RESUMEN
We developed surveillance guidance for COVID-19 in 9 temporary camps for displaced persons along the Thailand-Myanmar border. Arrangements were made for testing of persons presenting with acute respiratory infection, influenza-like illness, or who met the Thailand national COVID-19 Person Under Investigation case definition. In addition, testing was performed for persons who had traveled outside of the camps in outbreak-affected areas or who departed Thailand as resettling refugees. During the first 18 months of surveillance, May 2020-October 2021, a total of 6,190 specimens were tested, and 15 outbreaks (i.e., >1 confirmed COVID-19 cases) were detected in 7 camps. Of those, 5 outbreaks were limited to a single case. Outbreaks during the Delta variant surge were particularly challenging to control. Adapting and implementing COVID-19 surveillance measures in the camp setting were successful in detecting COVID-19 outbreaks and preventing widespread disease during the initial phase of the pandemic in Thailand.
Asunto(s)
COVID-19 , Refugiados , Enfermedades Respiratorias , Humanos , COVID-19/epidemiología , SARS-CoV-2 , PandemiasRESUMEN
BACKGROUND: Blood cultures remain the gold standard investigation for the diagnosis of bloodstream infections. In many locations, quality-assured processing of positive blood cultures is not possible. One solution is to incubate blood cultures locally, and then transport bottles that flag positive to a central reference laboratory for organism identification and antimicrobial susceptibility testing. However, the impact of delay between the bottle flagging positive and subsequent sub-culture on the viability of the isolate has received little attention. METHODS: This study evaluated the impact of delays to sub-culture (22 h to seven days) in three different temperature conditions (2-8 °C, 22-27 °C and 35 ± 2 °C) for bottles that had flagged positive in automated detection systems using a mixture of spiked and routine clinical specimens. Ninety spiked samples for five common bacterial causes of sepsis (Escherichia coli, Haemophilus influenzae, Staphylococcus aureus, Streptococcus agalactiae and Streptococcus pneumoniae) and 125 consecutive positive clinical blood cultures were evaluated at four laboratories located in Cambodia, Lao PDR and Thailand. In addition, the utility of transport swabs for preserving organism viability was investigated. RESULTS: All organisms were recoverable from all sub-cultures in all temperature conditions with the exception of S. pneumoniae, which was less likely to be recoverable after longer delays (> 46-50 h), when stored in hotter temperatures (35 °C), and from BacT/ALERT when compared with BACTEC blood culture bottles. Storage of positive blood culture bottles in cooler temperatures (22-27 °C or below) and the use of Amies bacterial transport swabs helped preserve viability of S. pneumoniae. CONCLUSIONS: These results have practical implications for the optimal workflow for blood culture bottles that have flagged positive in automated detection systems located remotely from a central processing laboratory, particularly in tropical resource-constrained contexts.
Asunto(s)
Bacteriemia , Cultivo de Sangre , Bacteriemia/diagnóstico , Bacteriemia/microbiología , Bacterias , Técnicas Bacteriológicas/métodos , Medios de Cultivo , Escherichia coli , Humanos , Estudios ProspectivosRESUMEN
Primaquine is the only widely available drug for radical cure of Plasmodium vivax malaria. There is uncertainty whether the pharmacokinetic properties of primaquine are altered significantly in childhood or not. Patients with uncomplicated P. vivax malaria and with normal glucose-6-phosphate dehydrogenase were randomized to receive either chloroquine (25 mg base/kg of body weight) or dihydroartemisinin-piperaquine (dihydroartemisinin at 7 mg/kg and piperaquine at 55 mg/kg) plus primaquine, given either as 0.5 mg base/kg/day for 14 days or 1 mg/kg/day for 7 days. Predose day 7 venous plasma concentrations of chloroquine, desethylchloroquine, piperaquine, primaquine, and carboxyprimaquine were measured. Methemoglobin levels were measured at frequent intervals. Day 7 primaquine and carboxyprimaquine concentrations were available for 641 patients. After adjustment for the milligram-per-kilogram primaquine daily dose, day of sampling, partner drug, and fever clearance, there was a significant nonlinear relationship between age and trough primaquine and carboxyprimaquine concentrations and daily methemoglobin levels. Compared to adults 30 years of age, children 5 years of age had trough primaquine concentrations that were 0.53 (95% confidence interval [CI], 0.39 to 0.73)-fold lower, trough carboxyprimaquine concentrations that were 0.45 (95% CI, 0.35 to 0.55)-fold lower, and day 7 methemoglobin levels that were 0.87 (95% CI, 0.58 to 1.27)-fold lower. Increasing plasma concentrations of piperaquine and chloroquine and poor metabolizer CYP 2D6 alleles were associated with higher day 7 primaquine and carboxyprimaquine plasma concentrations. Higher blood methemoglobin concentrations were associated with a lower risk of recurrence. Young children have lower primaquine and carboxyprimaquine exposures and lower levels of methemoglobinemia than adults. Young children may need higher weight-adjusted primaquine doses than adults. (This study has been registered at ClinicalTrials.gov under identifier NCT01640574.).
Asunto(s)
Antimaláricos , Malaria Vivax , Adulto , Antimaláricos/uso terapéutico , Niño , Preescolar , Cloroquina/uso terapéutico , Humanos , Malaria Vivax/tratamiento farmacológico , Primaquina/análogos & derivados , Primaquina/uso terapéuticoRESUMEN
BACKGROUND: Burkholderia pseudomallei is the bacterial causative agent of melioidosis, a difficult disease to diagnose clinically with high mortality if not appropriately treated. Definitive diagnosis requires isolation and identification of the organism. With the increased adoption of MALDI-TOF MS for the identification of bacteria, we established a method for rapid identification of B. pseudomallei using the Vitek MS, a system that does not currently have B. pseudomallei in its in-vitro diagnostic database. RESULTS: A routine direct spotting method was employed to create spectra and SuperSpectra. An initial B. pseudomallei SuperSpectrum was created at Shoklo Malaria Research Unit (SMRU) from 17 reference isolates (46 spectra). When tested, this initial SMRU SuperSpectrum was able to identify 98.2 % (54/55) of Asian isolates, but just 46.7 % (35/75) of Australian isolates. Using spectra (430) from different reference and clinical isolates, two additional SMRU SuperSpectra were created. Using the combination of all SMRU SuperSpectra with seven existing SuperSpectra from Townsville, Australia 119 (100 %) Asian isolates and 31 (100 %) Australian isolates were correctly identified. In addition, no misidentifications were obtained when using these 11 SuperSpectra when tested with 34 isolates of other bacteria including the closely related species Burkholderia thailandensis and Burkholderia cepacia. CONCLUSIONS: This study has established a method for identification of B. pseudomallei using Vitek MS, and highlights the impact of geographical differences between strains for identification using this technique.
Asunto(s)
Burkholderia pseudomallei/química , Burkholderia pseudomallei/aislamiento & purificación , Melioidosis/diagnóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/normas , Melioidosis/microbiología , Reproducibilidad de los Resultados , Especificidad de la EspecieRESUMEN
BACKGROUND: Blood cultures are one of the most important tests performed by microbiology laboratories. Many hospitals, particularly in low and middle-income countries, lack either microbiology services or staff to provide 24 h services resulting in delays to blood culture incubation. There is insufficient guidance on how to transport/store blood cultures if delays before incubation are unavoidable, particularly if ambient temperatures are high. This study set out to address this knowledge gap. METHODS: In three South East Asian countries, four different blood culture systems (two manual and two automated) were used to test blood cultures spiked with five common bacterial pathogens. Prior to incubation the spiked blood culture bottles were stored at different temperatures (25 °C, in a cool-box at ambient temperature, or at 40 °C) for different lengths of time (0 h, 6 h, 12 h or 24 h). The impacts of these different storage conditions on positive blood culture yield and on time to positivity were examined. RESULTS: There was no significant loss in yield when blood cultures were stored < 24 h at 25 °C, however, storage for 24 h at 40 °C decreased yields and longer storage times increased times to detection. CONCLUSION: Blood cultures should be incubated with minimal delay to maximize pathogen recovery and timely result reporting, however, this study provides some reassurance that unavoidable delays can be managed to minimize negative impacts. If delays to incubation ≥ 12 h are unavoidable, transportation at a temperature not exceeding 25 °C, and blind sub-cultures prior to incubation should be considered.
Asunto(s)
Cultivo de Sangre/normas , Manejo de Especímenes/normas , Asia Sudoriental , Bacterias/clasificación , Bacterias/aislamiento & purificación , Cultivo de Sangre/estadística & datos numéricos , Servicios de Laboratorio Clínico/normas , Servicios de Laboratorio Clínico/estadística & datos numéricos , Humanos , Manejo de Especímenes/estadística & datos numéricos , Temperatura , Factores de TiempoRESUMEN
We describe 6 clinical isolates of Elizabethkingia anophelis from a pediatric referral hospital in Cambodia, along with 1 isolate reported from Thailand. Improving diagnostic microbiological methods in resource-limited settings will increase the frequency of reporting for this pathogen. Consensus on therapeutic options is needed, especially for resource-limited settings.
Asunto(s)
Bacteriemia/diagnóstico , Infecciones por Flavobacteriaceae/diagnóstico , Flavobacteriaceae/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Femenino , Flavobacteriaceae/efectos de los fármacos , Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/tratamiento farmacológico , Humanos , Recién Nacido , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología , Vancomicina/uso terapéuticoRESUMEN
BACKGROUND: Reporting cumulative antimicrobial susceptibility testing data on a regular basis is crucial to inform antimicrobial resistance (AMR) action plans at local, national, and global levels. However, analyzing data and generating a report are time consuming and often require trained personnel. OBJECTIVE: This study aimed to develop and test an application that can support a local hospital to analyze routinely collected electronic data independently and generate AMR surveillance reports rapidly. METHODS: An offline application to generate standardized AMR surveillance reports from routinely available microbiology and hospital data files was written in the R programming language (R Project for Statistical Computing). The application can be run by double clicking on the application file without any further user input. The data analysis procedure and report content were developed based on the recommendations of the World Health Organization Global Antimicrobial Resistance Surveillance System (WHO GLASS). The application was tested on Microsoft Windows 10 and 7 using open access example data sets. We then independently tested the application in seven hospitals in Cambodia, Lao People's Democratic Republic, Myanmar, Nepal, Thailand, the United Kingdom, and Vietnam. RESULTS: We developed the AutoMated tool for Antimicrobial resistance Surveillance System (AMASS), which can support clinical microbiology laboratories to analyze their microbiology and hospital data files (in CSV or Excel format) onsite and promptly generate AMR surveillance reports (in PDF and CSV formats). The data files could be those exported from WHONET or other laboratory information systems. The automatically generated reports contain only summary data without patient identifiers. The AMASS application is downloadable from https://www.amass.website/. The participating hospitals tested the application and deposited their AMR surveillance reports in an open access data repository. CONCLUSIONS: The AMASS is a useful tool to support the generation and sharing of AMR surveillance reports.
Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Hospitales/estadística & datos numéricos , Monitoreo Epidemiológico , Humanos , Prueba de Estudio ConceptualRESUMEN
BACKGROUND: The objective of mass antimalarial drug administration (MDA) is to eliminate malaria rapidly by eliminating the asymptomatic malaria parasite reservoirs and interrupting transmission. In the Greater Mekong Subregion, where artemisinin-resistant Plasmodium falciparum is now widespread, MDA has been proposed as an elimination accelerator, but the contribution of asymptomatic infections to malaria transmission has been questioned. The impact of MDA on entomological indices has not been characterized previously. METHODS: MDA was conducted in 4 villages in Kayin State (Myanmar). Malaria mosquito vectors were captured 3 months before, during, and 3 months after MDA, and their Plasmodium infections were detected by polymerase chain reaction (PCR) analysis. The relationship between the entomological inoculation rate, the malaria prevalence in humans determined by ultrasensitive PCR, and MDA was characterized by generalized estimating equation regression. RESULTS: Asymptomatic P. falciparum and Plasmodium vivax infections were cleared by MDA. The P. vivax entomological inoculation rate was reduced by 12.5-fold (95% confidence interval [CI], 1.6-100-fold), but the reservoir of asymptomatic P. vivax infections was reconstituted within 3 months, presumably because of relapses. This was coincident with a 5.3-fold (95% CI, 4.8-6.0-fold) increase in the vector infection rate. CONCLUSION: Asymptomatic infections are a major source of malaria transmission in Southeast Asia.
Asunto(s)
Antimaláricos/uso terapéutico , Infecciones Asintomáticas/terapia , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Infecciones Asintomáticas/epidemiología , Reservorios de Enfermedades/parasitología , Humanos , Incidencia , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Mosquitos Vectores/parasitología , Mianmar/epidemiología , Plasmodium falciparum , Plasmodium vivax , Prevalencia , Estaciones del AñoRESUMEN
BACKGROUND: There is a pressing need to understand better the extent and distribution of antimicrobial resistance on a global scale, to inform development of effective interventions. Collation of datasets for meta-analysis, mathematical modelling and temporo-spatial analysis is hampered by the considerable variability in clinical sampling, variable quality in laboratory practice and inconsistencies in antimicrobial susceptibility testing and reporting. METHODS: The Microbiology Investigation Criteria for Reporting Objectively (MICRO) checklist was developed by an international working group of clinical and laboratory microbiologists, infectious disease physicians, epidemiologists and mathematical modellers. RESULTS: In keeping with the STROBE checklist, but applicable to all study designs, MICRO defines items to be included in reports of studies involving human clinical microbiology data. It provides a concise and comprehensive reference for clinicians, researchers, reviewers and journals working on, critically appraising, and publishing clinical microbiology datasets. CONCLUSIONS: Implementation of the MICRO checklist will enhance the quality and scientific reporting of clinical microbiology data, increasing data utility and comparability to improve surveillance, grade data quality, facilitate meta-analyses and inform policy and interventions from local to global levels.
Asunto(s)
Servicios de Laboratorio Clínico , Exactitud de los Datos , Interpretación Estadística de Datos , Técnicas Microbiológicas , Proyectos de Investigación , Lista de Verificación/normas , Servicios de Laboratorio Clínico/normas , Servicios de Laboratorio Clínico/estadística & datos numéricos , Conjuntos de Datos como Asunto , Humanos , Técnicas Microbiológicas/métodos , Técnicas Microbiológicas/normas , Técnicas Microbiológicas/estadística & datos numéricos , Guías de Práctica Clínica como Asunto , Edición/normas , Proyectos de Investigación/normas , Informe de Investigación/normasRESUMEN
Malaria rapid diagnostic tests (RDTs) primarily detect Plasmodium falciparum antigen histidine-rich protein 2 (HRP2) and the malaria-conserved antigen lactate dehydrogenase (LDH) for P. vivax and other malaria species. The performance of RDTs and their utility is dependent on circulating antigen concentration distributions in infected individuals in a population in which malaria is endemic and on the limit of detection of the RDT for the antigens. A multiplexed immunoassay for the quantification of HRP2, P. vivax LDH, and all-malaria LDH (pan LDH) was developed to accurately measure circulating antigen concentration and antigen distribution in a population with endemic malaria. The assay also measures C-reactive protein (CRP) levels as an indicator of inflammation. Validation was conducted with clinical specimens from 397 asymptomatic donors from Myanmar and Uganda, confirmed by PCR for infection, and from participants in induced blood-stage malaria challenge studies. The assay lower limits of detection for HRP2, pan LDH, P. vivax LDH, and CRP were 0.2 pg/ml, 9.3 pg/ml, 1.5 pg/ml, and 26.6 ng/ml, respectively. At thresholds for HRP2, pan LDH, and P. vivax LDH of 2.3 pg/ml, 47.8 pg/ml, and 75.1 pg/ml, respectively, and a specificity ≥98.5%, the sensitivities for ultrasensitive PCR-confirmed infections were 93.4%, 84.9%, and 48.9%, respectively. Plasmodium LDH (pLDH) concentration, in contrast to that of HRP2, correlated closely with parasite density. CRP levels were moderately higher in P. falciparum infections with confirmed antigenemia versus those in clinical specimens with no antigen. The 4-plex array is a sensitive tool for quantifying diagnostic antigens in malaria infections and supporting the evaluation of new ultrasensitive RDTs.
Asunto(s)
Antígenos de Protozoos/sangre , Infecciones Asintomáticas , Proteína C-Reactiva/análisis , Inmunoensayo/métodos , Malaria/sangre , Malaria/diagnóstico , Adulto , Infecciones Asintomáticas/epidemiología , Niño , Preescolar , Pruebas Diagnósticas de Rutina , Enfermedades Endémicas , Humanos , Lactante , L-Lactato Deshidrogenasa/sangre , Malaria/epidemiología , Mianmar/epidemiología , Plasmodium/inmunología , Proteínas Protozoarias/sangre , Sensibilidad y Especificidad , Uganda/epidemiologíaRESUMEN
In the Greater Mekong Subregion in Southeast Asia, malaria elimination strategies need to target all Plasmodium falciparum parasites, including those carried asymptomatically. More than 70% of asymptomatic carriers are not detected by current rapid diagnostic tests (RDTs) or microscopy. An HRP2-based ultrasensitive RDT (uRDT) developed to improve the detection of low-density infections was evaluated during prevalence surveys within a malaria elimination program in a low-transmission area of eastern Myanmar. Surveys were conducted to identify high-prevalence villages. Two-milliliter venous blood samples were collected from asymptomatic adult volunteers and transported to the laboratory. Plasmodium parasites were detected by RDT, uRDT, microscopy, ultrasensitive qPCR (uPCR), and multiplex enzyme-linked immunosorbent assay (ELISA). The sensitivity, specificity, and predictive positive and negative values of RDT and uRDT were calculated compared to uPCR and ELISA. Parasite and antigen concentrations detected by each test were defined using uPCR and ELISA, respectively. A total of 1,509 samples, including 208 P. falciparum-positive samples were analyzed with all tests. The sensitivity of the uRDT was twofold higher than that of RDT, 51.4% versus 25.2%, with minor specificity loss, 99.5% versus 99.9%, against the combined reference (uPCR plus ELISA). The geometric mean parasitemia detected by uRDT in P. falciparum monospecific infections was 3,019 parasites per ml (95% confidence interval [95% CI], 1,790 to 5,094; n = 79) compared to 11,352 parasites per ml (95% CI, 5,643 to 22,837; n = 38) by RDT. The sensitivities of uRDT and RDT dropped to 34.6% and 15.1%, respectively, for the matched tests performed in the field. The uRDT performed consistently better than RDT and microscopy at low parasitemias. It shows promising characteristics for the identification of high-prevalence communities and warrants further evaluation in mass screening and treatment interventions.
Asunto(s)
Infecciones Asintomáticas/epidemiología , Pruebas Diagnósticas de Rutina/métodos , Malaria Falciparum/diagnóstico , Parasitemia/diagnóstico , Adulto , Antígenos de Protozoos/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Malaria Falciparum/epidemiología , Masculino , Microscopía , Persona de Mediana Edad , Mianmar/epidemiología , Parasitemia/epidemiología , Prevalencia , Proteínas Protozoarias/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: Deployment of mefloquine-artesunate (MAS3) on the Thailand-Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. METHODS: Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. RESULTS: Polymerase chain reaction (PCR)-adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. CONCLUSIONS: The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand-Myanmar border.
Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum/tratamiento farmacológico , Mefloquina , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos , Femenino , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Masculino , Mefloquina/farmacología , Mefloquina/uso terapéutico , Mianmar/epidemiología , Plasmodium falciparum/patogenicidad , Estudios Prospectivos , Tailandia/epidemiologíaRESUMEN
BACKGROUND: Mycoplasma amphoriforme has been associated with infection in patients with primary antibody deficiency (PAD). Little is known about the natural history of infection with this organism and its ability to be transmitted in the community. METHODS: The bacterial load was estimated in sequential sputum samples from 9 patients by quantitative polymerase chain reaction. The genomes of all available isolates, originating from patients in the United Kingdom, France, and Tunisia, were sequenced along with the type strain. Genomic data were assembled and annotated, and a high-resolution phylogenetic tree was constructed. RESULTS: By using high-resolution whole-genome sequencing (WGS) data, we show that patients can be chronically infected with M. amphoriforme manifesting as a relapsing-remitting bacterial load, interspersed by periods when the organism is undetectable. Importantly, we demonstrate transmission of strains within a clinical environment. Antibiotic resistance mutations accumulate in isolates taken from patients who received multiple courses of antibiotics. CONCLUSIONS: Mycoplasma amphoriforme isolates form a closely related species responsible for a chronic relapsing and remitting infection in PAD patients in the United Kingdom and from immunocompetent patients in other countries. We provide strong evidence of transmission between patients attending the same clinic, suggesting that screening and isolation may be necessary for susceptible patients. This work demonstrates the critical role that WGS can play in rapidly unraveling the biology of a novel pathogen.
Asunto(s)
Genoma Bacteriano , Síndromes de Inmunodeficiencia/complicaciones , Infecciones por Mycoplasma/microbiología , Mycoplasma/genética , Adulto , Carga Bacteriana , Transmisión de Enfermedad Infecciosa , Farmacorresistencia Bacteriana/genética , Genómica , Humanos , Mutación , Mycoplasma/clasificación , Mycoplasma/aislamiento & purificación , Infecciones por Mycoplasma/etiología , Infecciones por Mycoplasma/transmisión , Filogenia , Recurrencia , Esputo/microbiologíaRESUMEN
OBJECTIVE: Published literature from resource-limited settings is infrequent, although urinary tract infections (UTI) are a common cause of outpatient presentation and antibiotic use. Point-of-care test (POCT) interpretation relates to antibiotic use and antibiotic resistance. We aimed to assess the diagnostic accuracy of POCT and their role in UTI antibiotic stewardship. METHODS: One-year retrospective analysis in three clinics on the Thailand-Myanmar border of non-pregnant adults presenting with urinary symptoms. POCT (urine dipstick and microscopy) were compared to culture with significant growth classified as pure growth of a single organism >10(5) CFU/ml. RESULTS: In 247 patients, 82.6% female, the most common symptoms were dysuria (81.2%), suprapubic pain (67.8%) and urinary frequency (53.7%). After excluding contaminated samples, UTI was diagnosed in 52.4% (97/185); 71.1% (69/97) had a significant growth on culture, and >80% of these were Escherichia coli (20.9% produced extended-spectrum ß-lactamase (ESBL)). Positive urine dipstick (leucocyte esterase ≥1 and/or nitrate positive) compared against positive microscopy (white blood cell >10/HPF, bacteria ≥1/HPF, epithelial cells <5/HPF) had a higher sensitivity (99% vs. 57%) but a lower specificity (47% vs. 89%), respectively. Combined POCT resulted in the best sensitivity (98%) and specificity (81%). Nearly one in ten patients received an antimicrobial to which the organism was not fully sensitive. CONCLUSION: One rapid, cost-effective POCT was too inaccurate to be used alone by healthcare workers, impeding antibiotic stewardship in a high ESBL setting. Appropriate prescribing is improved with concurrent use and concordant results of urine dipstick and microscopy.
Asunto(s)
Infecciones Urinarias/diagnóstico , Adolescente , Adulto , Anciano , Antibacterianos/uso terapéutico , Escherichia coli/aislamiento & purificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Tailandia , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/orina , Adulto Joven , beta-Lactamasas/aislamiento & purificaciónRESUMEN
Mycoplasma amphoriforme is a recently described organism isolated from the respiratory tracts of patients with immunodeficiency and evidence of chronic infection. Novel assays for the molecular detection of the organism by real-time quantitative PCRs (qPCRs) targeting the uracil DNA glycosylase gene (udg) or the 23S rRNA gene are described here. The analytical sensitivities are similar to the existing conventional M. amphoriforme 16S rRNA gene PCR, with the advantage of being species specific, rapid, and quantitative. By using these techniques, we demonstrate the presence of this organism in 17 (19.3%) primary antibody-deficient (PAD) patients, 4 (5%) adults with lower respiratory tract infection, 1 (2.6%) sputum sample from a patient attending a chest clinic, and 23 (0.21%) samples submitted for viral diagnosis of respiratory infection, but not in normal adult control subjects. These data show the presence of this microorganism in respiratory patients and suggest that M. amphoriforme may infect both immunocompetent and immunocompromised people. Further studies to characterize this organism are required, and this report provides the tools that may be used by other research groups to investigate its pathogenic potential.
Asunto(s)
Técnicas de Diagnóstico Molecular/métodos , Infecciones por Mycoplasma/diagnóstico , Mycoplasma/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infecciones del Sistema Respiratorio/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mycoplasma/genética , Infecciones por Mycoplasma/microbiología , ARN Ribosómico 23S/genética , Infecciones del Sistema Respiratorio/microbiología , Sensibilidad y Especificidad , Uracil-ADN Glicosidasa/genética , Adulto JovenRESUMEN
Progressive multifocal leukoencephalopathy (PML) is a rare, often fatal neurological disorder caused by the John Cunningham virus (JCV). It affects immunocompromised individuals, leading to brain demyelination. Diagnosis involves MRI scans and JCV detection in cerebrospinal (CSF) fluid. The mortality rate is high, and current intervention focusses on reversing immunosuppression. We report a patient with chronic lymphocytic leukaemia (CLL) who was diagnosed with PML. He is a 66-year-old male with CLL presenting with multiple falls, right arm weakness, and cognitive impairment. Following MRI head scans and CSF analysis, he was diagnosed with PML. Treatment for CLL was deemed inappropriate due to immunosuppression risk. We initiated Levetiracetam to prevent seizures and considered mirtazapine to prevent viral spread. Mefloquine and cidofovir were considered, but the patient chose not to commence on them. He was discharged with multidisciplinary support. In conclusion, we advise that these stroke-like symptoms may necessitate comprehensive investigation beyond initial CT scans, as exemplified by this case of PML. Relying solely on radiological findings may overlook rare conditions, and clinical skills such as a good history and examination should still be prioritised.
RESUMEN
Florfenicol (Ff) is an antimicrobial agent belonging to the class amphenicol used for the treatment of bacterial infections in livestock, poultry, and aquaculture (animal farming). It inhibits protein synthesis. Ff is an analog of chloramphenicol, an amphenicol compound on the WHO essential medicine list that is used for the treatment of human infections. Due to the extensive usage of Ff in animal farming, zoonotic pathogens have developed resistance to this antimicrobial agent. There are numerous reports of resistance genes from organisms infecting or colonizing animals found in human pathogens, suggesting a possible exchange of genetic materials. One of these genes is floR, a gene that encodes for an efflux pump that removes Ff from bacterial cells, conferring resistance against amphenicol, and is often associated with mobile genetic elements and other resistant determinants. In this study, we analyzed bacterial isolates recovered in rural Thailand from patients and environmental samples collected for disease monitoring. Whole genome sequencing was carried out for all the samples collected. Speciation and genome annotation was performed revealing the presence of the floR gene in the bacterial genome. The minimum inhibitory concentration (MIC) was determined for Ff and chloramphenicol. Chromosomal and phylogenetic analyses were performed to investigate the acquisition pattern of the floR gene. The presence of a conserved floR gene in unrelated Acinetobacter spp. isolated from human bacterial infections and environmental samples was observed, suggesting multiple and independent inter-species genetic exchange of drug-resistant determinants. The floR was found to be in the variable region containing various mobile genetic elements and other antibiotic resistance determinants; however, no evidence of HGT could be found. The floR gene identified in this study is chromosomal for all isolates. The study highlights a plausible impact of antimicrobials used in veterinary settings on human health. Ff shares cross-resistance with chloramphenicol, which is still in use in several countries. Furthermore, by selecting for floR-resistance genes, we may be selecting for and facilitating the zoonotic and reverse zoonotic exchange of other flanking resistance markers between human and animal pathogens or commensals with detrimental public health consequences.
RESUMEN
The nasopharynx is an important reservoir of disease-associated and antimicrobial-resistant bacterial species. This proof-of-concept study assessed the utility of a combined culture, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and targeted metagenomic sequencing workflow for the study of the pediatric nasopharyngeal bacterial microbiota. Nasopharyngeal swabs and clinical metadata were collected from Cambodian children during a hospital outpatient visit and then biweekly for 12 weeks. Swabs were cultured on chocolate and blood-gentamicin agar, and all colony morphotypes were identified by MALDI-TOF MS. Metagenomic sequencing was done on a scrape of all colonies from a chocolate agar culture and processed using the mSWEEP pipeline. One hundred one children were enrolled, yielding 620 swabs. MALDI-TOF MS identified 106 bacterial species/40 genera: 20 species accounted for 88.5% (2,190/2,474) of isolates. Colonization by Moraxella catarrhalis (92.1% of children on ≥1 swab), Haemophilus influenzae (87.1%), and Streptococcus pneumoniae (83.2%) was particularly common. In S. pneumoniae-colonized children, a median of two serotypes [inter-quartile range (IQR) 1-2, range 1-4] was detected. For the 21 bacterial species included in the mSWEEP database and identifiable by MALDI-TOF, detection by culture + MALDI-TOF MS and culture + mSWEEP was highly concordant with a median species-level agreement of 96.9% (IQR 86.8%-98.8%). mSWEEP revealed highly dynamic lineage-level colonization patterns for S. pneumoniae which were quite different to those for S. aureus. A combined culture, MALDI-TOF MS, targeted metagenomic sequencing approach for the exploration of the young child nasopharyngeal microbiome was technically feasible, and each component yielded complementary data. IMPORTANCE: The human upper respiratory tract is an important source of disease-causing and antibiotic-resistant bacteria. However, understanding the interactions and stability of these bacterial populations is technically challenging. We used a combination of approaches to determine colonization patterns over a 3-month period in 101 Cambodian children. The combined approach was feasible to implement, and each component gave complementary data to enable a better understanding of the complex patterns of bacterial colonization.
Asunto(s)
Bacterias , Metagenómica , Microbiota , Nasofaringe , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Nasofaringe/microbiología , Microbiota/genética , Preescolar , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Femenino , Metagenómica/métodos , Niño , Lactante , Masculino , Cambodia , Haemophilus influenzae/genética , Haemophilus influenzae/aislamiento & purificación , Haemophilus influenzae/clasificaciónRESUMEN
The accumulation of amyloid-ß (Aß) plaques in the brain is considered a hallmark of Alzheimer's disease (AD). Mathematical modeling, capable of predicting the motion and accumulation of Aß, has obtained increasing interest as a potential alternative to aid the diagnosis of AD and predict disease prognosis. These mathematical models have provided insights into the pathogenesis and progression of AD that are difficult to obtain through experimental studies alone. Mathematical modeling can also simulate the effects of therapeutics on brain Aß levels, thereby holding potential for drug efficacy simulation and the optimization of personalized treatment approaches. In this review, we provide an overview of the mathematical models that have been used to simulate brain levels of Aß (oligomers, protofibrils, and/or plaques). We classify the models into five categories: the general ordinary differential equation models, the general partial differential equation models, the network models, the linear optimal ordinary differential equation models, and the modified partial differential equation models (i.e., Smoluchowski equation models). The assumptions, advantages and limitations of these models are discussed. Given the popularity of using the Smoluchowski equation models to simulate brain levels of Aß, our review summarizes the history and major advancements in these models (e.g., their application to predict the onset of AD and their combined use with network models). This review is intended to bring mathematical modeling to the attention of more scientists and clinical researchers working on AD to promote cross-disciplinary research.