes. However, how the absence of PG affects gene expression and plant growth remains unclear. To elucidate this mechanism, we investigated transcriptional profiles of a PG-deficient Arabidopsis mutant pgp1-2 under various light conditions. Microarray analysis demonstrated that reactive oxygen species (ROS)-responsive genes were up-regulated in pgp1-2. However, ROS production was not enhanced in the mutant even under strong light, indicating limited impacts of photooxidative stress on the defects of pgp1-2. Illumination to dark-adapted pgp1-2 triggered down-regulation of photosynthesis-associated nuclear-encoded genes (PhANGs), while plastid-encoded genes were constantly suppressed. Overexpression of GOLDEN2-LIKE1 (GLK1), a transcription factor gene regulating chloroplast development, in pgp1-2 up-regulated PhANGs but not plastid-encoded genes along with chlorophyll accumulation. Our data suggest a broad impact of PG biosynthesis on nuclear-encoded genes partially via GLK1 and a specific involvement of this lipid in plastid gene expression and plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fosfatidilgliceroles/metabolismo , Fotosíntesis/genética , Plastidios/genética , Plastidios/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo
2.
J Exp Bot ; 73(9): 2985-2994, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35560207

RESUMEN

Phosphorus (P) is an essential nutrient for plants. Membrane lipid remodeling is an adaptive mechanism for P-starved plants that replaces membrane phospholipids with non-P galactolipids, presumably to retrieve scarce P sources and maintain membrane integrity. Whereas metabolic pathways to convert phospholipids to galactolipids are well-established, the mechanism by which phospholipid biosynthesis is involved in this process remains elusive. Here, we report that phospho-base N-methyltransferases 1 and 2 (PMT1 and PMT2), which convert phosphoethanolamine to phosphocholine (PCho), are transcriptionally induced by P starvation. Shoots of seedlings of pmt1 pmt2 double mutant showed defective growth upon P starvation; however, membrane lipid profiles were unaffected. We found that P-starved pmt1 pmt2 with defective leaf growth had reduced PCho content, and the growth defect was rescued by exogenous supplementation of PCho. We propose that PMT1 and PMT2 are induced by P starvation to produce PCho mainly for leaf growth maintenance, rather than for phosphatidylcholine biosynthesis, in membrane lipid remodeling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Galactolípidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lípidos de la Membrana/metabolismo , Metiltransferasas/genética , Fosfolípidos/metabolismo , Fósforo/metabolismo , Fosforilcolina/metabolismo , Hojas de la Planta/metabolismo
3.
J Biomed Sci ; 29(1): 74, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36154922

RESUMEN

The major concept of "oxidative stress" is an excess elevated level of reactive oxygen species (ROS) which are generated from vigorous metabolism and consumption of oxygen. The precise harmonization of oxidative stresses between mitochondria and other organelles in the cell is absolutely vital to cell survival. Under oxidative stress, ROS produced from mitochondria and are the major mediator for tumorigenesis in different aspects, such as proliferation, migration/invasion, angiogenesis, inflammation, and immunoescape to allow cancer cells to adapt to the rigorous environment. Accordingly, the dynamic balance of oxidative stresses not only orchestrate complex cell signaling events in cancer cells but also affect other components in the tumor microenvironment (TME). Immune cells, such as M2 macrophages, dendritic cells, and T cells are the major components of the immunosuppressive TME from the ROS-induced inflammation. Based on this notion, numerous strategies to mitigate oxidative stresses in tumors have been tested for cancer prevention or therapies; however, these manipulations are devised from different sources and mechanisms without established effectiveness. Herein, we integrate current progress regarding the impact of mitochondrial ROS in the TME, not only in cancer cells but also in immune cells, and discuss the combination of emerging ROS-modulating strategies with immunotherapies to achieve antitumor effects.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inflamación , Neoplasias/metabolismo , Estrés Oxidativo , Oxígeno , Especies Reactivas de Oxígeno/metabolismo
4.
BMC Urol ; 22(1): 61, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35429983

RESUMEN

BACKGROUND: Limited literature has focused on the use of totally tubeless mini-percutaneous nephrolithotomy (PCNL) for the treatment of large renal stones. We present our findings of treating patients with large and/or complex renal stones using single renal access totally tubeless mini-PCNL. METHODS: From March 2018 to May 2021, 62 consecutive cases in which single tract totally tubeless mini-PCNL was used to treat complex renal stones were enrolled, all with calculi > 2 cm. All procedure of puncture and dilation were guided by fluoroscope. The complexity of stones was assessed according to the Guy's Scoring System (GSS). The surgical duration, length of hospital stay, analgesia requirement, stone-free rate, and perioperative morbidity were assessed. RESULTS: The mean preoperative stone burden was 36.69 ± 19.76 mm (above 2 cm in all cases), mean surgical duration was 61.93 ± 40.84 min (range 15-180 min), and mean hematocrit reduction was 4.67 ± 2.83%. Postoperative Nalbuphine was used in 6 patients. The mean length of stay was 2.46 ± 1.19 days (range 2-8 days), and the postoperative stone-free rate was 83.9% (52/62), and 87.1% (54/62) after auxiliary ESWL. The overall complication rate was 14.5%, the majority of complications being postoperative transient fever. CONCLUSION: For the treatment of large bursen > 2 cm and/or complex renal stones, totally tubeless single tract mini-PCNL ensures a feasible SFR, low morbidity and short hospital stay. According to the low complication rate in our study, the totally tubeless manner was not associated with an increased risk of postoperative morbidity, and patients benefited from decreased postoperative analgesics use.


Asunto(s)
Cálculos Renales , Litotricia , Nefrostomía Percutánea , Femenino , Humanos , Cálculos Renales/cirugía , Masculino , Nefrostomía Percutánea/métodos , Estudios Retrospectivos , Resultado del Tratamiento
5.
Plant Physiol ; 183(1): 152-166, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32205454

RESUMEN

Phosphatidylcholine and phosphatidylethanolamine are two major phospholipid classes in eukaryotes. Each biosynthesis pathway starts with the phosphorylation of choline (Cho) or ethanolamine (Etn) catalyzed by either choline or ethanolamine kinase (CEK). Arabidopsis contains four CEK isoforms, but their isozyme-specific roles in metabolism and development are poorly described. Here, we showed that these four CEKs have distinct substrate specificities in vitro. While CEK1 and CEK2 showed substrate preference for Cho over Etn, CEK3 and CEK4 had clear substrate specificity for Cho and Etn, respectively. In vivo, CEK1, CEK2, and CEK3 exhibited kinase activity for Cho but not Etn, although the latter two isoforms showed rather minor contributions to total Cho kinase activity in both shoots and roots. The knockout mutants of CEK2 and CEK3 both affected root growth, and these isoforms had nonoverlapping cell-type-specific expression patterns in the root meristematic zone. In-depth phenotype analysis, as well as chemical and genetic complementation, revealed that CEK3, a Cho-specific kinase, is involved in cell elongation during root development. Phylogenetic analysis of CEK orthologs in Brassicaceae species showed evolutionary divergence between Etn kinases and Cho kinases. Collectively, our results demonstrate the distinct roles of the four CEK isoforms in Cho/Etn metabolism and plant development.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/metabolismo , Colina/metabolismo , Isoenzimas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etanolamina/metabolismo , Isoenzimas/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Filogenia , Especificidad por Sustrato
6.
BMC Genomics ; 21(1): 628, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917129

RESUMEN

BACKGROUND: Age-related resistance (ARR) is a developmentally regulated phenomenon conferring resistance to pathogens or pests. Although ARR has been observed in several host-pathogen systems, the underlying mechanisms are largely uncharacterized. In cucumber, rapidly growing fruit are highly susceptible to Phytophthora capsici but become resistant as they complete exponential growth. We previously demonstrated that ARR is associated with the fruit peel and identified gene expression and metabolomic changes potentially functioning as preformed defenses. RESULTS: Here, we compare the response to infection in fruit at resistant and susceptible ages using microscopy, quantitative bioassays, and weighted gene co-expression analyses. We observed strong transcriptional changes unique to resistant aged fruit 2-4 h post inoculation (hpi). Microscopy and bioassays confirmed this early response, with evidence of pathogen death and infection failure as early as 4 hpi and cessation of pathogen growth by 8-10 hpi. Expression analyses identified candidate genes involved in conferring the rapid response including those encoding transcription factors, hormone signaling pathways, and defenses such as reactive oxygen species metabolism and phenylpropanoid biosynthesis. CONCLUSION: The early pathogen death and rapid defense response in resistant-aged fruit provide insight into potential mechanisms for ARR, implicating both pre-formed biochemical defenses and developmentally regulated capacity for pathogen recognition as key factors shaping age-related resistance.


Asunto(s)
Cucumis sativus/genética , Resistencia a la Enfermedad , Regulación del Desarrollo de la Expresión Génica , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/microbiología , Regulación de la Expresión Génica de las Plantas , Phytophthora/patogenicidad , Transcriptoma
7.
Plant Physiol ; 179(2): 433-445, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30518673

RESUMEN

Phosphatidylcholine (PC) is a primary class of membrane lipids in most eukaryotes. In plants, the primary PC biosynthetic pathway and its role in plant growth and development remain elusive due to lack of a mutant model with substantially decreased PC content. Recently, a double mutant of Arabidopsis (Arabidopsis thaliana) PHOSPHO-BASE N-METHYLTRANSFERASE 1 (PMT1) and PMT3 was reported with reduced PC content and defective plant growth. However, residual PC content as well as the nonlethal phenotype of the mutant suggests an additional enzyme contributes to PC biosynthesis. In this article, we report on the role of three PMTs in PC biosynthesis and plant development, with a focus on PMT2. PMT2 had the highest expression level among the three PMTs, and it was highly expressed in roots. The pmt1 pmt2 double mutant enhanced the defects in root growth, cell viability, and PC content of pmt1, suggesting that PMT2 functions together with PMT1 in roots. Chemical inhibition of PMT activity in wild-type roots reproduced the short root phenotype observed in pmt1 pmt2, suggesting that PMT1 and PMT2 are the major PMT isoforms in roots. In shoots, pmt1 pmt2 pmt3 enhanced the phenotype of pmt1 pmt3, showing seedling lethality and further reduced PC content without detectable de novo PC biosynthesis. These results suggest that PMTs catalyze an essential reaction step in PC biosynthesis and that the three PMTs have differential tissue-specific functions in PC biosynthesis and plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metiltransferasas/metabolismo , Fosfatidilcolinas/biosíntesis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Metiltransferasas/genética , Mutación , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/metabolismo
8.
Plant J ; 96(5): 1064-1075, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30218542

RESUMEN

Phosphatidylcholine (PtdCho) is a predominant membrane lipid class in eukaryotes. Phospho-base N-methyltransferase (PMT) catalyzes a critical step in PtdCho biosynthesis. However, in Arabidopsis thaliana, the discovery of involvement of the specific PMT isoform in PtdCho biosynthesis remains elusive. Here, we show that PMT1 and PMT3 redundantly play an essential role in phosphocholine (PCho) biosynthesis, a prerequisite for PtdCho production. A pmt1 pmt3 double mutant was devoid of PCho, which affected PtdCho biosynthesis in vivo, showing severe growth defects in post-embryonic development. PMT1 and PMT3 were both highly expressed in the vasculature. The pmt1 pmt3 mutants had specifically affected leaf vein development and showed pale-green seedlings that were rescued by exogenous supplementation of PCho. We suggest that PMT1 and PMT3 are the primary enzymes for PCho biosynthesis and are involved in PtdCho biosynthesis and vascular development in Arabidopsis seedlings.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Metiltransferasas/metabolismo , Fosfatidilcolinas/biosíntesis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Lípidos de la Membrana/metabolismo , Redes y Vías Metabólicas , Metiltransferasas/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/metabolismo , Xilema/metabolismo
9.
New Phytol ; 223(4): 1904-1917, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31087404

RESUMEN

Choline kinase catalyzes the initial reaction step of choline metabolism that produces phosphocholine, a prerequisite for the biosynthesis of a primary phospholipid phosphatidylcholine. However, the primary choline kinase and its role in plant growth remained elusive in seed plants. Here, we showed that Arabidopsis CHOLINE/ETHANOLAMINE KINASE 1 (CEK1) encodes functional CEK that prefers choline than ethanolamine as a substrate in vitro and affects contents of choline and phosphocholine but not phosphatidylcholine in vivo. CEK1 is localized at endoplasmic reticulum (ER); upon tunicamycin-induced ER stress, a null mutant of CEK1 showed hypersensitive phenotype in seedlings, albeit with no enhanced choline kinase activity. Our results demonstrate that CEK1 is a primary ER-localized choline kinase in vivo that is required for ER stress tolerance possibly through the modulation of choline metabolites.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Colina/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Marcadores Genéticos , Análisis de Flujos Metabólicos , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Fenotipo , Plantones/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Plant J ; 92(6): 1218-1231, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29031026

RESUMEN

Alternative splicing and the usage of alternate transcription start- or stop sites allows a single gene to produce multiple transcript isoforms. Most plant genes express certain isoforms at a significantly higher level than others, but under specific conditions this expression dominance can change, resulting in a different set of dominant isoforms. These events of differential transcript usage (DTU) have been observed for thousands of Arabidopsis thaliana, Zea mays and Vitis vinifera genes, and have been linked to development and stress response. However, neither the characteristics of these genes, nor the implications of DTU on their protein coding sequences or functions, are currently well understood. Here we present a dataset of isoform dominance and DTU for all genes in the AtRTD2 reference transcriptome based on a protocol that was benchmarked on simulated data and validated through comparison with a published reverse transciptase-polymerase chain reaction panel. We report DTU events for 8148 genes across 206 public RNA-Seq samples, and find that protein sequences are affected in 22% of the cases. The observed DTU events show high consistency across replicates, and reveal reproducible patterns in response to treatment and development. We also demonstrate that genes with different evolutionary ages, expression breadths and functions show large differences in the frequency at which they undergo DTU, and in the effect that these events have on their protein sequences. Finally, we showcase how the generated dataset can be used to explore DTU events for genes of interest or to find genes with specific DTU in samples of interest.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genoma de Planta/genética , Isoformas de ARN/genética , Transcriptoma , Perfilación de la Expresión Génica , ARN de Planta/genética , Análisis de Secuencia de ARN
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 563-575, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29476828

RESUMEN

Phosphatidylglycerol (PG) is an indispensable lipid class in photosynthetic activity. However, the importance of PG biosynthesis in non-photosynthetic organs remains elusive. We previously identified phosphatidylglycerophosphate phosphatase 1 (PGPP1), which catalyzes the last step of PG biosynthesis in Arabidopsis thaliana. In the present report, we noted considerably shorter roots of the pgpp1-1 mutant compared to the wild type. We observed defective order of columella cells in the root apices, which was complemented by introducing the wild-type PGPP1 gene. Although PGPP1 is chloroplast-localized in leaf mesophyll cells, we observed mitochondrial localization of PGPP1 in root cells, suggesting possible dual targeting of PGPP1. Moreover, we identified previously uncharacterized 2 protein tyrosine phosphatase-like proteins as functional PGPPs. These proteins, designated PTPMT1 and PTPMT2, complemented growth and lipid phenotypes of Δgep4, a Saccharomyces cerevisiae mutant of PGPP. The ptpmt1-1 ptpmt2-1 exhibited no visible phenotype; however, the pgpp1-1 ptpmt1-1 ptpmt2-1 significantly enhanced the root phenotype of pgpp1-1 without further affecting the photosynthesis, suggesting that these newly found PGPPs are involved in the root phenotype. Radiolabeling experiment of mutant roots showed that decreased PG biosynthesis is associated with the mutation of PGPP1. These results suggest that PG biosynthesis is required for the root growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Fosfatidato Fosfatasa/metabolismo , Fosfatidilgliceroles/biosíntesis , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fosfatidato Fosfatasa/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética
12.
New Phytol ; 219(1): 163-175, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29655284

RESUMEN

Phospholipases play crucial roles in plant membrane lipid homeostasis. Nonspecific phospholipase C (NPCs) establish a unique class of phospholipases found only in plants and certain bacteria. Here, we show that two previously uncharacterized NPC isoforms, NPC2 and NPC6, are required for male and female gametophyte development in Arabidopsis. Double mutant plants of npc2-1 npc6-2 could not be retrieved because npc2-1 npc6-2 ovule and pollen development is affected. Genetic complementation, reciprocal crossing and microscope observation of npc2-1/- npc6-2/+ and npc2-1/+ npc6-2/- plants suggest that NPC2 and NPC6 are redundant and are required for normal gametophyte development. Both NPC2 and NPC6 proteins are localized to the plastids. Promoter-GUS assays in transgenic Arabidopsis revealed that NPC2 and NPC6 are preferentially expressed in floral organs rather than in leaves. In vitro enzyme assays showed that NPC2 and NPC6 hydrolyze phosphatidylcholine and phosphatidylethanolamine, but not phosphatidate, being consistent with the reported substrate selectivity of NPCs. The amounts of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol were increased in buds but not in flowers of npc2-1/- npc6-2/+ and npc2-1/+ npc6-2/- plants, presumably due to reduced phospholipid hydrolysis activity in developing flowers. Our results demonstrate that NPC2 and NPC6 play crucial roles in gametogenesis during flower development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fosfolipasas/metabolismo , Fosfolipasas de Tipo C/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Células Germinativas de las Plantas/enzimología , Células Germinativas de las Plantas/crecimiento & desarrollo , Hidrólisis , Isoenzimas , Óvulo Vegetal/enzimología , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Fosfolipasas/genética , Fosfolípidos/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Fosfolipasas de Tipo C/genética
13.
Plant Cell ; 27(5): 1497-511, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25966764

RESUMEN

Phospholipids are highly conserved and essential components of biological membranes. The major phospholipids, phosphatidylethanolamine and phosphatidylcholine (PtdCho), are synthesized by the transfer of the phosphoethanolamine or phosphocholine polar head group, respectively, to the diacylglycerol backbone. The metabolism of the polar head group characterizing each phospholipid class is poorly understood; thus, the biosynthetic pathway of major phospholipids remains elusive in Arabidopsis thaliana. The choline/ethanolamine kinase (CEK) family catalyzes the initial steps of phospholipid biosynthesis. Here, we analyzed the function of the four CEK family members present in Arabidopsis. Knocking out of CEK4 resulted in defective embryo development, which was complemented by transformation of genomic CEK4. Reciprocal genetic crossing suggested that CEK4 knockout causes embryonic lethality, and microscopy analysis of the aborted embryos revealed developmental arrest after the heart stage, with no defect being found in the pollen. CEK4 is preferentially expressed in the vasculature, organ boundaries, and mature embryos, and CEK4 was mainly localized to the plasma membrane. Overexpression of CEK4 in wild-type Arabidopsis increased the levels of PtdCho in seedlings and mature siliques and of major membrane lipids in seedlings and triacylglycerol in mature siliques. CEK4 may be the plasma membrane-localized isoform of the CEK family involved in the rate-limiting step of PtdCho biosynthesis and appears to be required for embryo development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Colina Quinasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/enzimología , Colina/metabolismo , Colina Quinasa/genética , Diglicéridos/metabolismo , Etanolaminas/metabolismo , Técnicas de Inactivación de Genes , Genes Reporteros , Isoenzimas , Datos de Secuencia Molecular , Mutagénesis Insercional , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plantones/citología , Plantones/embriología , Plantones/enzimología , Plantones/genética , Alineación de Secuencia
14.
Plant J ; 88(6): 1022-1037, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27541283

RESUMEN

Phosphatidylglycerol (PG) is an indispensable lipid constituent of photosynthetic membranes, whose function is essential in photosynthetic activity. In higher plants, the biological function of the last step of PG biosynthesis remains elusive because an enzyme catalyzing this reaction step, namely phosphatidylglycerophosphate phosphatase (PGPP), has been a missing piece in the entire glycerolipid metabolic map. Here, we report the identification and characterization of AtPGPP1 encoding a PGPP in Arabidopsis thaliana. Heterologous expression of AtPGPP1 in yeast Δgep4 complemented growth phenotype and PG-producing activity, suggesting that AtPGPP1 encodes a functional PGPP. The GUS reporter assay showed that AtPGPP1 was preferentially expressed in hypocotyl, vasculatures, trichomes, guard cells, and stigmas. A subcellular localization study with GFP reporter indicated that AtPGPP1 is mainly localized at chloroplasts. A T-DNA-tagged knockout mutant of AtPGPP1, designated pgpp1-1, showed pale green phenotype with reduced PG and chlorophyll contents but no defect in embryo development. In the pgpp1-1 mutant, ultrastructure of plastids indicated defective development of chloroplasts and measurement of photosynthetic parameters showed impaired photosynthetic activity. These results suggest that AtPGPP1 is a primary plastidic PGPP required for PG biosynthesis and photosynthetic function in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Fosfatidilgliceroles/biosíntesis , Monoéster Fosfórico Hidrolasas/metabolismo , Fotosíntesis/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , ADN Bacteriano/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fosfatidilgliceroles/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Fotosíntesis/genética
15.
Plant J ; 81(2): 292-303, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25406445

RESUMEN

Dolichol phosphate (Dol-P) serves as a carrier of complex polysaccharides during protein glycosylation. Dol-P is synthesized by the phosphorylation of dolichol or the monodephosphorylation of dolichol pyrophosphate (Dol-PP); however, the enzymes that catalyze these reactions remain unidentified in Arabidopsis thaliana. We performed a genome-wide search for cytidylyltransferase motif-containing proteins in Arabidopsis, and found that At3g45040 encodes a protein homologous with Sec59p, a dolichol kinase (DOK) in Saccharomyces cerevisiae. At3g45040, designated AtDOK1, complemented defects in the growth and N-linked glycosylation of the S. cerevisiae sec59 mutant, suggesting that AtDOK1 encodes a functional DOK. To characterize the physiological roles of AtDOK1 in planta, we isolated two independent lines of T-DNA-tagged AtDOK1 mutants, dok1-1 and dok1-2. The heterozygous plants showed developmental defects in male and female gametophytes, including an aberrant pollen structure, low pollen viability, and short siliques. Additionally, the mutations had incomplete penetrance. These results suggest that AtDOK1 is a functional DOK required for reproductive processes in Arabidopsis.


Asunto(s)
Arabidopsis/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Arabidopsis/genética , Fosfatos de Dolicol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Reproducción/fisiología
16.
Biochem Biophys Res Commun ; 450(4): 1272-5, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24984150

RESUMEN

Flowers have distinct glycerolipid composition, yet its floral organ-specific profile remains elusive in Arabidopsis whose flowers are too tiny to dissect different floral organs. Here, we employed known floral homeotic mutants agamous-1 (ag-1) and apetala3-3 (ap3-3) to facilitate sample preparation enriched in different floral organs. The result of analysis on different polar glycerolipid classes and their fatty acid composition demonstrated that flowers of ap3-3 and ag-1 have distinct glycerolipid composition from that of wild type. Moreover, distinct set of glycerolipid biosynthetic genes is expressed in these mutants by qRT-PCR gene expression analysis. These data suggest that glycerolipid profile is distinct among different floral organs of Arabidopsis thaliana.


Asunto(s)
Arabidopsis/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Genes Homeobox , Glucolípidos/metabolismo , Mutación , Genes de Plantas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Physiol Plant ; 149(1): 13-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23231646

RESUMEN

The development of pollen wall with proper sporopollenin deposition is essential for pollen viability and male fertility in flowering plants. Sporopollenin is a complex biopolymer synthesized from fatty acid and phenolic derivatives. Recent investigations in Arabidopsis have identified a number of anther-specific genes involved in the production of fatty-acyl monomers potentially required for exine formation. The existence of ancient biochemical pathways for sporopollenin biosynthesis has been widely proposed but experimental evidence from plant species other than Arabidopsis is not extensively available. Here, we investigated the metabolic steps catalyzed by the anther-specific acyl-CoA synthetase (ACOS), polyketide synthase (PKS) and tetraketide α-pyrone reductase (TKPR). Using fatty acids as starting substrates, sequential activities of heterologously expressed tobacco enzymes NtACOS1, NtPKS1 and NtTKPR1 resulted in the production of reduced tetraketide α-pyrones. Transgenic RNA interference lines were then generated for the different tobacco genes which were demonstrated to be indispensable for normal pollen development and male fertility. Similarly, recombinant rice OsPKS1 and OsTKPR1 were shown to function as downstream enzymes of NtACOS1. In addition, insertion mutant lines for these rice genes displayed different levels of impaired pollen and seed formation. Taken together, reduced tetraketide α-pyrones appear to represent common sporopollenin fatty-acyl precursors essential for male fertility in taxonomically distinct plant species.


Asunto(s)
Biopolímeros/biosíntesis , Carotenoides/biosíntesis , Nicotiana/metabolismo , Oryza/metabolismo , Biopolímeros/metabolismo , Carotenoides/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/genética , Polen/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/genética
18.
Front Plant Sci ; 14: 1281755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046614

RESUMEN

Phytophthora fruit rot (PFR) caused by the soilborne oomycete pathogen, Phytophthora capsici, can cause severe yield loss in cucumber. With no resistant variety available, genetic resources are needed to develop resistant varieties. The goal of this work was to identify quantitative trait loci (QTL) associated with resistance to PFR using multiple genomic approaches and populations. Two types of resistances have been identified: age-related resistance (ARR) and young fruit resistance. ARR occurs at 12-16 days post pollination (dpp), coinciding with the end of exponential fruit growth. A major QTL for ARR was discovered on chromosome 3 and a candidate gene identified based on comparative transcriptomic analysis. Young fruit resistance, which is observed during the state of rapid fruit growth prior to commercial harvest, is a quantitative trait for which multiple QTL were identified. The largest effect QTL, qPFR5.1, located on chromosome 5 was fine mapped to a 1-Mb region. Genome-wide association studies (GWAS) and extreme-phenotype genome-wide association study (XP-GWAS) for young fruit resistance were also performed on a cucumber core collection representing > 96% of the genetic diversity of the USDA cucumber germplasm. Several SNPs overlapped with the QTL identified from QTL-seq analysis on biparental populations. In addition, novel SNPs associated with the resistance were identified from the germplasm. The resistant alleles were found mostly in accessions from India and South Asia, the center of diversity for cucumber. The results from this work can be applied to future disease resistance studies and marker-assisted selection in breeding programs.

19.
Polymers (Basel) ; 14(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683907

RESUMEN

In this study, electrically conductive PANDB/γ-Al2O3 core-shell nanocomposites were synthesized by surface modification of γ-Al2O3 nanoparticles using polyaniline doped with dodecylbenzene sulfonic acid. The PANDB/γ-Al2O3 core-shell nanocomposites were synthesized by in situ polymerization. Pure PANDB and the PANDB/γ-Al2O3 core-shell nanocomposites were characterized using Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, transmission electron microscopy, field emission scanning electron microscopy, and measurement of a four-point probe. The conductivity of the PANDB/γ-Al2O3 core-shell nanocomposite was about 0.72 S/cm when the weight ratio of aniline/γ-Al2O3 was 3/1. The results showed that the conductivity of the PANDB/γ-Al2O3 core-shell nanocomposite decreased with increasing amounts of γ-Al2O3 nanoparticles. The transmission electron microscopy results indicated that the γ-Al2O3 nanoparticles were thoroughly coated with PANDB to form a core-shell structure. Transmission electron microscopy and field emission scanning electron microscopy images of the conductive PANDB/γ-Al2O3 core-shell nanocomposites also showed that the thickness of the PANDB layer decreased as the amount of γ-Al2O3 was increased.

20.
Plants (Basel) ; 12(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36616152

RESUMEN

Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA