Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuropathol Appl Neurobiol ; 47(6): 736-747, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33826763

RESUMEN

AIMS: Application of advanced molecular pathology in rare tumours is hindered by low sample numbers, access to specialised expertise/technologies and tissue/assay QC and rapid reporting requirements. We assessed the feasibility of co-ordinated real-time centralised pathology review (CPR), encompassing molecular diagnostics and contemporary genomics (RNA-seq/DNA methylation-array). METHODS: This nationwide trial in medulloblastoma (<80 UK diagnoses/year) introduced a national reference centre (NRC) and assessed its performance and reporting to World Health Organisation standards. Paired frozen/formalin-fixed, paraffin-embedded tumour material were co-submitted from 135 patients (16 referral centres). RESULTS: Complete CPR diagnostics were successful for 88% (120/135). Inadequate sampling was the most common cause of failure; biomaterials were typically suitable for methylation-array (129/135, 94%), but frozen tissues commonly fell below RNA-seq QC requirements (53/135, 39%). Late reporting was most often due to delayed submission. CPR assigned or altered histological variant (vs local diagnosis) for 40/135 tumours (30%). Benchmarking/QC of specific biomarker assays impacted test results; fluorescent in-situ hybridisation most accurately identified high-risk MYC/MYCN amplification (20/135, 15%), while combined methods (CTNNB1/chr6 status, methylation-array subgrouping) best defined favourable-risk WNT tumours (14/135; 10%). Engagement of a specialist pathologist panel was essential for consensus assessment of histological variants and immunohistochemistry. Overall, CPR altered clinical risk-status for 29% of patients. CONCLUSION: National real-time CPR is feasible, delivering robust diagnostics to WHO criteria and assignment of clinical risk-status, significantly altering clinical management. Recommendations and experience from our study are applicable to advanced molecular diagnostics systems, both local and centralised, across rare tumour types, enabling their application in biomarker-driven routine diagnostics and clinical/research studies.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/patología , Predisposición Genética a la Enfermedad/genética , Meduloblastoma/patología , Patología Molecular , Adolescente , Neoplasias Cerebelosas/genética , Niño , Preescolar , Femenino , Genómica/métodos , Humanos , Masculino , Meduloblastoma/genética , Patología Molecular/métodos , Secuenciación del Exoma/métodos
2.
Acta Neuropathol ; 138(2): 309-326, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31076851

RESUMEN

In 2012, an international consensus paper reported that medulloblastoma comprises four molecular subgroups (WNT, SHH, Group 3, and Group 4), each associated with distinct genomic features and clinical behavior. Independently, multiple recent reports have defined further intra-subgroup heterogeneity in the form of biologically and clinically relevant subtypes. However, owing to differences in patient cohorts and analytical methods, estimates of subtype number and definition have been inconsistent, especially within Group 3 and Group 4. Herein, we aimed to reconcile the definition of Group 3/Group 4 MB subtypes through the analysis of a series of 1501 medulloblastomas with DNA-methylation profiling data, including 852 with matched transcriptome data. Using multiple complementary bioinformatic approaches, we compared the concordance of subtype calls between published cohorts and analytical methods, including assessments of class-definition confidence and reproducibility. While the lowest complexity solutions continued to support the original consensus subgroups of Group 3 and Group 4, our analysis most strongly supported a definition comprising eight robust Group 3/Group 4 subtypes (types I-VIII). Subtype II was consistently identified across all component studies, while all others were supported by multiple class-definition methods. Regardless of analytical technique, increasing cohort size did not further increase the number of identified Group 3/Group 4 subtypes. Summarizing the molecular and clinico-pathological features of these eight subtypes indicated enrichment of specific driver gene alterations and cytogenetic events amongst subtypes, and identified highly disparate survival outcomes, further supporting their biological and clinical relevance. Collectively, this study provides continued support for consensus Groups 3 and 4 while enabling robust derivation of, and categorical accounting for, the extensive intertumoral heterogeneity within Groups 3 and 4, revealed by recent high-resolution subclassification approaches. Furthermore, these findings provide a basis for application of emerging methods (e.g., proteomics/single-cell approaches) which may additionally inform medulloblastoma subclassification. Outputs from this study will help shape definition of the next generation of medulloblastoma clinical protocols and facilitate the application of enhanced molecularly guided risk stratification to improve outcomes and quality of life for patients and their families.


Asunto(s)
Neoplasias Cerebelosas/clasificación , Meduloblastoma/clasificación , Adolescente , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Niño , Preescolar , Metilación de ADN , ADN de Neoplasias/genética , Femenino , Perfilación de la Expresión Génica , Genes myc , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Meduloblastoma/genética , Meduloblastoma/mortalidad , Meduloblastoma/patología , Transcriptoma
3.
Lancet Oncol ; 18(7): 958-971, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28545823

RESUMEN

BACKGROUND: International consensus recognises four medulloblastoma molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGrp3), and group 4 (MBGrp4), each defined by their characteristic genome-wide transcriptomic and DNA methylomic profiles. These subgroups have distinct clinicopathological and molecular features, and underpin current disease subclassification and initial subgroup-directed therapies that are underway in clinical trials. However, substantial biological heterogeneity and differences in survival are apparent within each subgroup, which remain to be resolved. We aimed to investigate whether additional molecular subgroups exist within childhood medulloblastoma and whether these could be used to improve disease subclassification and prognosis predictions. METHODS: In this retrospective cohort study, we assessed 428 primary medulloblastoma samples collected from UK Children's Cancer and Leukaemia Group (CCLG) treatment centres (UK), collaborating European institutions, and the UKCCSG-SIOP-PNET3 European clinical trial. An independent validation cohort (n=276) of archival tumour samples was also analysed. We analysed samples from patients with childhood medulloblastoma who were aged 0-16 years at diagnosis, and had central review of pathology and comprehensive clinical data. We did comprehensive molecular profiling, including DNA methylation microarray analysis, and did unsupervised class discovery of test and validation cohorts to identify consensus primary molecular subgroups and characterise their clinical and biological significance. We modelled survival of patients aged 3-16 years in patients (n=215) who had craniospinal irradiation and had been treated with a curative intent. FINDINGS: Seven robust and reproducible primary molecular subgroups of childhood medulloblastoma were identified. MBWNT remained unchanged and each remaining consensus subgroup was split in two. MBSHH was split into age-dependent subgroups corresponding to infant (<4·3 years; MBSHH-Infant; n=65) and childhood patients (≥4·3 years; MBSHH-Child; n=38). MBGrp3 and MBGrp4 were each split into high-risk (MBGrp3-HR [n=65] and MBGrp4-HR [n=85]) and low-risk (MBGrp3-LR [n=50] and MBGrp4-LR [n=73]) subgroups. These biological subgroups were validated in the independent cohort. We identified features of the seven subgroups that were predictive of outcome. Cross-validated subgroup-dependent survival models, incorporating these novel subgroups along with secondary clinicopathological and molecular features and established disease risk-factors, outperformed existing disease risk-stratification schemes. These subgroup-dependent models stratified patients into four clinical risk groups for 5-year progression-free survival: favourable risk (54 [25%] of 215 patients; 91% survival [95% CI 82-100]); standard risk (50 [23%] patients; 81% survival [70-94]); high-risk (82 [38%] patients; 42% survival [31-56]); and very high-risk (29 [13%] patients; 28% survival [14-56]). INTERPRETATION: The discovery of seven novel, clinically significant subgroups improves disease risk-stratification and could inform treatment decisions. These data provide a new foundation for future research and clinical investigations. FUNDING: Cancer Research UK, The Tom Grahame Trust, Star for Harris, Action Medical Research, SPARKS, The JGW Patterson Foundation, The INSTINCT network (co-funded by The Brain Tumour Charity, Great Ormond Street Children's Charity, and Children with Cancer UK).


Asunto(s)
Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/genética , Metilación de ADN , Meduloblastoma/clasificación , Meduloblastoma/genética , Transcriptoma , Adolescente , Factores de Edad , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/radioterapia , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Amplificación de Genes , Humanos , Lactante , Recién Nacido , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Meduloblastoma/patología , Meduloblastoma/radioterapia , Mutación , Proteína Proto-Oncogénica N-Myc/genética , Proteínas Nucleares/genética , Receptor Patched-1/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Represoras/genética , Estudios Retrospectivos , Medición de Riesgo/métodos , Factores de Riesgo , Receptor Smoothened/genética , Tasa de Supervivencia , Telomerasa/genética , Proteína p53 Supresora de Tumor/genética , Proteína Gli2 con Dedos de Zinc , beta Catenina/genética
4.
Nature ; 468(7327): 1095-9, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21150899

RESUMEN

Medulloblastoma encompasses a collection of clinically and molecularly diverse tumour subtypes that together comprise the most common malignant childhood brain tumour. These tumours are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) after aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumours infiltrate the dorsal brainstem, whereas SHH-subtype tumours are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem which included aberrantly proliferating Zic1(+) precursor cells. These lesions persisted in all mutant adult mice; moreover, in 15% of cases in which Tp53 was concurrently deleted, they progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence, to our knowledge, that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH- and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.


Asunto(s)
Tronco Encefálico/patología , Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Mutación , beta Catenina/genética
5.
Acta Neuropathol ; 125(3): 359-71, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23291781

RESUMEN

Molecular subclassification is rapidly informing the clinical management of medulloblastoma. However, the disease remains associated with poor outcomes and therapy-associated late effects, and the majority of patients are not characterized by a validated prognostic biomarker. Here, we investigated the potential of epigenetic DNA methylation for disease subclassification, particularly in formalin-fixed biopsies, and to identify biomarkers for improved therapeutic individualization. Tumor DNA methylation profiles were assessed, alongside molecular and clinical disease features, in 230 patients primarily from the SIOP-UKCCSG PNET3 clinical trial. We demonstrate by cross-validation in frozen training and formalin-fixed test sets that medulloblastoma comprises four robust DNA methylation subgroups (termed WNT, SHH, G3 and G4), highly related to their transcriptomic counterparts, and which display distinct molecular, clinical and pathological disease characteristics. WNT patients displayed an expected favorable prognosis, while outcomes for SHH, G3 and G4 were equivalent in our cohort. MXI1 and IL8 methylation were identified as novel independent high-risk biomarkers in cross-validated survival models of non-WNT patients, and were validated using non-array methods. Incorporation of MXI1 and IL8 into current survival models significantly improved the assignment of disease risk; 46 % of patients could be classified as 'favorable risk' (>90 % survival) compared to 13 % using current models, while the high-risk group was reduced from 30 to 16 %. DNA methylation profiling enables the robust subclassification of four disease subgroups in frozen and routinely collected/archival formalin-fixed biopsy material, and the incorporation of DNA methylation biomarkers can significantly improve disease-risk stratification. These findings have important implications for future risk-adapted clinical disease management.


Asunto(s)
Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/genética , Metilación de ADN , Formaldehído , Meduloblastoma/clasificación , Meduloblastoma/genética , Adolescente , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Biomarcadores de Tumor/genética , Biopsia/métodos , Niño , Preescolar , Cromosomas Humanos Par 17/genética , Estudios de Cohortes , Biología Computacional , Dermatoglifia del ADN/métodos , Femenino , Secciones por Congelación , Regulación Neoplásica de la Expresión Génica/genética , Proteínas Hedgehog/genética , Humanos , Lactante , Interleucina-8/genética , Masculino , Valor Predictivo de las Pruebas , Proteínas Proto-Oncogénicas c-myc/genética , Reproducibilidad de los Resultados , Proteínas Supresoras de Tumor/genética , Adulto Joven
6.
Cell Rep ; 40(5): 111162, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926460

RESUMEN

Medulloblastoma is currently subclassified into distinct DNA methylation subgroups/subtypes with particular clinico-molecular features. Using RNA sequencing (RNA-seq) in large, well-annotated cohorts of medulloblastoma, we show that transcriptionally group 3 and group 4 medulloblastomas exist as intermediates on a bipolar continuum between archetypal group 3 and group 4 entities. Continuum position is prognostic, reflecting a propensity for specific DNA copy-number changes, and specific switches in isoform/enhancer usage and RNA editing. Examining single-cell RNA-seq (scRNA-seq) profiles, we show that intratumoral transcriptional heterogeneity along the continuum is limited in a subtype-dependent manner. By integrating with a human scRNA-seq reference atlas, we show that this continuum is mirrored by an equivalent continuum of transcriptional cell types in early fetal cerebellar development. We identify distinct developmental niches for all four major subgroups and link each to a common developmental antecedent. Our findings show a transcriptional continuum arising from oncogenic disruption of highly specific fetal cerebellar cell types, linked to almost every aspect of group 3/group 4 molecular biology and clinico-pathology.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Metilación de ADN/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patología
7.
Neuro Oncol ; 24(1): 153-165, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34272868

RESUMEN

BACKGROUND: Less than 5% of medulloblastoma (MB) patients survive following failure of contemporary radiation-based therapies. Understanding the molecular drivers of medulloblastoma relapse (rMB) will be essential to improve outcomes. Initial genome-wide investigations have suggested significant genetic divergence of the relapsed disease. METHODS: We undertook large-scale integrated characterization of the molecular features of rMB-molecular subgroup, novel subtypes, copy number variation (CNV), and driver gene mutation. 119 rMBs were assessed in comparison with their paired diagnostic samples (n = 107), alongside an independent reference cohort sampled at diagnosis (n = 282). rMB events were investigated for association with outcome post-relapse in clinically annotated patients (n = 54). RESULTS: Significant genetic evolution occurred over disease-course; 40% of putative rMB drivers emerged at relapse and differed significantly between molecular subgroups. Non-infant MBSHH displayed significantly more chromosomal CNVs at relapse (TP53 mutation-associated). Relapsed MBGroup4 demonstrated the greatest genetic divergence, enriched for targetable (eg, CDK amplifications) and novel (eg, USH2A mutations) events. Importantly, many hallmark features of MB were stable over time; novel subtypes (>90% of tumors) and established genetic drivers (eg, SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (eg, DNA damage signaling) and specific events (eg, 3p loss) predicted survival post-relapse. CONCLUSIONS: rMB is characterised by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Variaciones en el Número de Copia de ADN , Humanos , Meduloblastoma/genética , Mutación , Recurrencia Local de Neoplasia/genética
8.
Lancet Child Adolesc Health ; 4(12): 865-874, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33222802

RESUMEN

BACKGROUND: Disease relapse occurs in around 30% of children with medulloblastoma, and is almost universally fatal. We aimed to establish whether the clinical and molecular characteristics of the disease at diagnosis are associated with the nature of relapse and subsequent disease course, and whether these associations could inform clinical management. METHODS: In this multicentre cohort study we comprehensively surveyed the clinical features of medulloblastoma relapse (time to relapse, pattern of relapse, time from relapse to death, and overall outcome) in centrally reviewed patients who relapsed following standard upfront therapies, from 16 UK Children's Cancer and Leukaemia Group institutions and four collaborating centres. We compared these relapse-associated features with clinical and molecular features at diagnosis, including established and recently described molecular features, prognostic factors, and treatment at diagnosis and relapse. FINDINGS: 247 patients (175 [71%] boys and 72 [29%] girls) with medulloblastoma relapse (median year of diagnosis 2000 [IQR 1995-2006]) were included in this study. 17 patients were later excluded from further analyses because they did not meet the age and treatment criteria for inclusion. Patients who received upfront craniospinal irradiation (irradiated group; 178 [72%] patients) had a more prolonged time to relapse compared with patients who did not receive upfront craniospinal irradiation (non-irradiated group; 52 [21%] patients; p<0·0001). In the non-irradiated group, craniospinal irradiation at relapse (hazard ratio [HR] 0·27, 95% CI 0·11-0·68) and desmoplastic/nodular histology (0·23, 0·07-0·77) were associated with prolonged time to death after relapse, MYC amplification was associated with a reduced overall survival (23·52, 4·85-114·05), and re-resection at relapse was associated with longer overall survival (0·17, 0·05-0·57). In the irradiated group, patients with MBGroup3 tumours relapsed significantly more quickly than did patients with MBGroup4 tumours (median 1·34 [0·99-1·89] years vs 2·04 [1·39-3·42 years; p=0·0043). Distant disease was prevalent in patients with MBGroup3 (23 [92%] of 25 patients) and MBGroup4 (56 [90%] of 62 patients) tumour relapses. Patients with distantly-relapsed MBGroup3 and MBGroup4 displayed both nodular and diffuse patterns of disease whereas isolated nodular relapses were rare in distantly-relapsed MBSHH (1 [8%] of 12 distantly-relapsed MBSHH were nodular alone compared with 26 [34%] of 77 distantly-relapsed MBGroup3 and MBGroup4). In MBGroup3 and MBGroup4, nodular disease was associated with a prolonged survival after relapse (HR 0·42, 0·21-0·81). Investigation of second-generation MBGroup3 and MBGroup4 molecular subtypes refined our understanding of heterogeneous relapse characteristics. Subtype VIII had prolonged time to relapse and subtype II had a rapid time from relapse to death. Subtypes II, III, and VIII developed a significantly higher incidence of distant disease at relapse whereas subtypes V and VII did not (equivalent rates to diagnosis). INTERPRETATION: This study suggests that the nature and outcome of medulloblastoma relapse are biology and therapy-dependent, providing translational opportunities for improved disease management through biology-directed disease surveillance, post-relapse prognostication, and risk-stratified selection of second-line treatment strategies. FUNDING: Cancer Research UK, Action Medical Research, The Tom Grahame Trust, The JGW Patterson Foundation, Star for Harris, The Institute of Child Health - Newcastle University - Institute of Child Health High-Risk Childhood Brain Tumour Network (co-funded by The Brain Tumour Charity, Great Ormond Street Children's Charity, and Children with Cancer UK).


Asunto(s)
Neoplasias Cerebelosas/terapia , Meduloblastoma/terapia , Recurrencia Local de Neoplasia/terapia , Adolescente , Estudios de Casos y Controles , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Niño , Preescolar , Irradiación Craneoespinal/estadística & datos numéricos , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Masculino , Meduloblastoma/clasificación , Meduloblastoma/mortalidad , Meduloblastoma/patología , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos , Factores de Tiempo
10.
Neuro Oncol ; 10(6): 981-94, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18664619

RESUMEN

Candidate gene investigations have indicated a significant role for epigenetic events in the pathogenesis of medulloblastoma, the most common malignant brain tumor of childhood. To assess the medulloblastoma epigenome more comprehensively, we undertook a genomewide investigation to identify genes that display evidence of methylation-dependent regulation. Expression microarray analysis of medulloblastoma cell lines following treatment with a DNA methyltransferase inhibitor revealed deregulation of multiple transcripts (3%-6% of probes per cell line). Eighteen independent genes demonstrated >3-fold reactivation in all cell lines tested. Bisulfite sequence analysis revealed dense CpG island methylation associated with transcriptional silencing for 12 of these genes. Extension of this analysis to primary tumors and the normal cerebellum revealed three major classes of epigenetically regulated genes: (1) normally methylated genes (DAZL, ZNF157, ASN) whose methylation reflects somatic patterns observed in the cerebellum, (2) X-linked genes (MSN, POU3F4, HTR2C) that show disruption of their sex-specific methylation patterns in tumors, and (3) tumor-specific methylated genes (COL1A2, S100A10, S100A6, HTATIP2, CDH1, LXN) that display enhanced methylation levels in tumors compared with the cerebellum. Detailed analysis of COL1A2 supports a key role in medulloblastoma tumorigenesis; dense biallelic methylation associated with transcriptional silencing was observed in 46 of 60 cases (77%). Moreover, COL1A2 status distinguished infant medulloblastomas of the desmoplastic histopathological subtype, indicating that distinct molecular pathogenesis may underlie these tumors and their more favorable prognosis. These data reveal a more diverse and expansive medulloblastoma epi genome than previously understood and provide strong evidence that the methylation status of specific genes may contribute to the biological subclassification of medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas/genética , Colágeno/genética , Silenciador del Gen , Meduloblastoma/genética , Anciano , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Neoplasias Cerebelosas/patología , Preescolar , Colágeno Tipo I , Islas de CpG/genética , Metilación de ADN , Femenino , Feto , Humanos , Recién Nacido , Pérdida de Heterocigocidad , Masculino , Meduloblastoma/patología , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA