Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Neurosci ; 40(48): 9260-9271, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33097638

RESUMEN

Memory stability is essential for animal survival when environment and behavioral state change over short or long time spans. The stability of a memory can be expressed by its duration, its perseverance when conditions change as well as its specificity to the learned stimulus. Using optogenetic and pharmacological manipulations in male mice, we show that the presence of noradrenaline in the olfactory bulb during acquisition renders olfactory memories more stable. We show that while inhibition of noradrenaline transmission during an odor-reward acquisition has no acute effects, it alters perseverance, duration, and specificity of the memory. We use a computational approach to propose a proof of concept model showing that a single, simple network effect of noradrenaline on olfactory bulb dynamics can underlie these seemingly different behavioral effects. Our results show that acute changes in network dynamics can have long-term effects that extend beyond the network that was manipulated.SIGNIFICANCE STATEMENT Olfaction guides the behavior of animals. For successful survival, animals have to remember previously learned information and at the same time be able to acquire new memories. We show here that noradrenaline in the olfactory bulb, the first cortical relay of the olfactory information, is important for creating stable and specific olfactory memories. Memory stability, as expressed in perseverance, duration and specificity of the memory, is enhanced when noradrenergic inputs to the olfactory bulb are unaltered. We show that, computationally, our diverse behavioral results can be ascribed to noradrenaline-driven changes in neural dynamics. These results shed light on how very temporary changes in neuromodulation can have a variety of long-lasting effects on neural processing and behavior.


Asunto(s)
Memoria/fisiología , Norepinefrina/fisiología , Bulbo Olfatorio/fisiología , Olfato/fisiología , Animales , Simulación por Computador , Masculino , Memoria a Largo Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Norepinefrina/metabolismo , Odorantes , Bulbo Olfatorio/metabolismo , Vías Olfatorias/fisiología , Aprendizaje Inverso/fisiología , Recompensa , Sinapsis/fisiología , Transmisión Sináptica
2.
Learn Mem ; 27(10): 414-417, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32934093

RESUMEN

We present evidence that experience and cholinergic modulation in an early sensory network interact to improve certainty about olfactory stimuli. The data we present are in agreement with existing theoretical ideas about the functional role of acetylcholine but highlight the importance of early sensory networks in addition to cortical networks. We use a simple behavioral paradigm in mice which allows us to measure certainty about a stimulus via the response amplitude to a condition and novel stimuli. We conclude that additional learning increases certainty and that the slope of this relationship can be modulated by activation of muscarinic cholinergic receptors in the olfactory bulb.


Asunto(s)
Bulbo Olfatorio/fisiología , Receptores Muscarínicos/fisiología , Olfato/fisiología , Acetilcolina/metabolismo , Animales , Condicionamiento Clásico , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Odorantes
4.
J Neurosci ; 37(48): 11605-11615, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29066553

RESUMEN

Norepinephrine (NE) has been shown to influence sensory, and specifically olfactory processing at the behavioral and physiological levels, potentially by regulating signal-to-noise ratio (S/N). The present study is the first to look at NE modulation of olfactory bulb (OB) in regards to S/N in vivo We show, in male rats, that locus ceruleus stimulation and pharmacological infusions of NE into the OB modulate both spontaneous and odor-evoked neural responses. NE in the OB generated a non-monotonic dose-response relationship, suppressing mitral cell activity at high and low, but not intermediate, NE levels. We propose that NE enhances odor responses not through direct potentiation of the afferent signal per se, but rather by reducing the intrinsic noise of the system. This has important implications for the ways in which an animal interacts with its olfactory environment, particularly as the animal shifts from a relaxed to an alert behavioral state.SIGNIFICANCE STATEMENT Sensory perception can be modulated by behavioral states such as hunger, fear, stress, or a change in environmental context. Behavioral state often affects neural processing via the release of circulating neurochemicals such as hormones or neuromodulators. We here show that the neuromodulator norepinephrine modulates olfactory bulb spontaneous activity and odor responses so as to generate an increased signal-to-noise ratio at the output of the olfactory bulb. Our results help interpret and improve existing ideas for neural network mechanisms underlying behaviorally observed improvements in near-threshold odor detection and discrimination.


Asunto(s)
Potenciales de Acción/fisiología , Locus Coeruleus/fisiología , Bulbo Olfatorio/fisiología , Relación Señal-Ruido , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Locus Coeruleus/efectos de los fármacos , Masculino , Norepinefrina/farmacología , Norepinefrina/fisiología , Bulbo Olfatorio/efectos de los fármacos , Ratas , Ratas Long-Evans
5.
J Comput Neurosci ; 51(Suppl 1): 1, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648619
6.
J Neurophysiol ; 115(1): 423-33, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26561601

RESUMEN

Cholinergic and GABAergic projections from the horizontal diagonal band (HDB) and medial preoptic area (MCPO) of the basal forebrain to the olfactory system are associated with odor discrimination and odor learning, as well as modulation of neural responses in olfactory structures. Whereas pharmacological and lesion studies give insights into the functional role of these modulatory inputs on a slow timescale, the response dynamics of neurons in the HDB/MCPO during olfactory behaviors have not been investigated. In this study we examined how these neurons respond during two olfactory behaviors: spontaneous investigation of odorants and odor-reward association learning. We observe rich heterogeneity in the response dynamics of individual HDB/MCPO neurons, with a substantial fraction of neurons exhibiting task-related modulation. HDB/MCPO neurons show both rapid and transient responses during bouts of odor investigation and slow, long-lasting modulation of overall response rate based on behavioral demands. Specifically, baseline rates were higher during the acquisition phase of an odor-reward association than during spontaneous investigation or the recall phase of an odor reward association. Our results suggest that modulatory projections from the HDB/MCPO are poised to influence olfactory processing on multiple timescales, from hundreds of milliseconds to minutes, and are therefore capable of rapidly setting olfactory network dynamics during odor processing and learning.


Asunto(s)
Prosencéfalo Basal/fisiología , Aprendizaje/fisiología , Neuronas/fisiología , Percepción Olfatoria/fisiología , Potenciales de Acción , Animales , Aprendizaje por Asociación/fisiología , Discriminación en Psicología/fisiología , Masculino , Odorantes , Ratas Long-Evans , Recompensa
7.
J Comput Neurosci ; 49(Suppl 1): 1, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34907473
8.
J Neurosci ; 34(34): 11244-60, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25143606

RESUMEN

The olfactory bulb (OB) and piriform cortex receive dense cholinergic projections from the basal forebrain. Cholinergic modulation within the piriform cortex has long been proposed to serve important functions in olfactory learning and memory. We here investigate how olfactory discrimination learning is regulated by cholinergic modulation of the OB inputs to the piriform cortex. We examined rats' performance on a two-alternative choice odor discrimination task following local, bilateral blockade of cholinergic nicotinic and/or muscarinic receptors in the OB. Results demonstrate that acquisition, but not recall, of novel discrimination problems is impaired following blockade of OB cholinergic receptors, although the relative contribution of muscarinic and nicotinic receptors depends on task difficulty. Blocking muscarinic receptors impairs learning for nearly all odor sets, whereas blocking nicotinic receptors only affects performance for perceptually similar odors. This pattern of behavioral effects is consistent with predictions from a model of cholinergic modulation in the OB and piriform cortex (de Almeida et al., 2013). Model simulations suggest that muscarinic and nicotinic receptors may serve complementary roles in regulating coherence and sparseness of the OB network output, which in turn differentially regulate the strength and overlap in cortical odor representations. Overall, our results suggest that muscarinic receptor blockade results in a bona fide learning impairment that may arise because cortical neurons are activated less often. Behavioral impairment following nicotinic receptor blockade may not be due to the inability of the cortex to learn, but rather arises because the cortex is unable to resolve highly overlapping input patterns.


Asunto(s)
Aprendizaje Discriminativo/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Corteza Piriforme/fisiología , Receptores Muscarínicos/fisiología , Receptores Nicotínicos/fisiología , Animales , Colinérgicos/farmacología , Simulación por Computador , Condicionamiento Operante , Aprendizaje Discriminativo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Modelos Biológicos , Odorantes , Bulbo Olfatorio/efectos de los fármacos , Vías Olfatorias/efectos de los fármacos , Corteza Piriforme/efectos de los fármacos , Ratas , Ratas Long-Evans
9.
J Neurophysiol ; 114(6): 3177-200, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26334007

RESUMEN

Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.


Asunto(s)
Acetilcolina/farmacología , Neuronas Adrenérgicas/fisiología , Neuronas Colinérgicas/fisiología , Modelos Neurológicos , Norepinefrina/farmacología , Bulbo Olfatorio/fisiología , Potenciales de Acción , Neuronas Adrenérgicas/efectos de los fármacos , Neuronas Adrenérgicas/metabolismo , Animales , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Potenciales de la Membrana , Ratones , Bulbo Olfatorio/citología , Ratas
10.
Chem Senses ; 40(5): 315-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25899806

RESUMEN

Nonassociative odor learning paradigms are often used to assess memory, social recognition and neuromodulation of olfactory pathways. We here use a modified object recognition paradigm to investigate how an important task parameter, delay between encoding and recall trials, affects the properties of this memory. We show that both memory for a previously investigated odorant and discrimination of a novel odorant decay with delay time and that rats can remember an odorant for up to 45min after a single trial encoding event. The number of odorants that can be encoded, as well as the specificity of the encoded memory, decrease with increased delay and also depend on stimulus concentration. Memory for an odorant and discrimination of a novel odorant decay at approximately the same rate, whereas the specificity of the formed memory decays faster than the memory itself. These results have important implications for the interpretation of behavioral data obtained with this paradigm.


Asunto(s)
Aprendizaje Discriminativo/fisiología , Memoria/fisiología , Recuerdo Mental/fisiología , Odorantes , Animales , Ratas , Factores de Tiempo
11.
J Neurophysiol ; 109(5): 1360-77, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23221406

RESUMEN

In this work we investigate in a computational model how cholinergic inputs to the olfactory bulb (OB) and piriform cortex (PC) modulate odor representations. We use experimental data derived from different physiological studies of ACh modulation of the bulbar and cortical circuitry and the interaction between these two areas. The results presented here indicate that cholinergic modulation in the OB significantly increases contrast and synchronization in mitral cell output. Each of these effects is derived from distinct neuronal interactions, with different groups of interneurons playing different roles. Both bulbar modulation effects contribute to more stable learned representations in PC, with pyramidal networks trained with cholinergic-modulated inputs from the bulb exhibiting more robust learning than those trained with unmodulated bulbar inputs. This increased robustness is evidenced as better recovery of memories from corrupted patterns and lower-concentration inputs as well as increased memory capacity.


Asunto(s)
Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Modelos Neurológicos , Bulbo Olfatorio/fisiología , Animales , Neuronas Colinérgicas/fisiología , Interneuronas/fisiología , Red Nerviosa/fisiología , Neuronas Receptoras Olfatorias/fisiología , Células Piramidales/fisiología
12.
Chem Senses ; 38(4): 369-75, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23513053

RESUMEN

Olfactory habituation is a simple form of nonassociative memory in which responsiveness to stable but behaviorally nonsignificant stimuli is decreased. Olfactory habituation has recently become a paradigm widely used to probe the neural substrate underlying olfactory perception and memory. This simple behavioral paradigm has been used successfully used to probe many aspects of olfactory processing, and it has recently become clear that the neural processes underlying olfactory habituation can depend on the task parameters used. We here further investigate memory specificity and duration using 2 variations in task parameters: the number of habituation trials and the time delay between habituation and cross-habituation testing. We find that memory specificity increases with the number of habituation trials but decreases with time after the last habituation trial.


Asunto(s)
Habituación Psicofisiológica , Olfato , Animales , Discriminación en Psicología , Masculino , Memoria , Ratones , Odorantes/análisis , Factores de Tiempo
13.
Proc Natl Acad Sci U S A ; 106(42): 17980-5, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19815505

RESUMEN

Perceptual learning is required for olfactory function to adapt appropriately to changing odor environments. We here show that newborn neurons in the olfactory bulb are not only involved in, but necessary for, olfactory perceptual learning. First, the discrimination of perceptually similar odorants improves in mice after repeated exposure to the odorants. Second, this improved discrimination is accompanied by an elevated survival rate of newborn inhibitory neurons, preferentially involved in processing of the learned odor, within the olfactory bulb. Finally, blocking neurogenesis before and during the odorant exposure period prevents this learned improvement in discrimination. Olfactory perceptual learning is thus mediated by the reinforcement of functional inhibition in the olfactory bulb by adult neurogenesis.


Asunto(s)
Aprendizaje/fisiología , Neurogénesis/fisiología , Percepción Olfatoria/fisiología , Animales , Supervivencia Celular , Aprendizaje Discriminativo/fisiología , Fenómenos Electrofisiológicos , Glutamato Descarboxilasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/citología , Neuronas/fisiología , Odorantes , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología
14.
J Neurophysiol ; 105(4): 1432-43, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21273323

RESUMEN

The mammalian main olfactory bulb receives a significant noradrenergic input from the locus coeruleus. Norepinephrine (NE) is involved in acquisition of conditioned odor preferences in neonatal animals, in some species-specific odor-dependent behaviors, and in adult odor perception. We provide a detailed review of the functional role of NE in adult rodent main olfactory bulb function. We include cellular, synaptic, network, and behavioral data and use computational simulations to tie these different types of data together.


Asunto(s)
Locus Coeruleus/fisiología , Norepinefrina/fisiología , Bulbo Olfatorio/fisiología , Envejecimiento/fisiología , Animales , Conducta Animal/fisiología , Modelos Animales , Odorantes , Ratas , Especificidad de la Especie
15.
Behav Neurosci ; 135(3): 347-353, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33090812

RESUMEN

We use a simple two-trial odor recognition paradigm to test memory duration, span, and specificity in adult mice. Our paradigm allows mice to encode and/or recall multiple odors in one trial and necessitates no training or food/water deprivation. We show that this paradigm can be used for encoding and/or testing of multiple odors in single trials, leading to shorter behavioral testing. Using this simple paradigm, we show that mice can remember a single odor for up to 10 but no more than 15 min and two odors for up to 5 min. Mice could not remember 3 odors at any delays tested here. We also show that specificity for the encoded odor decreases as delay increases. Our results are important for setting baseline levels of testing for experiments in which memory parameters are expected to be modulated. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Asunto(s)
Odorantes , Olfato , Animales , Alimentos , Recuerdo Mental , Ratones , Reconocimiento en Psicología
16.
J Neurosci ; 29(1): 52-60, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19129384

RESUMEN

Experimental and modeling data suggest that the circuitry of the main olfactory bulb (OB) plays a critical role in olfactory discrimination. Processing of such information arises from the interaction between OB output neurons local interneurons, as well as interactions between the OB network and centrifugal inputs. Cholinergic input to the OB in particular has been hypothesized to regulate mitral cell odorants receptive fields (ORFs) and behavioral discrimination of similar odorants. We recorded from individual mitral cells in the OB in anesthetized rats to determine the degree of overlap in ORFs of individual mitral cells after exposure to odorant stimuli. Increasing the efficacy of the cholinergic neurotransmission in the OB by addition of the anticholinesterase drug neostigmine (20 mM) sharpened the ORF responses of mitral cells. Furthermore, coaddition of either the nicotinic antagonist methyllycaconitine citrate hydrate (MLA) (20 mM) or muscarinic antagonist scopolamine (40 mM) together with neostigmine (20 mM) attenuated the neostigmine-dependent sharpening of ORFs. These electrophysiological findings are predictive of accompanying behavioral experiments in which cholinergic modulation was manipulated by direct infusion of neostigmine, MLA, and scopolamine into the OB during olfactory behavioral tasks. Increasing the efficacy of cholinergic action in the OB increased perceptual discrimination of odorants in these experiments, whereas blockade of nicotinic or muscarinic receptors decreased perceptual discrimination. These experiments show that behavioral discrimination is modulated in a manner predicted by the changes in mitral cell ORFs by cholinergic drugs. These results together present a first direct comparison between neural and perceptual effects of a bulbar neuromodulator.


Asunto(s)
Acetilcolina/metabolismo , Discriminación en Psicología/fisiología , Neuronas/fisiología , Odorantes , Bulbo Olfatorio/citología , Percepción Olfatoria/fisiología , Aconitina/análogos & derivados , Aconitina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Inhibidores de la Colinesterasa/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Masculino , Antagonistas Muscarínicos/farmacología , Neostigmina/farmacología , Neuronas/efectos de los fármacos , Antagonistas Nicotínicos/farmacología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/metabolismo , Percepción Olfatoria/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Escopolamina/farmacología
17.
Eur J Neurosci ; 32(3): 458-68, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20618829

RESUMEN

The mammalian main olfactory bulb (MOB) receives a significant noradrenergic input from the locus coeruleus. Norepinephrine (NE) is involved in the acquisition of conditioned odor preferences in neonatal animals and in some species-specific odor-dependent behaviors. Thus far, the role of NE in odor processing in adult rats remains less studied. We investigated the role of noradrenergic modulation in the MOB on odor detection and discrimination thresholds using behavioral and computational modeling approaches. Adult rats received bilateral MOB injections of vehicle, NE (0.1-1000 microM), noradrenergic receptor antagonists and NE + receptor antagonists combined. NE infusion improved odor detection and discrimination as a function of NE and odor concentration. The effect of NE on detection and discrimination magnitude at any given odor concentration varied in a non-linear function with respect to NE concentration. Receptor antagonist infusion demonstrated that alpha1 receptor activation is necessary for the modulatory effect of NE. Computational modeling showed that increases in the strength of alpha1 receptor activation leads to improved odor signal-to-noise ratio and spike synchronization in mitral cells that may underlie the behaviorally observed decrease of detection and discrimination thresholds. Our results are the first to show that direct infusion of NE or noradrenergic receptor antagonists into a primary sensory network modulates sensory detection and discrimination thresholds at very low stimulus concentrations.


Asunto(s)
Neuronas/fisiología , Norepinefrina/metabolismo , Bulbo Olfatorio/fisiología , Percepción Olfatoria/fisiología , Umbral Sensorial/fisiología , Antagonistas Adrenérgicos beta/farmacología , Alprenolol/farmacología , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Catéteres de Permanencia , Relación Dosis-Respuesta a Droga , Masculino , Neuronas/efectos de los fármacos , Norepinefrina/farmacología , Bulbo Olfatorio/efectos de los fármacos , Percepción Olfatoria/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Umbral Sensorial/efectos de los fármacos
18.
Learn Mem ; 16(7): 452-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19553383

RESUMEN

Segmentation of target odorants from background odorants is a fundamental computational requirement for the olfactory system and is thought to be behaviorally mediated by olfactory habituation memory. Data from our laboratory have shown that odor-specific adaptation in piriform neurons, mediated at least partially by synaptic adaptation between the olfactory bulb outputs and piriform cortex pyramidal cells, is highly odor specific, while that observed at the synaptic level is specific only to certain odor features. Behavioral data show that odor habituation memory at short time constants corresponding to synaptic adaptation is also highly odor specific and is blocked by the same pharmacological agents as synaptic adaptation. Using previously developed computational models of the olfactory system we show here how synaptic adaptation and potentiation interact to create the observed specificity of response adaptation. The model analyzes the mechanisms underlying the odor specificity of habituation, the dependence on functioning cholinergic modulation, and makes predictions about connectivity to and within the piriform neural network. Predictions made by the model for the role of cholinergic modulation are supported by behavioral results.


Asunto(s)
Habituación Psicofisiológica/fisiología , Plasticidad Neuronal/fisiología , Odorantes , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/fisiología , Sinapsis/fisiología , Vías Aferentes , Animales , Simulación por Computador , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Modelos Neurológicos , Antagonistas Muscarínicos/farmacología , Redes Neurales de la Computación , Vías Olfatorias/fisiología , Escopolamina/farmacología , Factores de Tiempo
19.
Behav Neurosci ; 134(4): 332-343, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32378908

RESUMEN

Learning to associate the context in which a stimulus occurs is an important aspect of animal learning. We propose that the association of an olfactory stimulus with its multisensory context is mediated by projections from ventral hippocampus (vHC) networks to the anterior olfactory nucleus (AON). Using a contextually cued olfactory discrimination task, rats were trained to associate 2 olfactory stimuli with different responses depending on visuospatial context. Temporary lesions of the AON or vHC impaired performance on this task. In contrast, such lesions did not impair performance on a noncontextual olfactory discrimination task. Moreover, vHC lesions also impaired performance on an analogous contextually cued texture discrimination task, whereas AON lesions affected only olfactory contextual associations. We describe a distinct role for the AON in olfactory processing and conclude that early olfactory networks such as the olfactory bulb and AON function as multimodal integration networks rather than processing olfactory signals exclusively. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Asunto(s)
Aprendizaje/fisiología , Corteza Olfatoria/fisiología , Percepción Olfatoria/fisiología , Animales , Encéfalo/fisiología , Corteza Cerebral/fisiología , Señales (Psicología) , Aprendizaje Discriminativo , Hipocampo/fisiología , Masculino , Odorantes , Bulbo Olfatorio/fisiología , Corteza Olfatoria/metabolismo , Vías Olfatorias/fisiología , Ratas , Ratas Long-Evans , Olfato/fisiología
20.
J Neurosci ; 28(46): 11806-13, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19005044

RESUMEN

Emerging experimental evidence suggests that both networks and their component neurons respond to similar inputs differently, depending on the state of network activity. The network state is determined by the intrinsic dynamical structure of the network and may change as a function of neuromodulation, the balance or stochasticity of synaptic inputs to the network, and the history of network activity. Much of the knowledge on state-dependent effects comes from comparisons of awake and sleep states of the mammalian brain. Yet, the mechanisms underlying these states are difficult to unravel. Several vertebrate and invertebrate studies have elucidated cellular and synaptic mechanisms of state dependence resulting from neuromodulation, sensory input, and experience. Recent studies have combined modeling and experiments to examine the computational principles that emerge when network state is taken into account; these studies are highlighted in this article. We discuss these principles in a variety of systems (mammalian, crustacean, and mollusk) to demonstrate the unifying theme of state dependence of network output.


Asunto(s)
Encéfalo/fisiología , Simulación por Computador , Red Nerviosa/fisiología , Redes Neurales de la Computación , Animales , Encéfalo/anatomía & histología , Crustáceos/fisiología , Humanos , Mamíferos/fisiología , Modelos Animales , Moluscos/fisiología , Red Nerviosa/anatomía & histología , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA