Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 15(37): 15528-37, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23942526

RESUMEN

Model photocatalysts composed of TiO2-graphene nanocomposites are prepared to address the effect of graphene quality on their photocatalytic performance. Graphene is synthesized by catalyst-assisted chemical vapor deposition (CVD), catalyst-free CVD and solution processing methods. TiO2 is prepared by reactive magnetron sputtering and subsequent annealing. Fabricated model photocatalysts have different morphology and physical properties, as revealed using spectrophotometry, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence, and four-probe electrical measurements. All graphene-containing composites have significantly higher photocatalytic activity compared to bare TiO2 films in the gas phase methanol photooxidation tests. Their activity is proportional to the electrical conductivity and surface roughness of the respective carbon structure, which in turn depends on the preparation methods. The mechanisms of enhancement are further assessed by comparison with the performance of reference TiO2-graphitic-carbon and TiO2-Au thin films.

2.
Nano Lett ; 12(7): 3526-31, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22708530

RESUMEN

Classical continuum mechanics is used extensively to predict the properties of nanoscale materials such as graphene. The bending rigidity, κ, is an important parameter that is used, for example, to predict the performance of graphene nanoelectromechanical devices and also ripple formation. Despite its importance, there is a large spread in the theoretical predictions of κ for few-layer graphene. We have used the snap-through behavior of convex buckled graphene membranes under the application of electrostatic pressure to determine experimentally values of κ for double-layer graphene membranes. We demonstrate how to prepare convex-buckled suspended graphene ribbons and fully clamped suspended membranes and show how the determination of the curvature of the membranes and the critical snap-through voltage, using AFM, allows us to extract κ. The bending rigidity of bilayer graphene membranes under ambient conditions was determined to be 35.5−15.0 +20.0 eV. Monolayers are shown to have significantly lower κ than bilayers.

3.
Nano Lett ; 11(9): 3569-75, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21848317

RESUMEN

Novel field effect transistors with suspended graphene gates are demonstrated. By incorporating mechanical motion of the gate electrode, it is possible to improve the switching characteristics compared to a static gate, as shown by a combination of experimental measurements and numerical simulations. The mechanical motion of the graphene gate is confirmed by using atomic force microscopy to directly measure the electrostatic deflection. The device geometry investigated here can also provide a sensitive measurement technique for detecting high-frequency motion of suspended membranes as required, e.g., for mass sensing.


Asunto(s)
Grafito/química , Nanotecnología/métodos , Nanotubos de Carbono/química , Conductividad Eléctrica , Electrodos , Microscopía de Fuerza Atómica/métodos , Electricidad Estática , Temperatura
4.
Nanoscale ; 7(14): 6271-7, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25779889

RESUMEN

High resolution nanopatterning of graphene enables manipulation of electronic, optical and sensing properties of graphene. In this work we present a straightforward technique that does not require any lithographic mask to etch nanopatterns into graphene. The technique relies on the damaged graphene to be etched selectively in an oxygen rich environment with respect to non-damaged graphene. Sub-40 nm features were etched into graphene by selectively exposing it to a 100 keV electron beam and then etching the damaged areas away in a conventional oven. Raman spectroscopy was used to evaluate the extent of damage induced by the electron beam as well as the effects of the selective oxidative etching on the remaining graphene.

5.
Adv Mater ; 24(12): 1576-81, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-22344864

RESUMEN

A template-assisted method that enables the growth of covalently bonded three-dimensional carbon nanotubes (CNTs) originating from graphene at a large scale is demonstrated. Atomic force microscopy-based mechanical tests show that the covalently bonded CNT structure can effectively distribute external loading throughout the network to improve the mechanical strength of the material.


Asunto(s)
Grafito/química , Nanotecnología/métodos , Nanotubos de Carbono/química , Modelos Moleculares , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA