Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 190: 106363, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37996040

RESUMEN

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is thought to occur when the cellular prion protein (PrPC) spontaneously misfolds and assembles into prion fibrils, culminating in fatal neurodegeneration. In a genome-wide association study of sCJD, we recently identified risk variants in and around the gene STX6, with evidence to suggest a causal increase of STX6 expression in disease-relevant brain regions. STX6 encodes syntaxin-6, a SNARE protein primarily involved in early endosome to trans-Golgi network retrograde transport. Here we developed and characterised a mouse model with genetic depletion of Stx6 and investigated a causal role of Stx6 expression in mouse prion disease through a classical prion transmission study, assessing the impact of homozygous and heterozygous syntaxin-6 knockout on disease incubation periods and prion-related neuropathology. Following inoculation with RML prions, incubation periods in Stx6-/- and Stx6+/- mice differed by 12 days relative to wildtype. Similarly, in Stx6-/- mice, disease incubation periods following inoculation with ME7 prions also differed by 12 days. Histopathological analysis revealed a modest increase in astrogliosis in ME7-inoculated Stx6-/- animals and a variable effect of Stx6 expression on microglia activation, however no differences in neuronal loss, spongiform change or PrP deposition were observed at endpoint. Importantly, Stx6-/- mice are viable and fertile with no gross impairments on a range of neurological, biochemical, histological and skeletal structure tests. Our results provide some support for a pathological role of Stx6 expression in prion disease, which warrants further investigation in the context of prion disease but also other neurodegenerative diseases considering syntaxin-6 appears to have pleiotropic risk effects in progressive supranuclear palsy and Alzheimer's disease.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Ratones , Humanos , Animales , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patología , Priones/genética , Priones/metabolismo , Estudio de Asociación del Genoma Completo , Ratones Transgénicos , Encéfalo/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
2.
Nature ; 564(7736): 415-419, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30546139

RESUMEN

We previously reported1 the presence of amyloid-ß protein (Aß) deposits in individuals with Creutzfeldt-Jakob disease (CJD) who had been treated during childhood with human cadaveric pituitary-derived growth hormone (c-hGH) contaminated with prions. The marked deposition of parenchymal and vascular Aß in these relatively young individuals with treatment-induced (iatrogenic) CJD (iCJD), in contrast to other prion-disease patients and population controls, allied with the ability of Alzheimer's disease brain homogenates to seed Aß deposition in laboratory animals, led us to argue that the implicated c-hGH batches might have been contaminated with Aß seeds as well as with prions. However, this was necessarily an association, and not an experimental, study in humans and causality could not be concluded. Given the public health importance of our hypothesis, we proceeded to identify and biochemically analyse archived vials of c-hGH. Here we show that certain c-hGH batches to which patients with iCJD and Aß pathology were exposed have substantial levels of Aß40, Aß42 and tau proteins, and that this material can seed the formation of Aß plaques and cerebral Aß-amyloid angiopathy in intracerebrally inoculated mice expressing a mutant, humanized amyloid precursor protein. These results confirm the presence of Aß seeds in archived c-hGH vials and are consistent with the hypothesized iatrogenic human transmission of Aß pathology. This experimental confirmation has implications for both the prevention and the treatment of Alzheimer's disease, and should prompt a review of the risk of iatrogenic transmission of Aß seeds by medical and surgical procedures long recognized to pose a risk of accidental prion transmission2,3.


Asunto(s)
Enfermedad de Alzheimer/inducido químicamente , Péptidos beta-Amiloides/metabolismo , Cadáver , Síndrome de Creutzfeldt-Jakob/inducido químicamente , Contaminación de Medicamentos , Hormona del Crecimiento/farmacología , Enfermedad Iatrogénica , Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/análisis , Precursor de Proteína beta-Amiloide/administración & dosificación , Precursor de Proteína beta-Amiloide/efectos adversos , Animales , Estudios de Casos y Controles , Síndrome de Creutzfeldt-Jakob/etiología , Modelos Animales de Enfermedad , Transmisión de Enfermedad Infecciosa/prevención & control , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Contaminación de Medicamentos/prevención & control , Contaminación de Medicamentos/estadística & datos numéricos , Femenino , Hormona del Crecimiento/administración & dosificación , Humanos , Masculino , Ratones , Modelos Biológicos , Priones/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Reproducibilidad de los Resultados , Proteínas tau/análisis , Proteínas tau/metabolismo
3.
PLoS Biol ; 18(6): e3000725, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32516343

RESUMEN

Inherited prion diseases are caused by autosomal dominant coding mutations in the human prion protein (PrP) gene (PRNP) and account for about 15% of human prion disease cases worldwide. The proposed mechanism is that the mutation predisposes to conformational change in the expressed protein, leading to the generation of disease-related multichain PrP assemblies that propagate by seeded protein misfolding. Despite considerable experimental support for this hypothesis, to-date spontaneous formation of disease-relevant, transmissible PrP assemblies in transgenic models expressing only mutant human PrP has not been demonstrated. Here, we report findings from transgenic mice that express human PrP 117V on a mouse PrP null background (117VV Tg30 mice), which model the PRNP A117V mutation causing inherited prion disease (IPD) including Gerstmann-Sträussler-Scheinker (GSS) disease phenotypes in humans. By studying brain samples from uninoculated groups of mice, we discovered that some mice (≥475 days old) spontaneously generated abnormal PrP assemblies, which after inoculation into further groups of 117VV Tg30 mice, produced a molecular and neuropathological phenotype congruent with that seen after transmission of brain isolates from IPD A117V patients to the same mice. To the best of our knowledge, the 117VV Tg30 mouse line is the first transgenic model expressing only mutant human PrP to show spontaneous generation of transmissible PrP assemblies that directly mirror those generated in an inherited prion disease in humans.


Asunto(s)
Amiloide/metabolismo , Priones/metabolismo , Adulto , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Codón/genética , Heterocigoto , Homocigoto , Humanos , Ratones Transgénicos , Persona de Mediana Edad , Priones/aislamiento & purificación
4.
J Infect Dis ; 226(5): 933-937, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-33502474

RESUMEN

Chronic wasting disease (CWD) is the transmissible spongiform encephalopathy or prion disease affecting cervids. In 2016, the first cases of CWD were reported in Europe in Norwegian wild reindeer and moose. The origin and zoonotic potential of these new prion isolates remain unknown. In this study to investigate zoonotic potential we inoculated brain tissue from CWD-infected Norwegian reindeer and moose into transgenic mice overexpressing human prion protein. After prolonged postinoculation survival periods no evidence for prion transmission was seen, suggesting that the zoonotic potential of these isolates is low.


Asunto(s)
Ciervos , Priones , Reno , Enfermedad Debilitante Crónica , Animales , Ciervos/metabolismo , Humanos , Ratones , Ratones Transgénicos , Noruega , Priones/genética , Priones/metabolismo , Reno/metabolismo , Enfermedad Debilitante Crónica/genética
5.
Nature ; 525(7568): 247-50, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26354483

RESUMEN

More than two hundred individuals developed Creutzfeldt-Jakob disease (CJD) worldwide as a result of treatment, typically in childhood, with human cadaveric pituitary-derived growth hormone contaminated with prions. Although such treatment ceased in 1985, iatrogenic CJD (iCJD) continues to emerge because of the prolonged incubation periods seen in human prion infections. Unexpectedly, in an autopsy study of eight individuals with iCJD, aged 36-51 years, in four we found moderate to severe grey matter and vascular amyloid-ß (Aß) pathology. The Aß deposition in the grey matter was typical of that seen in Alzheimer's disease and Aß in the blood vessel walls was characteristic of cerebral amyloid angiopathy and did not co-localize with prion protein deposition. None of these patients had pathogenic mutations, APOE ε4 or other high-risk alleles associated with early-onset Alzheimer's disease. Examination of a series of 116 patients with other prion diseases from a prospective observational cohort study showed minimal or no Aß pathology in cases of similar age range, or a decade older, without APOE ε4 risk alleles. We also analysed pituitary glands from individuals with Aß pathology and found marked Aß deposition in multiple cases. Experimental seeding of Aß pathology has been previously demonstrated in primates and transgenic mice by central nervous system or peripheral inoculation with Alzheimer's disease brain homogenate. The marked deposition of parenchymal and vascular Aß in these relatively young patients with iCJD, in contrast with other prion disease patients and population controls, is consistent with iatrogenic transmission of Aß pathology in addition to CJD and suggests that healthy exposed individuals may also be at risk of iatrogenic Alzheimer's disease and cerebral amyloid angiopathy. These findings should also prompt investigation of whether other known iatrogenic routes of prion transmission may also be relevant to Aß and other proteopathic seeds associated with neurodegenerative and other human diseases.


Asunto(s)
Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Angiopatía Amiloide Cerebral/etiología , Síndrome de Creutzfeldt-Jakob/etiología , Contaminación de Medicamentos , Hormona de Crecimiento Humana/administración & dosificación , Enfermedad Iatrogénica , Adulto , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/administración & dosificación , Péptidos beta-Amiloides/análisis , Autopsia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Estudios de Casos y Controles , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Síndrome de Creutzfeldt-Jakob/complicaciones , Síndrome de Creutzfeldt-Jakob/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Sustancia Gris/metabolismo , Sustancia Gris/patología , Humanos , Persona de Mediana Edad , Priones/administración & dosificación , Priones/metabolismo , Factores de Riesgo
6.
Nature ; 522(7557): 478-81, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26061765

RESUMEN

Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G→V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation.


Asunto(s)
Polimorfismo Genético/genética , Enfermedades por Prión/genética , Enfermedades por Prión/prevención & control , Priones/genética , Priones/metabolismo , Alelos , Sustitución de Aminoácidos/genética , Animales , Bovinos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/prevención & control , Encefalopatía Espongiforme Bovina/genética , Femenino , Heterocigoto , Homocigoto , Humanos , Kuru/epidemiología , Kuru/genética , Kuru/prevención & control , Ratones , Ratones Transgénicos , Papúa Nueva Guinea/epidemiología , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Enfermedades por Prión/epidemiología , Enfermedades por Prión/transmisión , Priones/química , Priones/farmacología
7.
Acta Neuropathol ; 139(6): 965-976, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32232565

RESUMEN

Widespread dietary exposure of the population of Britain to bovine spongiform encephalopathy (BSE) prions in the 1980s and 1990s led to the emergence of variant Creutzfeldt-Jakob Disease (vCJD) in humans. Two previous appendectomy sample surveys (Appendix-1 and -2) estimated the prevalence of abnormal prion protein (PrP) in the British population exposed to BSE to be 237 per million and 493 per million, respectively. The Appendix-3 survey was recommended to measure the prevalence of abnormal PrP in population groups thought to have been unexposed to BSE. Immunohistochemistry for abnormal PrP was performed on 29,516 samples from appendices removed between 1962 and 1979 from persons born between 1891 through 1965, and from those born after 1996 that had been operated on from 2000 through 2014. Seven appendices were positive for abnormal PrP, of which two were from the pre-BSE-exposure era and five from the post BSE-exposure period. None of the seven positive samples were from appendices removed before 1977, or in patients born after 2000 and none came from individuals diagnosed with vCJD. There was no statistical difference in the prevalence of abnormal PrP across birth and exposure cohorts. Two interpretations are possible. Either there is a low background prevalence of abnormal PrP in human lymphoid tissues that may not progress to vCJD. Alternatively, all positive specimens are attributable to BSE exposure, a finding that would necessitate human exposure having begun in the late 1970s and continuing through the late 1990s.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/epidemiología , Encefalopatía Espongiforme Bovina/epidemiología , Proteínas Priónicas/metabolismo , Priones/metabolismo , Animales , Apéndice/metabolismo , Encéfalo/metabolismo , Encéfalo/virología , Bovinos , Síndrome de Creutzfeldt-Jakob/metabolismo , Encefalopatía Espongiforme Bovina/metabolismo , Humanos , Prevalencia
8.
PLoS Pathog ; 11(7): e1004953, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26135918

RESUMEN

Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Gerstmann-Straussler-Scheinker/transmisión , Priones/química , Priones/genética , Animales , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Humanos , Immunoblotting , Inmunohistoquímica , Ratones , Ratones Transgénicos
10.
N Engl J Med ; 369(20): 1904-14, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24224623

RESUMEN

BACKGROUND: Human prion diseases, although variable in clinicopathological phenotype, generally present as neurologic or neuropsychiatric conditions associated with rapid multifocal central nervous system degeneration that is usually dominated by dementia and cerebellar ataxia. Approximately 15% of cases of recognized prion disease are inherited and associated with coding mutations in the gene encoding prion protein (PRNP). The availability of genetic diagnosis has led to a progressive broadening of the recognized spectrum of disease. METHODS: We used longitudinal clinical assessments over a period of 20 years at one hospital combined with genealogical, neuropsychological, neurophysiological, neuroimaging, pathological, molecular genetic, and biochemical studies, as well as studies of animal transmission, to characterize a novel prion disease in a large British kindred. We studied 6 of 11 affected family members in detail, along with autopsy or biopsy samples obtained from 5 family members. RESULTS: We identified a PRNP Y163X truncation mutation and describe a distinct and consistent phenotype of chronic diarrhea with autonomic failure and a length-dependent axonal, predominantly sensory, peripheral polyneuropathy with an onset in early adulthood. Cognitive decline and seizures occurred when the patients were in their 40s or 50s. The deposition of prion protein amyloid was seen throughout peripheral organs, including the bowel and peripheral nerves. Neuropathological examination during end-stage disease showed the deposition of prion protein in the form of frequent cortical amyloid plaques, cerebral amyloid angiopathy, and tauopathy. A unique pattern of abnormal prion protein fragments was seen in brain tissue. Transmission studies in laboratory mice were negative. CONCLUSIONS: Abnormal forms of prion protein that were found in multiple peripheral tissues were associated with diarrhea, autonomic failure, and neuropathy. (Funded by the U.K. Medical Research Council and others.).


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/etiología , Encéfalo/patología , Diarrea/etiología , Enfermedades por Prión/genética , Priones/genética , Animales , Enfermedades del Sistema Nervioso Autónomo/patología , Femenino , Humanos , Estudios Longitudinales , Masculino , Ratones , Ratones Transgénicos , Mutación , Linaje , Fenotipo , Placa Amiloide/patología , Enfermedades por Prión/complicaciones , Enfermedades por Prión/patología , Enfermedades por Prión/transmisión , Proteínas Priónicas
11.
Acta Neuropathol ; 131(3): 411-25, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26646779

RESUMEN

Prion diseases are a group of fatal neurodegenerative disorders characterised by the accumulation of misfolded prion protein (PrP(Sc)) in the brain. The critical relationship between aberrant protein misfolding and neurotoxicity currently remains unclear. The accumulation of aggregation-prone proteins has been linked to impairment of the ubiquitin-proteasome system (UPS) in a variety of neurodegenerative disorders, including Alzheimer's, Parkinson's and Huntington's diseases. As the principal route for protein degradation in mammalian cells, this could have profound detrimental effects on neuronal function and survival. Here, we determine the temporal onset of UPS dysfunction in prion-infected Ub(G76V)-GFP reporter mice, which express a ubiquitin fusion proteasome substrate to measure in vivo UPS activity. We show that the onset of UPS dysfunction correlates closely with PrP(Sc) deposition, preceding earliest behavioural deficits and neuronal loss. UPS impairment was accompanied by accumulation of polyubiquitinated substrates and found to affect both neuronal and astrocytic cell populations. In prion-infected CAD5 cells, we demonstrate that activation of the UPS by the small molecule inhibitor IU1 is sufficient to induce clearance of polyubiquitinated substrates and reduce misfolded PrP(Sc) load. Taken together, these results identify the UPS as a possible early mediator of prion pathogenesis and promising target for development of future therapeutics.


Asunto(s)
Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Enfermedades por Prión/patología
13.
J Neurosci ; 34(18): 6140-5, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24790184

RESUMEN

Alzheimer's disease (AD) is associated with pathological assembly states of amyloid-ß protein (Aß). Aß-related synaptotoxicity can be blocked by anti-prion protein (PrP) antibodies, potentially allowing therapeutic targeting of this aspect of AD neuropathogenesis. Here, we show that intravascular administration of a high-affinity humanized anti-PrP antibody to rats can prevent the plasticity-disrupting effects induced by exposure to soluble AD brain extract. These results provide an in vivo proof of principle for such a therapeutic strategy.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/farmacología , Anticuerpos Monoclonales/administración & dosificación , Región CA1 Hipocampal/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Priones/inmunología , Anciano de 80 o más Años , Análisis de Varianza , Animales , Biofisica , Vías de Administración de Medicamentos , Estimulación Eléctrica , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Priones/metabolismo , Ratas , Ratas Wistar , Lóbulo Temporal/química , Lóbulo Temporal/metabolismo
14.
J Biol Chem ; 289(37): 25497-508, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25074940

RESUMEN

The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar ß-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined ß-sheet-rich oligomer, containing ∼12 PrP molecules, and often enclosing a central cavity, formed using full-length recombinant PrP. The N-terminal region of prion protein (residues 23-90) is required for the formation of this distinct oligomer; a truncated form comprising residues 91-231 forms a broad distribution of aggregated species. No infectivity or toxicity was found using cell and animal model systems. This study demonstrates that examination of the full repertoire of conformers and assembly states that can be accessed by PrP under specific experimental conditions should ideally be done using the full-length protein.


Asunto(s)
Amiloide/química , Enfermedades por Prión/metabolismo , Priones/química , Estructura Terciaria de Proteína , Amiloide/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Enfermedades por Prión/patología , Priones/metabolismo , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química
15.
PLoS Pathog ; 9(9): e1003643, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086135

RESUMEN

Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc)), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((Ctm)PrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc) was demonstrated in the brains of recipient transgenic mice. This PrP(Sc) rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (Ctm)PrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.


Asunto(s)
Sustitución de Aminoácidos , Encéfalo/metabolismo , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Enfermedad de Gerstmann-Straussler-Scheinker/transmisión , Mutación Missense , Proteínas PrPSc/metabolismo , Priones/metabolismo , Animales , Encéfalo/patología , Enfermedad de Gerstmann-Straussler-Scheinker/genética , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Humanos , Ratones , Ratones Transgénicos , Proteínas PrPSc/genética , Proteínas Priónicas , Priones/genética
16.
EMBO J ; 29(1): 222-35, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19927122

RESUMEN

It has been suggested that intrinsic brain tumours originate from a neural stem/progenitor cell population in the subventricular zone of the post-natal brain. However, the influence of the initial genetic mutation on the phenotype as well as the contribution of mature astrocytes to the formation of brain tumours is still not understood. We deleted Rb/p53, Rb/p53/PTEN or PTEN/p53 in adult subventricular stem cells; in ectopically neurografted stem cells; in mature parenchymal astrocytes and in transplanted astrocytes. We found that only stem cells, but not astrocytes, gave rise to brain tumours, independent of their location. This suggests a cell autonomous mechanism that enables stem cells to generate brain tumours, whereas mature astrocytes do not form brain tumours in adults. Recombination of PTEN/p53 gave rise to gliomas whereas deletion of Rb/p53 or Rb/p53/PTEN generated primitive neuroectodermal tumours (PNET), indicating an important role of an initial Rb loss in driving the PNET phenotype. Our study underlines an important role of stem cells and the relevance of initial genetic mutations in the pathogenesis and phenotype of brain tumours.


Asunto(s)
Células Madre Adultas/metabolismo , Neoplasias Encefálicas/genética , Genes Supresores de Tumor , Mutación , Células Madre Neoplásicas/metabolismo , Neuronas/metabolismo , Células Madre Adultas/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/patología , Genes de Retinoblastoma , Genes p53 , Proteína Ácida Fibrilar de la Glía , Glioma/etiología , Glioma/genética , Glioma/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Modelos Neurológicos , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/genética , Tumores Neuroectodérmicos Primitivos/etiología , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/patología , Neuronas/patología , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fenotipo
17.
PLoS Pathog ; 8(2): e1002538, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22359509

RESUMEN

In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles.


Asunto(s)
Células Dendríticas/ultraestructura , Exosomas/ultraestructura , Proteínas PrPC/análisis , Scrapie/patología , Animales , Separación Celular , Células Dendríticas/metabolismo , Exosomas/metabolismo , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Proteínas PrPC/metabolismo , Proteínas PrPC/ultraestructura , Scrapie/metabolismo , Bazo/metabolismo , Bazo/patología
18.
Emerg Infect Dis ; 19(11): 1731-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24188521

RESUMEN

Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.


Asunto(s)
Expresión Génica , Priones/genética , Scrapie/genética , Scrapie/transmisión , Animales , Encéfalo/metabolismo , Encéfalo/patología , Bovinos , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/patología , Humanos , Ratones , Ratones Transgénicos , Priones/metabolismo , Ovinos , Especificidad de la Especie
19.
J Pathol ; 223(4): 511-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21294124

RESUMEN

Anonymous screening of lymphoreticular tissues removed during routine surgery has been applied to estimate the UK population prevalence of asymptomatic vCJD prion infection. The retrospective study of Hilton et al (J Pathol 2004; 203: 733-739) found accumulation of abnormal prion protein in three formalin-fixed appendix specimens. This led to an estimated UK prevalence of vCJD infection of ∼1 in 4000, which remains the key evidence supporting current risk reduction measures to reduce iatrogenic transmission of vCJD prions in the UK. Confirmatory testing of these positives has been hampered by the inability to perform immunoblotting of formalin-fixed tissue. Animal transmission studies offer the potential for 'gold standard' confirmatory testing but are limited by both transmission barrier effects and known effects of fixation on scrapie prion titre in experimental models. Here we report the effects of fixation on brain and lymphoreticular human vCJD prions and comparative bioassay of two of the three prevalence study formalin-fixed, paraffin-embedded (FFPE) appendix specimens using transgenic mice expressing human prion protein (PrP). While transgenic mice expressing human PrP 129M readily reported vCJD prion infection after inoculation with frozen vCJD brain or appendix, and also FFPE vCJD brain, no infectivity was detected in FFPE vCJD spleen. No prion transmission was observed from either of the FFPE appendix specimens. The absence of detectable infectivity in fixed, known positive vCJD lymphoreticular tissue precludes interpreting negative transmissions from vCJD prevalence study appendix specimens. In this context, the Hilton et al study should continue to inform risk assessment pending the outcome of larger-scale studies on discarded surgical tissues and autopsy samples.


Asunto(s)
Apéndice/metabolismo , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Priones/metabolismo , Animales , Apéndice/patología , Bioensayo/métodos , Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/patología , Síndrome de Creutzfeldt-Jakob/transmisión , Humanos , Ratones , Ratones Transgénicos , Proteínas PrPSc/metabolismo , Estudios Retrospectivos , Fijación del Tejido/métodos
20.
Sci Rep ; 12(1): 17198, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229637

RESUMEN

Transgenic mice over-expressing human PRNP or murine Prnp transgenes on a mouse prion protein knockout background have made key contributions to the understanding of human prion diseases and have provided the basis for many of the fundamental advances in prion biology, including the first report of synthetic mammalian prions. In this regard, the prion paradigm is increasingly guiding the exploration of seeded protein misfolding in the pathogenesis of other neurodegenerative diseases. Here we report that a well-established and widely used line of such mice (Tg20 or tga20), which overexpress wild-type mouse prion protein, exhibit spontaneous aggregation and accumulation of misfolded prion protein in a strongly age-dependent manner, which is accompanied by focal spongiosis and occasional neuronal loss. In some cases a clinical syndrome developed with phenotypic features that closely resemble those seen in prion disease. However, passage of brain homogenate from affected, aged mice failed to transmit this syndrome when inoculated intracerebrally into further recipient animals. We conclude that overexpression of the wild-type mouse prion protein can cause an age-dependent protein misfolding disorder or proteinopathy that is not associated with the production of an infectious agent but can produce a phenotype closely similar to authentic prion disease.


Asunto(s)
Encefalopatías , Enfermedades por Prión , Priones , Animales , Encefalopatías/complicaciones , Humanos , Mamíferos/metabolismo , Ratones , Ratones Transgénicos , Enfermedades por Prión/metabolismo , Proteínas Priónicas/genética , Priones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA