Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 141(5): 1120-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550118

RESUMEN

Coordinated arterial-venous differentiation is crucial for vascular development and function. The origin of the cardinal vein (CV) in mammals is unknown, while conflicting theories have been reported in chick and zebrafish. Here, we provide the first molecular characterization of endothelial cells (ECs) expressing venous molecular markers, or venous-fated ECs, within the emergent dorsal aorta (DA). These ECs, expressing the venous molecular markers Coup-TFII and EphB4, cohabited the early DA with ECs expressing the arterial molecular markers ephrin B2, Notch and connexin 40. These mixed ECs in the early DA expressed either the arterial or venous molecular marker, but rarely both. Subsequently, the DA exhibited uniform arterial markers. Real-time imaging of mouse embryos revealed EC movement from the DA to the CV during the stage when venous-fated ECs occupied the DA. We analyzed mutants for EphB4, which encodes a receptor tyrosine kinase for the ephrin B2 ligand, as we hypothesized that ephrin B2/EphB4 signaling may mediate the repulsion of venous-fated ECs from the DA to the CV. Using an EC quantification approach, we discovered that venous-fated ECs increased in the DA and decreased in the CV in the mutants, whereas the rest of the ECs in each vessel were unaffected. This result suggests that the venous-fated ECs were retained in the DA and missing in the CV in the EphB4 mutant, and thus that ephrin B2/EphB4 signaling normally functions to clear venous-fated ECs from the DA to the CV by cell repulsion. Therefore, our cellular and molecular evidence suggests that the DA harbors venous progenitors that move to participate in CV formation, and that ephrin B2/EphB4 signaling regulates this aortic contribution to the mammalian CV.


Asunto(s)
Aorta/citología , Células Madre/citología , Venas/citología , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Ratones , Ratones Transgénicos , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología , Células Madre/metabolismo
2.
Circ Res ; 103(1): 61-9, 2008 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18511849

RESUMEN

Lipoma preferred partner (LPP) was recently recognized as a smooth muscle marker that plays a role in smooth muscle cell migration. In this report, we focus on the transcriptional regulation of the LPP gene. In particular, we investigate whether LPP is directly regulated by serum response factor (SRF). We show that the LPP gene contains 3 evolutionarily conserved CArG boxes and that 1 of these is part of an alternative promoter in intron 2. Quantitative RT-PCR shows that this alternative promoter directs transcription specifically to smooth muscle containing tissues in vivo. By using chromatin immunoprecipitation, we demonstrate that 2 of the CArG boxes, including the promoter-associated CArG box, bind to endogenous SRF in cultured aortic smooth muscle cells. Electrophoretic mobility-shift assays show that the conserved CArG boxes bind SRF in vitro. In reporter experiments, we show that the alternative promoter has transcriptional capacity that is dependent on SRF/myocardin and that the promoter associated CArG box is required for that activity. Finally, we show by quantitative RT-PCR that the alternative promoter is strongly downregulated in SRF-deficient embryonic stem cells and in smooth muscle tissues derived from conditional SRF knockout mice. Collectively, our data demonstrate that expression of LPP in smooth muscle is mediated by an alternative promoter that is regulated by SRF/myocardin.


Asunto(s)
Aorta/metabolismo , Proteínas del Citoesqueleto/biosíntesis , Intrones/fisiología , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares/metabolismo , Elemento de Respuesta al Suero/fisiología , Factor de Respuesta Sérica/metabolismo , Transactivadores/metabolismo , Animales , Aorta/citología , Movimiento Celular/fisiología , Células Cultivadas , Proteínas del Citoesqueleto/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas con Dominio LIM , Masculino , Ratones , Miocitos del Músculo Liso/citología , Proteínas Nucleares/genética , Factor de Respuesta Sérica/genética , Transactivadores/genética , Transcripción Genética/fisiología
3.
Arterioscler Thromb Vasc Biol ; 26(7): 1457-64, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16627807

RESUMEN

OBJECTIVE: The molecular mechanisms that regulate pericyte differentiation are not well understood, partly because of the lack of well-characterized in vitro systems that model this process. In this article, we develop a mouse embryonic stem (ES) cell-based angiogenesis/vasculogenesis assay and characterize the system for vascular smooth muscle cell (VSMC) and pericyte differentiation. METHODS AND RESULTS: ES cells that were cultured for 5 days on OP9 stroma cells upregulated their transcription of VSMC and pericyte selective genes. Other SMC marker genes were induced at a later time point, which suggests that vascular SMC/pericyte genes are regulated by a separate mechanism. Moreover, sequence analysis failed to identify any conserved CArG elements in the vascular SMC and pericyte gene promoters, which indicates that serum response factor is not involved in their regulation. Gleevec, a tyrosine kinase inhibitor that blocks platelet-derived growth factor (PDGF) spell-receptor signaling, and a neutralizing antibody against transforming growth factor (TGF) beta1, beta2, and beta3 failed to inhibit the induction of vascular SMC/pericyte genes. Finally, ES-derived vascular sprouts recruited cocultured MEF cells to pericyte-typical locations. The recruited cells activated expression of a VSMC- and pericyte-specific reporter gene. CONCLUSIONS: We conclude that OP9 stroma cells induce pericyte differentiation of cocultured mouse ES cells. The induction of pericyte marker genes is temporally separated from the induction of SMC genes and does not require platelet-derived growth factor B or TGFbeta1 signaling.


Asunto(s)
Diferenciación Celular , Embrión de Mamíferos/citología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Pericitos/citología , Células Madre/citología , Animales , Células Cultivadas , Técnicas de Cocultivo , Marcadores Genéticos , Ratones , Proteínas Proto-Oncogénicas c-sis/fisiología , Reproducibilidad de los Resultados , Células Madre/metabolismo , Células del Estroma/fisiología , Transcripción Genética/fisiología , Factor de Crecimiento Transformador beta/fisiología , Factor de Crecimiento Transformador beta1
4.
Sci Rep ; 7(1): 11965, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931948

RESUMEN

The functions of blood flow in the morphogenesis of mammalian arteries and veins are not well understood. We examined the development of the dorsal aorta (DA) and the cardinal vein (CV) in Ncx1 -/- mutants, which lack blood flow due to a deficiency in a sodium calcium ion exchanger expressed specifically in the heart. The mutant DA and CV were abnormally connected. The endothelium of the Ncx1 -/- mutant DA lacked normal expression of the arterial markers ephrin-B2 and Connexin-40. Notch1 activation, known to promote arterial specification, was decreased in mutant DA endothelial cells (ECs), which ectopically expressed the venous marker Coup-TFII. These findings suggest that flow has essential functions in the DA by promoting arterial and suppressing venous marker expression. In contrast, flow plays a lesser role in the CV, because expression of arterial-venous markers in CV ECs was not as dramatically affected in Ncx1 -/- mutants. We propose a molecular mechanism by which blood flow mediates DA and CV morphogenesis, by regulating arterial-venous specification of DA ECs to ensure proper separation of the developing DA and CV.


Asunto(s)
Circulación Sanguínea , Vasos Sanguíneos/embriología , Morfogénesis , Animales , Aorta/patología , Conexinas/análisis , Células Endoteliales/patología , Efrina-B2/análisis , Ratones , Ratones Noqueados , Receptor Notch1/análisis , Intercambiador de Sodio-Calcio/genética , Venas/patología , Proteína alfa-5 de Unión Comunicante
5.
J Clin Invest ; 121(7): 2625-40, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21670500

RESUMEN

Impaired cardiac function is associated with myocardial triglyceride accumulation, but it is not clear how the lipids accumulate or whether this accumulation is detrimental. Here we show that hypoxia/ischemia-induced accumulation of lipids in HL-1 cardiomyocytes and mouse hearts is dependent on expression of the VLDL receptor (VLDLR). Hypoxia-induced VLDLR expression in HL-1 cells was dependent on HIF-1α through its interaction with a hypoxia-responsive element in the Vldlr promoter, and VLDLR promoted the endocytosis of lipoproteins. Furthermore, VLDLR expression was higher in ischemic compared with nonischemic left ventricles from human hearts and was correlated with the total lipid droplet area in the cardiomyocytes. Importantly, Vldlr-/- mice showed improved survival and decreased infarct area following an induced myocardial infarction. ER stress, which leads to apoptosis, is known to be involved in ischemic heart disease. We found that ischemia-induced ER stress and apoptosis in mouse hearts were reduced in Vldlr-/- mice and in mice treated with antibodies specific for VLDLR. These findings suggest that VLDLR-induced lipid accumulation in the ischemic heart worsens survival by increasing ER stress and apoptosis.


Asunto(s)
Infarto del Miocardio/mortalidad , Infarto del Miocardio/fisiopatología , Receptores de LDL/metabolismo , Triglicéridos/toxicidad , Animales , Apoptosis/fisiología , Línea Celular , Retículo Endoplásmico/metabolismo , Humanos , Metabolismo de los Lípidos , Lípidos/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/patología , Isquemia Miocárdica/mortalidad , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocardio/citología , Miocardio/metabolismo , Miocardio/patología , Receptores de LDL/genética , Estrés Fisiológico , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA