Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Phylogenet Evol ; 124: 50-59, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29518561

RESUMEN

Loss or stark reduction of the free-swimming medusa or jellyfish stage is common in the cnidarian class Hydrozoa. In the hydrozoan clade Trachylina, however, many species do not possess a sessile polyp or hydroid stage. Trachylines inhabiting freshwater and coastal ecosystems (i.e., Limnomedusae) possess a metagenetic life cycle involving benthic, sessile polyp and free-swimming medusa. In contrast, the paradigm is that open ocean inhabiting, oceanic trachylines (in the orders Narcomedusae and Trachymedusae) develop from zygote to medusa via a free-swimming larva, forgoing the polyp stage. In some open-ocean trachylines, development includes a sessile stage that is an ecto- or endoparasite of other oceanic organisms. We expand the molecular-based phylogenetic hypothesis of trachylines significantly, increasing taxon and molecular marker sampling. Using this comprehensive phylogenetic hypothesis in conjunction with character state reconstructions we enhance understanding of the evolution of life cycles in trachyline hydrozoans. We find that the polyp stage was lost at least twice independently, concurrent with a transition to an oceanic life style. Further, a sessile, polypoid parasitic stage arose once, rather than twice as current classification would imply, in the open ocean inhabiting Narcomedusae. Our results also support the hypothesis that interstitial species of the order Actinulida are directly descended from direct developing, oceanic trachylines.


Asunto(s)
Evolución Biológica , Estadios del Ciclo de Vida , Océanos y Mares , Escifozoos/crecimiento & desarrollo , Escifozoos/fisiología , Animales , Larva/fisiología , Funciones de Verosimilitud , Parásitos/crecimiento & desarrollo , Filogenia , Probabilidad , Escifozoos/clasificación
3.
Sci Total Environ ; 905: 167329, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37748610

RESUMEN

In recent years, significant efforts have been dedicated to measuring and comprehending the impact of microplastics (MPs) in the ocean. Despite harmonization guidelines for MPs research, discrepancies persist in the applied methodologies and future challenges, mostly for the smaller fractions (< 100 µm). Whether intentional or accidental, ingesting plastic particles by zooplankton can lead to incorporating this pollutant into aquatic food chains. Therefore, zooplankton can serve as a suitable proxy tool for assessing the presence of plastic particles in ocean waters. However, reliable information is essential for conducting experimental laboratory studies on the impact of MPs ingestion by zooplankton organisms. Using zooplankton as a research tool for MPs offers numerous advantages, including similar sampling methodologies and study techniques as MPs and particle data integration over space and time. The scientific community can gain novel perspectives by merging zooplankton studies with MPs research. This review explores key aspects of using zooplankton as a tool for MPs research in water samples, encompassing various views such as particles ingestion in natural environments, particle quantification in zooplankton samples (past and future), ecotoxicological and toxicology model studies. By leveraging the potential of zooplankton research, advancements can be made in developing innovative techniques for MPs analysis.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/análisis , Zooplancton , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
4.
PeerJ ; 11: e16024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37846312

RESUMEN

Management of deep-sea fisheries in areas beyond national jurisdiction by Regional Fisheries Management Organizations/Arrangements (RFMO/As) requires identification of areas with Vulnerable Marine Ecosystems (VMEs). Currently, fisheries data, including trawl and longline bycatch data, are used by many RFMO/As to inform the identification of VMEs. However, the collection of such data creates impacts and there is a need to collect non-invasive data for VME identification and monitoring purposes. Imagery data from scientific surveys satisfies this requirement, but there currently is no established framework for identifying VMEs from images. Thus, the goal of this study was to bring together a large international team to determine current VME assessment protocols and establish preliminary global consensus guidelines for identifying VMEs from images. An initial assessment showed a lack of consistency among RFMO/A regions regarding what is considered a VME indicator taxon, and hence variability in how VMEs might be defined. In certain cases, experts agreed that a VME could be identified from a single image, most often in areas of scleractinian reefs, dense octocoral gardens, multiple VME species' co-occurrence, and chemosynthetic ecosystems. A decision flow chart is presented that gives practical interpretation of the FAO criteria for single images. To further evaluate steps of the flow chart related to density, data were compiled to assess whether scientists perceived similar density thresholds across regions. The range of observed densities and the density values considered to be VMEs varied considerably by taxon, but in many cases, there was a statistical difference in what experts considered to be a VME compared to images not considered a VME. Further work is required to develop an areal extent index, to include a measure of confidence, and to increase our understanding of what levels of density and diversity correspond to key ecosystem functions for VME indicator taxa. Based on our results, the following recommendations are made: 1. There is a need to establish a global consensus on which taxa are VME indicators. 2. RFMO/As should consider adopting guidelines that use imagery surveys as an alternative (or complement) to using bycatch and trawl surveys for designating VMEs. 3. Imagery surveys should also be included in Impact Assessments. And 4. All industries that impact the seafloor, not just fisheries, should use imagery surveys to detect and identify VMEs.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras
5.
Ann Rev Mar Sci ; 14: 277-301, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34460314

RESUMEN

Quantitative imaging instruments produce a large number of images of plankton and marine snow, acquired in a controlled manner, from which the visual characteristics of individual objects and their in situ concentrations can be computed. To exploit this wealth of information, machine learning is necessary to automate tasks such as taxonomic classification. Through a review of the literature, we highlight the progress of those machine classifiers and what they can and still cannot be trusted for. Several examples showcase how the combination of quantitative imaging with machine learning has brought insights on pelagic ecology. They also highlight what is still missing and how images could be exploited further through trait-based approaches. In the future, we suggest deeper interactions with the computer sciences community, the adoption of data standards, and the more systematic sharing of databases to build a global community of pelagic image providers and users.


Asunto(s)
Aprendizaje Automático , Plancton , Sedimentos Geológicos
6.
Anal Methods ; 13(19): 2215-2222, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33908466

RESUMEN

Hyperspectral data in the near infrared range were examined for nine common types of plastic particles of 1 mm and 100-500 µm sizes on dry and wet glass fiber filters. Weaker peak intensities were detected for small particles compared to large particles, and the reflectances were weaker at longer wavelengths when the particles were measured on a wet filter. These phenomena are explainable due to the effect of the correlation between the particle size and the absorption of infrared light by water. We constructed robust classification models that are capable of classifying polymer types, regardless of particle size or filter conditions (wet vs. dry), based on hyperspectral data for small particles measured on wet filters. Using the models, we also successfully classified the polymer type of polystyrene beads covered with microalgae, which simulates the natural conditions of microplastics in the ocean. This study suggests that hyperspectral imaging techniques with appropriate classification models allow the identification of microplastics without the time- and labor-consuming procedures of drying samples and removing biofilms, thus enabling more rapid analyses.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plásticos , Polímeros , Contaminantes Químicos del Agua/análisis
7.
Biodivers Data J ; 8: e58655, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304120

RESUMEN

BACKGROUND: The unusual holopelagic annelid Poeobius meseres Heath, 1930 (Flabelligeridae) was first collected from Monterey Bay, California and has been subsequently recorded across the northern Pacific from Japan to the Gulf of California. Rare occurrences in the eastern tropical Pacific have extended as far as 7° S off Peru. NEW INFORMATION: Using molecular phylogenetic analysis of a newly-collected specimen from the Salas y Gómez Ridge off Chile, we extend the known geographic range of P. meseres southwards by 2040 km. This subtropical specimen showed higher genetic similarity to a specimen from the type locality (< 1.5% pairwise COI distance) than to representatives from the Aleutian Islands and Japan (5-6%), establishing the first genetically-confirmed occurrence of this species in the Southern Hemisphere. The latitudinal range of P. meseres encompasses the sole collection locality, off Ecuador, of Enigma terwielii Betrem, 1925, a pelagic annelid which has been compared to P. meseres, but is indeterminable due to an inadequate description. We therefore suggest that the earlier sole record of E. terwielii may have been an occurrence of what is known now as P. meseres.

8.
PeerJ ; 8: e10429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33354420

RESUMEN

Turbidity currents are the main drivers behind the transportation of terrestrial sediments to the deep sea, and turbidite deposits from such currents have been widely used in geological studies. Nevertheless, the contribution of turbidity currents to vertical displacement of seawater has rarely been discussed. This is partly because until recently, deep-sea turbidity currents have rarely been observed due to their unpredictable nature, being usually triggered by meteorological or geological events such as typhoons and earthquakes. Here, we report a direct observation of a deep-sea turbidity current using the recently developed Edokko Mark 1 monitoring system deployed in 2019 at a depth of 1,370 m in Suruga Bay, central Japan. A turbidity current occurred two days after its probable cause, the Super Typhoon Hagibis (2019), passed through Suruga Bay causing devastating damage. Over aperiod of 40 hours, we observed increased turbidity with turbulent conditions confirmed by a video camera. The turbidity exhibited two sharp peaks around 3:00 and 11:00 on October 14 (Japan Standard Time). The temperature and salinity characteristics during these high turbidity events agreed with independent measurements for shallow water layers in Suruga Bay at the same time, strongly suggesting that the turbidity current caused vertical displacement in the bay's water column by transporting warmer and shallower waters downslope of the canyon. Our results add to the previous few examples that show meteorological and geological events may have significant contributions in the transportation of shallower seawater to the deep sea. Recent technological developments pertaining to the Edokko Mark 1 and similar devices enable straightforward, long-term monitoring of the deep-seafloor and will contribute to the understanding of similar spontaneous events in the deep ocean.

9.
PeerJ ; 7: e7915, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31656703

RESUMEN

Separating microplastics from marine and freshwater sediments is challenging, but necessary to determine their distribution, mass, and ecological impacts in benthic environments. Density separation is commonly used to extract microplastics from sediments by using heavy salt solutions, such as zinc chloride and sodium iodide. However, current devices/apparatus used for density separation, including glass beakers, funnels, upside-down funnel-shaped separators with a shut-off valve, etc., possess various shortcomings in terms of recovery rate, time consumption, and/or usability. In evaluating existing microplastic extraction methods using density separation, we identified the need for a device that allows rapid, simple, and efficient extraction of microplastics from a range of sediment types. We have developed a small glass separator, without a valve, taking a hint from an Utermöhl chamber. This new device is easy to clean and portable, yet enables rapid separation of microplastics from sediments. With this simple device, we recovered 94-98% of <1,000 µm microplastics (polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene). Overall, the device is efficient for various sizes, polymer types, and sediment types. Also, microplastics collected with this glass-made device remain chemically uncontaminated, and can, therefore, be used for further analysis of adsorbing contaminants and additives on/to microplastics.

10.
MethodsX ; 6: 1677-1682, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31384568

RESUMEN

Removing non-plastic materials is a mandatory process for studying microplastics in environmental samples, and non-plastic materials, both inorganic and organic matter, are often removed chemically through sequential processes. In the multiple chemical treatment processes, the samples need to be collected and the reagent removed at the end of each chemical treatment before the samples are again exposed to a different reagent in a separate container. This leads to a loss of microplastics to some extent. Here, we developed a new, yet simple, small sieve made of stainless-steel that can fit in a laboratory beaker (e.g. 200 ml volume), allowing it to be transferred as-is between chemical treatments of environmental samples, even being soakable in a beaker of acid solution. The collection rates of microplastics were significantly higher in the small stainless-steel sieve than the commonly used filter method for different size of microplastic particles. The use of the new sieve means the processes of rinsing off and filtering samples can be abbreviated throughout the entire process of non-plastic matter removal from environmental samples, contributing to a lower chance of microplastic loss. The time consumed in the sieve method was also significantly lower than for the filtering method due to the elimination of the collection and rinsing steps, thus the use of this sieve can reduce processing time for the samples. The new method is innovative in terms of reducing both the microplastic loss and processing time during chemical treatment processes. •The method developed allows the lower chance of microplastic loss during chemical digestion process•The method reduces the time of sequential processes during chemical digestion.

11.
Parasite ; 25: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29424341

RESUMEN

A new genus and species of pennellid copepod, Protosarcotretes nishikawai n. g., n. sp., is described on the basis of an ovigerous female infecting a Pacific viperfish Chauliodus macouni collected from the deep-waters of Suruga Bay, Japan. The new genus exhibits the most plesiomorphic states in the first to fourth legs of pennellids, and is differentiated from two closely related pennellid genera Sarcotretes and Lernaeenicus by the morphology of the oral appendages. Two species of the genus Lernaeenicus are transferred to the new genus as Protosarcotretes multilobatus (Lewis, 1959) n. comb. and Protosarcotretes gnavus (Leigh-Sharpe, 1934) n. comb. The host specificity and life cycle of deep-sea pennellids are discussed. Sarcotretes scopeli Jungersen, 1911 and Cardiodectes bellottii (Richiardi, 1882) show low differentiated host-specificity, while P. nishikawai seems to be limited to the Stomiidae, which are rare hosts of pennellids, in contrast to the Myctophidae family. In the Pennellidae family, two patterns of the life cycle are found: with or without naupliar stages.


Asunto(s)
Copépodos/clasificación , Copépodos/genética , Infestaciones Ectoparasitarias/veterinaria , Enfermedades de los Peces/parasitología , Animales , Copépodos/fisiología , Infestaciones Ectoparasitarias/epidemiología , Infestaciones Ectoparasitarias/parasitología , Femenino , Enfermedades de los Peces/epidemiología , Peces , Especificidad del Huésped , Japón/epidemiología , Estadios del Ciclo de Vida , Especificidad de la Especie
12.
PLoS One ; 12(1): e0168648, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28052087

RESUMEN

Medusae can be conspicuous and abundant members of seafloor communities in deep-sea benthic boundary layers. The epibenthic trachymedusa, Ptychogastria polaris Allman, 1878 (Hydrozoa: Trachylina: Ptychogastriidae) occurs in the cold, high latitude systems of both the northern and southern hemispheres, with a circumpolar distribution in Arctic and sub-Arctic areas, and disjunct reports of a few individuals from Antarctica. In January-February 2010, during benthic megafaunal photosurveys in three subpolar fjords along the West Antarctic Peninsula (Andvord, Flandres and Barilari Bays), P. polaris was recorded in Antarctic Peninsula waters. The trachymedusa, identified from megacore-collected specimens, was a common component of the epifauna in the sediment floored basins at 436-725 m depths in Andvord and Flandres Bays, reaching densities up to 13 m-2, with mean densities in individual basins ranging from 0.06 to 4.19 m-2. These densities are 2 to 400-fold higher than previously reported for P. polaris in either the Arctic or Antarctic. This trachymedusa had an aggregated distribution, occurring frequently in Andvord Bay, but was often solitary in Flandres Bay, with a distribution not significantly different from random. Epibenthic individuals were similar in size, typically measuring 15-25 mm in bell diameter. A morphologically similar trachymedusa, presumably the same species, was also observed in the water column near the bottom in all three fjords. This benthopelagic form attained abundances of up to 7 m-2 of seafloor; however, most P. polaris (~ 80%), were observed on soft sediments. Our findings indicate that fjords provide a prime habitat for the development of dense populations of P. polaris, potentially resulting from high and varied food inputs to the fjord floors. Because P. polaris resides in the water column and at the seafloor, large P. polaris populations may contribute significantly to pelagic-benthic coupling in the WAP fjord ecosystems.


Asunto(s)
Ecosistema , Estuarios , Hidrozoos/fisiología , Animales , Regiones Antárticas , Teorema de Bayes , Bahías , Tamaño Corporal , Complejo IV de Transporte de Electrones/metabolismo , Geografía , Hidrozoos/anatomía & histología , Hidrozoos/clasificación , Procesamiento de Imagen Asistido por Computador , Mitocondrias/enzimología , Océanos y Mares , Filogenia
13.
Biodivers Data J ; (5): e14598, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28874906

RESUMEN

BACKGROUND: There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite having been the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. To predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to ABYSSLINE research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. NEW INFORMATION: Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle (as well as several other pieces of equipment), the megafauna within the UK Seabed Resources Ltd exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal annelid, arthropod, bryozoan, chordate, ctenophore and molluscan megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 55 distinct morphospecies (8 Annelida, 12 Arthropoda, 4 Bryozoa, 22 Chordata, 5 Ctenophora, and 4 Mollusca) identified mostly by morphology but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.

14.
Zootaxa ; 4150(1): 85-92, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27515647

RESUMEN

Genetic barcodes of arctic medusae and meiobenthic cnidarians have uncovered a fortuitous connection between the medusa Plotocnide borealis Wagner, 1885 and the minute, mud-dwelling polyp Boreohydra simplex Westblad, 1937. Little to no sequence differences exist among independently collected samples identified as Boreohydra simplex and Plotocnide borealis, showing that the two different forms represent a single species that is henceforth known by the older name Plotocnide borealis Wagner, 1885. The polyp form has been observed to produce bulges previously hypothesized to be gonophores, and the results here are consistent with that view. Interestingly, the polyp has also been reported to produce egg cells in the epiderm, a surprising phenomenon that we document here for only the second time. Thus, P. borealis produces eggs in two different life stages, polyp and medusa. This is the first documented case of a metagenetic medusozoan species being able to produce gametes in both the medusa and polyp stage. It remains unclear what environmental/ecological conditions modulate the production of eggs and/or medusa buds in the polyp stage. Similarly, sperm production, fertilization and development are unknown, warranting further studies.


Asunto(s)
Hidrozoos/anatomía & histología , Hidrozoos/clasificación , Estadios del Ciclo de Vida/genética , Animales , Código de Barras del ADN Taxonómico , Hidrozoos/genética , Filogenia
15.
PeerJ ; 3: e1403, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618080

RESUMEN

Hydrozoans display the most morphological diversity within the phylum Cnidaria. While recent molecular studies have provided some insights into their evolutionary history, sister group relationships remain mostly unresolved, particularly at mid-taxonomic levels. Specifically, within Hydroidolina, the most speciose hydrozoan subclass, the relationships and sometimes integrity of orders are highly unsettled. Here we obtained the near complete mitochondrial sequence of twenty-six hydroidolinan hydrozoan species from a range of sources (DNA and RNA-seq data, long-range PCR). Our analyses confirm previous inference of the evolution of mtDNA in Hydrozoa while introducing a novel genome organization. Using RNA-seq data, we propose a mechanism for the expression of mitochondrial mRNA in Hydroidolina that can be extrapolated to the other medusozoan taxa. Phylogenetic analyses using the full set of mitochondrial gene sequences provide some insights into the order-level relationships within Hydroidolina, including siphonophores as the first diverging clade, a well-supported clade comprised of Leptothecata-Filifera III-IV, and a second clade comprised of Aplanulata-Capitata s.s.-Filifera I-II. Finally, we describe our relatively inexpensive and accessible multiplexing strategy to sequence long-range PCR amplicons that can be adapted to most high-throughput sequencing platforms.

16.
Mar Biotechnol (NY) ; 12(3): 253-60, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20221658

RESUMEN

We investigated microorganisms associated with a deep-sea sponge, Characella sp. (Pachastrellidae) collected at a hydrothermal vent site (686 m depth) in the Sumisu Caldera, Ogasawara Island chain, Japan, and with two sponges, Pachastrella sp. (Pachastrellidae) and an unidentified Poecilosclerida sponge, collected at an oil seep (572 m depth) in the Gulf of Mexico, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) directed at bacterial 16S rRNA gene sequences. In the PCR-DGGE profiles, we detected a single clearly dominant band in each of the Characella sp. and the unidentified Poecilosclerida sponge. BLAST search of their sequences showed that they were most similar (>99% identity) to those of the gammaproteobacterial thioautotrophic symbionts of deep-sea bivalves from hydrothermal vents, Bathymodiolus spp. Phylogenetic analysis of the near-full length sequences of the 16S rRNA genes cloned from the unidentified Poecilosclerida sponge and Characella sp. confirmed that they were closely related to thioautotrophic symbionts. Although associations between sponges and methanotrophic bacteria have been reported previously, this is the first report of a possible stable association between sponges and thioautotrophic bacteria.


Asunto(s)
Bacterias/aislamiento & purificación , Poríferos/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Ecosistema , Electroforesis en Gel Bidimensional , Fenómenos Geológicos , Desnaturalización de Ácido Nucleico , Océanos y Mares , Filogenia , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Simbiosis
17.
Mol Phylogenet Evol ; 44(2): 898-910, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17596970

RESUMEN

Complete nucleotide sequences of mitochondrial (mt) genomes of the "living fossil" cephalopod Vampyroteuthis infernalis (Vampyromorpha) and the cuttlefish Sepia esculenta (Sepiida) were determined. The V. infernalis mt genome structure is identical to the incirrate octopod Octopus vulgaris mt genome structure, and is therefore more similar to that of the polyplacophoran Katharina tunicata, than to that of the other "living fossil" cephalopod Nautilus macromphalus. The mt genome structure of S. esculenta is identical to that of Sepia officinalis. Molecular phylogenetic analyses based on the mt protein genes from the completely sequenced cephalopod mt genomes suggested the monophyletic relationship of two myopsid squids Loligo bleekeri and Sepiotheuthis lessoniana, and the monophyletic relationship of two oegopsid squids Watasenia scintillans, and Todarodes pacificus. Sepiida appeared as the sister group of Teuthida (Myopsida + Oegopsida). The phylogenetic position of Vampyromorpha appeared as the sister group of Octopoda, although the monophyly of Vampyromorpha and Decapodiformes cannot be rejected outright by our phylogenetic analyses. The hypothesis that Vampyromorpha is basal among the coleoid cephalopods can be rejected because of low statistical support. Therefore, it is reasonable to recognize three major groups in Coleoidea--Vampyromorpha, Octopoda, and Decapodiformes.


Asunto(s)
Cefalópodos/genética , Fósiles , Genoma/genética , Mitocondrias/genética , Filogenia , Animales , Secuencia de Bases
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA