Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci Res ; 98(10): 1933-1952, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32588471

RESUMEN

Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.


Asunto(s)
Baclofeno/administración & dosificación , Enfermedad de Charcot-Marie-Tooth/tratamiento farmacológico , Enfermedades Desmielinizantes/tratamiento farmacológico , Naltrexona/administración & dosificación , Unión Neuromuscular/efectos de los fármacos , Sorbitol/administración & dosificación , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Técnicas de Cocultivo , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/fisiopatología , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Masculino , Proteínas de la Mielina/genética , Conducción Nerviosa/efectos de los fármacos , Conducción Nerviosa/fisiología , Unión Neuromuscular/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
2.
Sci Adv ; 8(37): eabo7639, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112685

RESUMEN

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.


Asunto(s)
Encéfalo , Dieta Cetogénica , Animales , Encéfalo/metabolismo , Carbohidratos , Cuerpos Cetónicos/metabolismo , Ratones , Proteoma/metabolismo
3.
Schizophr Bull ; 47(5): 1409-1420, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-33871014

RESUMEN

The neuregulin 1 (NRG1) ErbB4 module is at the core of an "at risk" signaling pathway in schizophrenia. Several human studies suggest hyperstimulation of NRG1-ErbB4 signaling as a plausible pathomechanism; however, little is known about the significance of stage-, brain area-, or neural cell type-specific NRG1-ErbB4 hyperactivity for disease-relevant brain endophenotypes. To address these spatiotemporal aspects, we generated transgenic mice for Cre recombinase-mediated overexpression of cystein-rich domain (CRD) NRG1, the most prominent NRG1 isoform in the brain. A comparison of "brain-wide" vs cell type-specific CRD-NRG1 overexpressing mice revealed that pathogenic CRD-NRG1 signals for ventricular enlargement and neuroinflammation originate outside glutamatergic neurons and suggests a subcortical function of CRD-NRG1 in the control of body weight. Embryonic onset of CRD-NRG1 in glutamatergic cortical networks resulted in reduced inhibitory neurotransmission and locomotor hyperactivity. Our findings identify ventricular enlargement and locomotor hyperactivity, 2 main endophenotypes of schizophrenia, as specific consequences of spatiotemporally distinct expression profiles of hyperactivated CRD-NRG1 signaling.


Asunto(s)
Encéfalo , Endofenotipos , Ácido Glutámico/metabolismo , Red Nerviosa , Neurregulina-1/metabolismo , Agitación Psicomotora , Receptor ErbB-4/metabolismo , Esquizofrenia , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Agitación Psicomotora/metabolismo , Agitación Psicomotora/fisiopatología , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA