Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Protein Expr Purif ; 215: 106409, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38040272

RESUMEN

The secretion of extracellular vesicles (EVs) is a common process in Gram-negative bacteria and can be exploited for biotechnological applications. EVs pose a self-adjuvanting, non-replicative vaccine platform, where membrane and antigens are presented to the host immune system in a non-infectious fashion. The secreted quantity of EVs varies between Gram-negative bacterial species and is comparatively high in the model bacterium E. coli. The outer membrane proteins OmpA and OmpF of the fish pathogen Y. ruckeri have been proposed as vaccine candidates to prevent enteric redmouth disease in aquaculture. In this work, Y.ruckeri OmpA or OmpF were expressed in E. coli and recombinant EVs were isolated. To avoid competition between endogenous E. coli OmpA or OmpF, Y. ruckeri OmpA and OmpF were expressed in E. coli strains lacking ompA, ompF, and in a quadruple knockout strain where the four major outer membrane protein genes ompA, ompC, ompF and lamB were removed. Y.ruckeri OmpA and OmpF were successfully expressed in EVs derived from the E. coli mutants as verified by SDS-PAGE, heat modifiability and proteomic analysis using mass-spectrometry. Transmission electron microscopy revealed the presence of EVs in all E. coli strains, and increased EV concentrations were detected when expressing Y. ruckeri OmpA or OmpF in recombinant EVs compared to empty vector controls as verified by nanoparticle tracking analysis. These results show that E. coli can be utilized as a vector for production of EVs expressing outer membrane antigens from Y. ruckeri.


Asunto(s)
Proteínas de Escherichia coli , Vacunas , Yersiniosis , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Yersinia ruckeri/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteómica , Vacunas/metabolismo , Proteínas de Escherichia coli/genética
2.
Biomacromolecules ; 25(7): 4267-4280, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38886154

RESUMEN

To combat the ever-growing increase of multidrug-resistant (MDR) bacteria, action must be taken in the development of antibiotic formulations. Colistin, an effective antibiotic, was found to be nephrotoxic and neurotoxic, consequently leading to a ban on its use in the 1980s. A decade later, colistin use was revived and nowadays used as a last-resort treatment against Gram-negative bacterial infections, although highly regulated. If cytotoxicity issues can be resolved, colistin could be an effective option to combat MDR bacteria. Herein, we investigate the complexation of colistin with poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) block copolymers to form complex coacervate core micelles (C3Ms) to ultimately improve colistin use in therapeutics while maintaining its effectiveness. We show that well-defined and stable micelles can be formed in which the cationic colistin and anionic PMAA form the core while PEO forms a protecting shell. The resulting C3Ms are in a kinetically arrested and stable state, yet they can be made reproducibly using an appropriate experimental protocol. By characterization through dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we found that the best C3M formulation, based on long-term stability and complexation efficiency, is at charge-matching conditions. This nanoparticle formulation was compared to noncomplexed colistin on its antimicrobial properties, enzymatic degradation, serum protein binding, and cytotoxicity. The studies indicate that the antimicrobial properties and cytotoxicity of the colistin-C3Ms were maintained while protein binding was limited, and enzymatic degradation decreased after complexation. Since colistin-C3Ms were found to have an equal effectivity but with increased cargo protection, such nanoparticles are promising components for the antibiotic formulation toolbox.


Asunto(s)
Antibacterianos , Colistina , Nanopartículas , Colistina/química , Colistina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química , Micelas , Humanos , Polietilenglicoles/química , Ácidos Polimetacrílicos/química
3.
J Nanobiotechnology ; 20(1): 262, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672712

RESUMEN

Interest in nanomaterials and especially nanoparticles has exploded in the past decades primarily due to their novel or enhanced physical and chemical properties compared to bulk material. These extraordinary properties have created a multitude of innovative applications in the fields of medicine and pharma, electronics, agriculture, chemical catalysis, food industry, and many others. More recently, nanoparticles are also being synthesized 'biologically' through the use of plant- or microorganism-mediated processes, as an environmentally friendly alternative to the expensive, energy-intensive, and potentially toxic physical and chemical synthesis methods. This transdisciplinary approach to nanoparticle synthesis requires that biologists and biotechnologists understand and learn to use the complex methodology needed to properly characterize these processes. This review targets a bio-oriented audience and summarizes the physico-chemical properties of nanoparticles, and methods used for their characterization. It highlights why nanomaterials are different compared to micro- or bulk materials. We try to provide a comprehensive overview of the different classes of nanoparticles and their novel or enhanced physicochemical properties including mechanical, thermal, magnetic, electronic, optical, and catalytic properties. A comprehensive list of the common methods and techniques used for the characterization and analysis of these properties is presented together with a large list of examples for biogenic nanoparticles that have been previously synthesized and characterized, including their application in the fields of medicine, electronics, agriculture, and food production. We hope that this makes the many different methods more accessible to the readers, and to help with identifying the proper methodology for any given nanoscience problem.


Asunto(s)
Nanopartículas , Nanoestructuras , Agricultura , Catálisis , Nanopartículas/química , Nanoestructuras/química , Plantas/química
4.
Nucleic Acids Res ; 47(21): 10994-11006, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31584084

RESUMEN

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with 'ready-to-use' deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others.


Asunto(s)
ADN/genética , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Error Científico Experimental , Secuencias Repetidas en Tándem/genética , Animales , Gadus morhua/genética , Análisis de Secuencia de ADN
5.
Mol Microbiol ; 111(3): 844-862, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30600549

RESUMEN

Trimeric autotransporter adhesins (TAAs) are a subset of a larger protein family called the type V secretion systems. They are localized on the cell surface of Gram-negative bacteria, function as mediators of attachment to inorganic surfaces and host cells, and thus include important virulence factors. Yersinia adhesin A (YadA) from Yersinia enterocolitica is a prototypical TAA that is used extensively to study the structure and function of the type Vc secretion system. A solid-state NMR study of the membrane anchor domain of YadA previously revealed a flexible stretch of small residues, termed the ASSA region, that links the membrane anchor to the stalk domain. In this study, we present evidence that single amino acid proline substitutions produce two different conformers of the membrane anchor domain of YadA; one with the N-termini facing the extracellular surface, and a second with the N-termini located in the periplasm. We propose that TAAs adopt a hairpin intermediate during secretion, as has been shown before for other subtypes of the type V secretion system. As the YadA transition state intermediate can be isolated from the outer membrane, future structural studies should be possible to further unravel details of the autotransport process.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Sistemas de Secreción Tipo V/metabolismo , Yersinia enterocolitica/enzimología , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Sistemas de Secreción Tipo V/química , Sistemas de Secreción Tipo V/genética
6.
Environ Microbiol ; 22(7): 2939-2955, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32372498

RESUMEN

Yersinia ruckeri causes enteric redmouth disease (ERM) that mainly affects salmonid fishes and leads to significant economic losses in the aquaculture industry. An increasing number of outbreaks and the lack of effective vaccines against some serotypes necessitates novel measures to control ERM. Importantly, Y. ruckeri survives in the environment for long periods, presumably by forming biofilms. How the pathogen forms biofilms and which molecular factors are involved in this process, remains unclear. Yersinia ruckeri produces two surface-exposed adhesins, belonging to the inverse autotransporters (IATs), called Y. ruckeri invasin (YrInv) and Y. ruckeri invasin-like molecule (YrIlm). Here, we investigated whether YrInv and YrIlm play a role in biofilm formation and virulence. Functional assays revealed that YrInv and YrIlm promote biofilm formation on different abiotic substrates. Confocal microscopy revealed that they are involved in microcolony interaction and formation, respectively. The effect of both IATs on biofilm formation correlated with the presence of different biopolymers in the biofilm matrix, including extracellular DNA, RNA and proteins. Moreover, YrInv and YrIlm contributed to virulence in the Galleria mellonella infection model. Taken together, we propose that both IATs are possible targets for the development of novel diagnostic and preventative strategies to control ERM.


Asunto(s)
Enfermedades de los Peces/microbiología , Sistemas de Secreción Tipo V/metabolismo , Virulencia/genética , Yersiniosis/microbiología , Yersinia ruckeri/genética , Yersinia ruckeri/patogenicidad , Adhesinas Bacterianas , Animales , Biopelículas , Factores de Virulencia/genética , Yersiniosis/prevención & control
7.
Med Microbiol Immunol ; 209(3): 243-263, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31788746

RESUMEN

The current problem of increasing antibiotic resistance and the resurgence of numerous infections indicate the need for novel vaccination strategies more than ever. In vaccine development, the search for and the selection of adequate vaccine antigens is the first important step. In recent years, bacterial outer membrane proteins have become of major interest, as they are the main proteins interacting with the extracellular environment. Trimeric autotransporter adhesins (TAAs) are important virulence factors in many Gram-negative bacteria, are localised on the bacterial surface, and mediate the first adherence to host cells in the course of infection. One example is the Neisseria adhesin A (NadA), which is currently used as a subunit in a licensed vaccine against Neisseria meningitidis. Other TAAs that seem promising vaccine candidates are the Acinetobacter trimeric autotransporter (Ata), the Haemophilus influenzae adhesin (Hia), and TAAs of the genus Bartonella. Here, we review the suitability of various TAAs as vaccine candidates.


Asunto(s)
Adhesinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Inmunogenicidad Vacunal , Sistemas de Secreción Tipo V/inmunología , Factores de Virulencia/inmunología , Animales , Humanos
8.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052154

RESUMEN

The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase. Here, we review the current state of the SpyCatcher-SpyTag and related technologies, with a particular emphasis on their use in vaccine development and in determining outer membrane protein localization and topology of surface proteins in bacteria.


Asunto(s)
Toxinas Bacterianas/química , Ingeniería de Proteínas/métodos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Nanopartículas/química , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/metabolismo
9.
J Struct Biol ; 201(2): 171-183, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28888816

RESUMEN

Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Yersinia ruckeri/genética , Adhesinas Bacterianas/metabolismo , Animales , Medios de Cultivo , Evolución Molecular , Enfermedades de los Peces/microbiología , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Hierro/farmacocinética , Oxígeno , Reacción en Cadena de la Polimerasa , Temperatura , Yersinia ruckeri/aislamiento & purificación , Yersinia ruckeri/patogenicidad
10.
J Biol Chem ; 291(8): 3705-24, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26698633

RESUMEN

Trimeric autotransporter adhesins (TAAs) on the cell surface of Gram-negative pathogens mediate bacterial adhesion to host cells and extracellular matrix proteins. However, AtaA, a TAA in the nonpathogenic Acinetobacter sp. strain Tol 5, shows nonspecific high adhesiveness to abiotic material surfaces as well as to biotic surfaces. It consists of a passenger domain secreted by the C-terminal transmembrane anchor domain (TM), and the passenger domain contains an N-terminal head, N-terminal stalk, C-terminal head (Chead), and C-terminal stalk (Cstalk). The Chead-Cstalk-TM fragment, which is conserved in many Acinetobacter TAAs, has by itself the head-stalk-anchor architecture of a complete TAA. Here, we show the crystal structure of the Chead-Cstalk fragment, AtaA_C-terminal passenger domain (CPSD), providing the first view of several conserved TAA domains. The YadA-like head (Ylhead) of the fragment is capped by a unique structure (headCap), composed of three ß-hairpins and a connector motif; it also contains a head insert motif (HIM1) before its last inner ß-strand. The headCap, Ylhead, and HIM1 integrally form a stable Chead structure. Some of the major domains of the CPSD fragment are inherently flexible and provide bending sites for the fiber between segments whose toughness is ensured by topological chain exchange and hydrophobic core formation inside the trimer. Thus, although adherence assays using in-frame deletion mutants revealed that the characteristic adhesive sites of AtaA reside in its N-terminal part, the flexibility and toughness of the CPSD part provide the resilience that enables the adhesive properties of the full-length fiber across a wide range of conditions.


Asunto(s)
Acinetobacter/química , Adhesinas Bacterianas/química , Sistemas de Secreción Tipo V/química , Acinetobacter/genética , Adhesinas Bacterianas/genética , Cristalografía por Rayos X , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sistemas de Secreción Tipo V/genética
11.
J Biol Chem ; 291(38): 20096-112, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27466361

RESUMEN

Intimin is an essential adhesin of attaching and effacing organisms such as entropathogenic Escherichia coli It is also the prototype of type Ve secretion or inverse autotransport, where the extracellular C-terminal region or passenger is exported with the help of an N-terminal transmembrane ß-barrel domain. We recently reported a stalled secretion intermediate of intimin, where the passenger is located in the periplasm but the ß-barrel is already inserted into the membrane. Stalling of this mutant is due to the insertion of an epitope tag at the very N terminus of the passenger. Here, we examined how this insertion disrupts autotransport and found that it causes misfolding of the N-terminal immunoglobulin (Ig)-like domain D00. We could also stall the secretion by making an internal deletion in D00, and introducing the epitope tag into the second Ig-like domain, D0, also resulted in reduced passenger secretion. In contrast to many classical autotransporters, where a proximal folding core in the passenger is required for secretion, the D00 domain is dispensable, as the passenger of an intimin mutant lacking D00 entirely is efficiently exported. Furthermore, the D00 domain is slightly less stable than the D0 and D1 domains, unfolding at ∼200 piconewtons (pN) compared with ∼250 pN for D0 and D1 domains as measured by atomic force microscopy. Our results support a model where the secretion of the passenger is driven by sequential folding of the extracellular Ig-like domains, leading to vectorial transport of the passenger domain across the outer membrane in an N to C direction.


Asunto(s)
Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Biológicos , Pliegue de Proteína , Adhesinas Bacterianas/genética , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Dominios Proteicos
12.
J Biol Chem ; 290(3): 1837-49, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25488660

RESUMEN

Autotransporter proteins comprise a large family of virulence factors that consist of a ß-barrel translocation unit and an extracellular effector or passenger domain. The ß-barrel anchors the protein to the outer membrane of Gram-negative bacteria and facilitates the transport of the passenger domain onto the cell surface. By inserting an epitope tag into the N terminus of the passenger domain of the inverse autotransporter intimin, we generated a mutant defective in autotransport. Using this stalled mutant, we could show that (i) at the time point of stalling, the ß-barrel appears folded; (ii) the stalled autotransporter is associated with BamA and SurA; (iii) the stalled intimin is decorated with large amounts of SurA; (iv) the stalled autotransporter is not degraded by periplasmic proteases; and (v) inverse autotransporter passenger domains are translocated by a hairpin mechanism. Our results suggest a function for the BAM complex not only in insertion and folding of the ß-barrel but also for passenger translocation.


Asunto(s)
Adhesinas Bacterianas/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/metabolismo , Adhesinas Bacterianas/química , Transporte Biológico , Membrana Celular/metabolismo , Clonación Molecular , Reactivos de Enlaces Cruzados/química , Epítopos/química , Proteínas de Escherichia coli/química , Células HeLa , Humanos , Microscopía Fluorescente , Chaperonas Moleculares/química , Mutagénesis Sitio-Dirigida , Mutación , Péptido Hidrolasas/química , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Propiedades de Superficie
13.
Mol Microbiol ; 95(1): 80-100, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25353290

RESUMEN

Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C-terminal extracellular domain and a ß-barrel transmembrane domain, both proteins also contain a short N-terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 µM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α-helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM-containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Escherichia coli Enteropatógena/metabolismo , Peptidoglicano/metabolismo , Yersinia/metabolismo , Adhesinas Bacterianas/genética , Sitios de Unión , Biología Computacional/métodos , Dimerización , Escherichia coli Enteropatógena/química , Escherichia coli Enteropatógena/genética , Concentración de Iones de Hidrógeno , Modelos Moleculares , Multimerización de Proteína , Estructura Secundaria de Proteína , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Yersinia/química , Yersinia/genética
14.
Environ Microbiol ; 18(1): 118-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25923468

RESUMEN

The investigation of self-resistance in antibiotic producers is important to understand the emergence of antibiotic resistance in pathogens and to improve antibiotic production. Lantibiotics are ribosomally synthesized antibiotics that mostly target peptidoglycan biosynthesis. The actinomycete Microbispora ATCC PTA-5024 produces the lantibiotic NAI-107, which interferes with peptidoglycan biosynthesis by binding bactoprenol-pyrophosphate-coupled peptidoglycan precursors. In order to understand how Microbispora counteracts the action of its own antibiotic, its peptidoglycan composition was analysed in detail. Microbispora peptidoglycan consists of muropeptides with D-Ala and Gly in similar proportion at the fourth position of the peptide stems and alternative 3-3 cross-links besides the classical 4-3 cross-links. In addition, the NAI-107 biosynthetic gene cluster (mlb) was analysed for the expression of immunity proteins. We show that distinct immunity determinants are encoded in the mlb cluster: the ABC transporter MlbYZ acting cooperatively with the transmembrane protein MlbJ and the lipoprotein MlbQ. NMR structural analysis of MlbQ revealed a hydrophobic surface patch, which is proposed to bind the cognate lantibiotic. This study demonstrates that immunity in Microbispora is not only based on one determinant but on the action of the distinct immunity proteins MlbQ, MlbYZ and MlbJ.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Actinobacteria/genética , Bacteriocinas/metabolismo , Farmacorresistencia Microbiana/genética , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Actinobacteria/metabolismo , Antibacterianos/metabolismo , Pared Celular/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Peptidoglicano/análisis , Terpenos/metabolismo
15.
J Biol Chem ; 289(43): 29457-70, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25190806

RESUMEN

Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal ß-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of ß-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial ß-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Secuencia Conservada , Evolución Molecular , Mitocondrias/metabolismo , Multimerización de Proteína , Adhesinas Bacterianas/química , Células HeLa , Humanos , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteolisis , Saccharomyces cerevisiae/metabolismo
16.
J Biol Chem ; 289(11): 7388-98, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24369174

RESUMEN

Trimeric autotransporter adhesins (TAAs) are important virulence factors of many Gram-negative bacterial pathogens. TAAs form fibrous, adhesive structures on the bacterial cell surface. Their N-terminal extracellular domains are exported through a C-terminal membrane pore; the insertion of the pore domain into the bacterial outer membrane follows the rules of ß-barrel transmembrane protein biogenesis and is dependent on the essential Bam complex. We have recently described the full fiber structure of SadA, a TAA of unknown function in Salmonella and other enterobacteria. In this work, we describe the structure and function of SadB, a small inner membrane lipoprotein. The sadB gene is located in an operon with sadA; orthologous operons are only found in enterobacteria, whereas other TAAs are not typically associated with lipoproteins. Strikingly, SadB is also a trimer, and its co-expression with SadA has a direct influence on SadA structural integrity. This is the first report of a specific export factor of a TAA, suggesting that at least in some cases TAA autotransport is assisted by additional periplasmic proteins.


Asunto(s)
Enterobacteriaceae/metabolismo , Lipoproteínas/metabolismo , Salmonella/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Transporte Biológico , Separación Celular , Clonación Molecular , Cartilla de ADN , Citometría de Flujo , Lipoproteínas/genética , Modelos Moleculares , Biblioteca de Péptidos , Periplasma/metabolismo , Plásmidos/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Propiedades de Superficie
17.
Infect Immun ; 84(3): 711-22, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26712205

RESUMEN

Bacterial adherence determines the virulence of many human-pathogenic bacteria. Experimental approaches elucidating this early infection event in greater detail have been performed using mainly methods of cellular microbiology. However, in vitro infections of cell monolayers reflect the in vivo situation only partially, and animal infection models are not available for many human-pathogenic bacteria. Therefore, ex vivo infection of human organs might represent an attractive method to overcome these limitations. We infected whole human umbilical cords ex vivo with Bartonella henselae or Acinetobacter baumannii under dynamic flow conditions mimicking the in vivo infection situation of human endothelium. For this purpose, methods for quantifying endothelium-adherent wild-type and trimeric autotransporter adhesin (TAA)-deficient bacteria were set up. Data revealed that (i) A. baumannii binds in a TAA-dependent manner to endothelial cells, (ii) this organ infection model led to highly reproducible adherence rates, and furthermore, (iii) this model allowed to dissect the biological function of TAAs in the natural course of human infections. These findings indicate that infection models using ex vivo human tissue samples ("organ microbiology") might be a valuable tool in analyzing bacterial pathogenicity with the capacity to replace animal infection models at least partially.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/fisiología , Angiomatosis Bacilar/microbiología , Adhesión Bacteriana , Bartonella henselae/fisiología , Células Endoteliales/microbiología , Cordón Umbilical/microbiología , Acinetobacter baumannii/genética , Animales , Bartonella henselae/genética , Humanos , Técnicas In Vitro
18.
EMBO J ; 30(11): 2246-54, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21505418

RESUMEN

Conjugation is a major route of horizontal gene transfer, the driving force in the evolution of bacterial genomes. Antibiotic producing soil bacteria of the genus Streptomyces transfer DNA in a unique process involving a single plasmid-encoded protein TraB and a double-stranded DNA molecule. However, the molecular function of TraB in directing DNA transfer from a donor into a recipient cell is unknown. Here, we show that TraB constitutes a novel conjugation system that is clearly distinguished from DNA transfer by a type IV secretion system. We demonstrate that TraB specifically recognizes and binds to repeated 8 bp motifs on the conjugative plasmid. The specific DNA recognition is mediated by helix α3 of the C-terminal winged-helix-turn-helix domain of TraB. We show that TraB assembles to a hexameric ring structure with a central ∼3.1 nm channel and forms pores in lipid bilayers. Structure, sequence similarity and DNA binding characteristics of TraB indicate that TraB is derived from an FtsK-like ancestor protein, suggesting that Streptomyces adapted the FtsK/SpoIIIE chromosome segregation system to transfer DNA between two distinct Streptomyces cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Conjugación Genética , Transferencia de Gen Horizontal , Plásmidos , Streptomyces coelicolor/genética , Sitios de Unión , Segregación Cromosómica , Cromosomas Bacterianos/genética , ADN/metabolismo , ADN Bacteriano/metabolismo , Evolución Molecular , Filogenia , Unión Proteica , Multimerización de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
19.
Nat Methods ; 9(12): 1212-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23142870

RESUMEN

Membrane proteins are largely underrepresented among available atomic-resolution structures. The use of detergents in protein purification procedures hinders the formation of well-ordered crystals for X-ray crystallography and leads to slower molecular tumbling, impeding the application of solution-state NMR. Solid-state magic-angle spinning NMR spectroscopy is an emerging method for membrane-protein structural biology that can overcome these technical problems. Here we present the solid-state NMR structure of the transmembrane domain of the Yersinia enterocolitica adhesin A (YadA). The sample was derived from crystallization trials that yielded only poorly diffracting microcrystals. We solved the structure using a single, uniformly (13)C- and (15)N-labeled sample. In addition, solid-state NMR allowed us to acquire information on the flexibility and mobility of parts of the structure, which, in combination with evolutionary conservation information, presents new insights into the autotransport mechanism of YadA.


Asunto(s)
Adhesinas Bacterianas/química , Proteínas de la Membrana/química , Resonancia Magnética Nuclear Biomolecular/métodos , Cristalización , Modelos Moleculares
20.
Int J Med Microbiol ; 305(2): 276-82, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25596886

RESUMEN

Intimin and invasin are adhesins and central virulence factors of attaching and effacing bacteria, such as enterohaemorrhagic Escherichia coli, and enteropathogenic Yersiniae, respectively. These proteins are prototypes of a large family of adhesins distributed widely in Gram-negative bacteria. It is now evident that this protein family represents a previously unrecognized autotransporter secretion system, termed type Ve secretion. In contrast to classical autotransport, where the transmembrane ß-barrel domain or translocation unit is C-terminal to the extracellular region or passenger domain, type Ve-secreted proteins have an inverted topology with the passenger domain C-terminal to the translocation unit; hence the term inverse autotransporter. This minireview covers the recent advances in elucidating the structure and biogenesis of inverse autotransporters.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Factores de Virulencia/química , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA