Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Haematologica ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941480

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) and T cell lymphoblastic lymphoma (T-LBL) are rare aggressive hematological malignancies. Current treatment consists of intensive chemotherapy, leading to 80% overall survival but are associated with severe toxic side effects. Furthermore, 10-20% of patients still die from relapsed or refractory disease providing a strong rationale for more specific, targeted therapeutic strategies with less toxicities. Here, we report a novel MYH9::PDGFRB fusion in a T-LBL patient and demonstrate that this fusion product is constitutively active and sufficient to drive oncogenic transformation in vitro and in vivo. Expanding our analysis more broadly across T-ALL, we found a T-ALL cell line and multiple patient derived xenograft models with PDGFRB hyperactivation in the absence of a fusion, with high PDGFRB expression in TLX3 and HOXA T-ALL molecular subtypes. To target this PDGFRB hyperactivation, we evaluated the therapeutic effects of a selective PDGFRB inhibitor, CP-673451, both in vitro and in vivo and demonstrated sensitivity if the receptor is hyperactivated. Altogether, our work reveals that hyperactivation of PDGFRB is an oncogenic driver in T-ALL/T-LBL and that screening T-ALL/TLBL patients for phosphorylated PDGFRB levels can serve as a biomarker for PDGFRB inhibition as a novel targeted therapeutic strategy in their treatment regimen.

2.
Blood ; 135(19): 1685-1695, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32315407

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) and T-cell acute lymphoblastic lymphoma (T-LBL) are aggressive hematological malignancies that are currently treated with high-dose chemotherapy. Over the last several years, the search toward novel and less-toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell-intrinsic properties of the tumor cell. However, non-cell-autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous interleukin 7 (IL7) can increase the expression of the oncogenic kinase proviral integration site for Moloney-murine leukemia 1 (PIM1) in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared with bulk nontreated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL patient-derived xenograft (PDX) cells, ultimately resulting in non-cell-autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7-responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Citocinas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Linfocitos T/inmunología , Animales , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Linfocitos T/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Blood ; 136(8): 957-973, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32369597

RESUMEN

Modulators of epithelial-to-mesenchymal transition (EMT) have recently emerged as novel players in the field of leukemia biology. The mechanisms by which EMT modulators contribute to leukemia pathogenesis, however, remain to be elucidated. Here we show that overexpression of SNAI1, a key modulator of EMT, is a pathologically relevant event in human acute myeloid leukemia (AML) that contributes to impaired differentiation, enhanced self-renewal, and proliferation of immature myeloid cells. We demonstrate that ectopic expression of Snai1 in hematopoietic cells predisposes mice to AML development. This effect is mediated by interaction with the histone demethylase KDM1A/LSD1. Our data shed new light on the role of SNAI1 in leukemia development and identify a novel mechanism of LSD1 corruption in cancer. This is particularly pertinent given the current interest surrounding the use of LSD1 inhibitors in the treatment of multiple different malignancies, including AML.


Asunto(s)
Transformación Celular Neoplásica , Transición Epitelial-Mesenquimal/genética , Histona Demetilasas/metabolismo , Leucemia Mieloide Aguda/patología , Factores de Transcripción de la Familia Snail/fisiología , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células HEK293 , Células HL-60 , Histona Demetilasas/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Transgénicos , Unión Proteica , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo
6.
Hemasphere ; 8(3): e51, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463444

RESUMEN

T-lineage acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that accounts for 10%-15% of pediatric and 25% of adult ALL cases. Although the prognosis of T-ALL has improved over time, the outcome of T-ALL patients with primary resistant or relapsed leukemia remains poor. Therefore, further progress in the treatment of T-ALL requires a better understanding of its biology and the development of more effective precision oncologic therapies. The proto-oncogene MYB is highly expressed in diverse hematologic malignancies, including T-ALLs with genomic aberrations that further potentiate its expression and activity. Previous studies have associated MYB with a malignant role in the pathogenesis of several cancers. However, its role in the induction and maintenance of T-ALL remains relatively poorly understood. In this study, we found that an increased copy number of MYB is associated with higher MYB expression levels, and might be associated with inferior event-free survival of pediatric T-ALL patients. Using our previously described conditional Myb overexpression mice, we generated two distinct MYB-driven T-ALL mouse models. We demonstrated that the overexpression of Myb synergizes with Pten deletion but not with the overexpression of Lmo2 to accelerate the development of T-cell lymphoblastic leukemias. We also showed that MYB is a dependency factor in T-ALL since RNA interference of Myb blocked cell cycle progression and induced apoptosis in both human and murine T-ALL cell lines. Finally, we provide preclinical evidence that targeting the transcriptional activity of MYB can be a useful therapeutic strategy for the treatment of T-ALL.

7.
Cancers (Basel) ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36765607

RESUMEN

T-cell lymphoblastic lymphoma (T-LBL) is a rare and aggressive lymphatic cancer, often diagnosed at a young age. Patients are treated with intensive chemotherapy, potentially followed by a hematopoietic stem cell transplantation. Although prognosis of T-LBL has improved with intensified treatment protocols, they are associated with side effects and 10-20% of patients still die from relapsed or refractory disease. Given this, the search toward less toxic anti-lymphoma therapies is ongoing. Here, we targeted the recently described DNA hypermethylated profile in T-LBL with the DNA hypomethylating agent decitabine. We evaluated the anti-lymphoma properties and downstream effects of decitabine, using patient derived xenograft (PDX) models. Decitabine treatment resulted in prolonged lymphoma-free survival in all T-LBL PDX models, which was associated with downregulation of the oncogenic MYC pathway. However, some PDX models showed more benefit of decitabine treatment compared to others. In more sensitive models, differentially methylated CpG regions resulted in more differentially expressed genes in open chromatin regions. This resulted in stronger downregulation of cell cycle genes and upregulation of immune response activating transcripts. Finally, we suggest a gene signature for high decitabine sensitivity in T-LBL. Altogether, we here delivered pre-clinical proof of the potential use of decitabine as a new therapeutic agent in T-LBL.

8.
Sci Data ; 9(1): 626, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243775

RESUMEN

The holistic nature of omics studies makes them ideally suited to generate hypotheses on health and disease. Sequencing-based genomics and mass spectrometry (MS)-based proteomics are linked through epigenetic regulation mechanisms. However, epigenomics is currently mainly focused on DNA methylation status using sequencing technologies, while studying histone posttranslational modifications (hPTMs) using MS is lagging, partly because reuse of raw data is impractical. Yet, targeting hPTMs using epidrugs is an established promising research avenue in cancer treatment. Therefore, we here present the most comprehensive MS-based preprocessed hPTM atlas to date, including 21 T-cell acute lymphoblastic leukemia (T-ALL) cell lines. We present the data in an intuitive and browsable single licensed Progenesis QIP project and provide all essential quality metrics, allowing users to assess the quality of the data, edit individual peptides, try novel annotation algorithms and export both peptide and protein data for downstream analyses, exemplified by the PeptidoformViz tool. This data resource sets the stage for generalizing MS-based histone analysis and provides the first reusable histone dataset for epidrug development.


Asunto(s)
Histonas , Leucemia , Humanos , Epigénesis Genética , Histonas/metabolismo , Espectrometría de Masas/métodos , Péptidos/química , Procesamiento Proteico-Postraduccional , Linfocitos T/química , Leucemia-Linfoma Linfoblástico de Células T Precursoras
9.
Artículo en Inglés | MEDLINE | ID: mdl-21393836

RESUMEN

The extracellular complex between the haematopoietic receptor Flt3 and its cytokine ligand (FL) is the cornerstone of signalling cascades that are central to early haematopoiesis and the immune system. Here, efficient protocols for the production of two ectodomain variants of human Flt3 receptor, Flt3D1-D5 and Flt3D1-D4, for structural studies are reported based on tetracycline-inducible stable cell lines in HEK293S cells deficient in N-acetylglycosaminyltransferase I (GnTI-/-) that can secrete the target proteins with limited and homogeneous N-linked glycosylation to milligram amounts. The ensuing preparative purification of Flt3 receptor-ligand complexes yielded monodisperse complex preparations that were amenable to crystallization. Crystals of the Flt3D1-D4-FL and Flt3D1-D5-FL complexes diffracted to 4.3 and 7.8 Šresolution, respectively, and exhibited variable diffraction quality even within the same crystal. The resulting data led to the successful structure determination of Flt3D1-D4-FL via a combination of molecular-replacement and density-modification protocols exploiting the noncrystallographic symmetry and high solvent content of the crystals.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tirosina Quinasa 3 Similar a fms/química , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Cristalografía por Rayos X , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Conformación Proteica , Proteínas Recombinantes/genética , Tirosina Quinasa 3 Similar a fms/genética
10.
Blood Adv ; 5(7): 1963-1976, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33830207

RESUMEN

B-cell lymphoma 2 (BCL-2) has recently emerged as a therapeutic target for early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL), a high-risk subtype of human T-cell ALL. The major clinical challenge with targeted therapeutics, such as the BCL-2 inhibitor ABT-199, is the development of acquired resistance. We assessed the in vivo response of luciferase-positive LOUCY cells to ABT-199 monotherapy and observed specific residual disease in the splenic microenvironment. Of note, these results were confirmed by using a primary ETP-ALL patient-derived xenograft. Splenomegaly has previously been associated with poor prognosis in diverse types of leukemia. However, the exact mechanism by which the splenic microenvironment alters responses to specific targeted therapies remains largely unexplored. We show that residual LOUCY cells isolated from the spleen microenvironment displayed reduced BCL-2 dependence, which was accompanied by decreased BCL-2 expression levels. Notably, this phenotype of reduced BCL-2 dependence could be recapitulated by using human splenic fibroblast coculture experiments and was confirmed in an in vitro chronic ABT-199 resistance model of LOUCY. Finally, single-cell RNA-sequencing was used to show that ABT-199 triggers transcriptional changes in T-cell differentiation genes in leukemic cells obtained from the spleen microenvironment. Of note, increased expression of CD1a and sCD3 was also observed in ABT199-resistant LOUCY clones, further reinforcing the idea that a more differentiated leukemic population might display decreased sensitivity toward BCL-2 inhibition. Overall, our data reveal the spleen as a site of residual disease for ABT-199 treatment in ETP-ALL and provide evidence for plasticity in T-cell differentiation as a mechanism of therapy resistance.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2 , Bazo , Compuestos Bicíclicos Heterocíclicos con Puentes , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Exp Med ; 218(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34406363

RESUMEN

Mantle cell lymphoma (MCL) is an aggressive B cell lymphoma with poor long-term overall survival. Currently, MCL research and development of potential cures is hampered by the lack of good in vivo models. MCL is characterized by recurrent translocations of CCND1 or CCND2, resulting in overexpression of the cell cycle regulators cyclin D1 or D2, respectively. Here, we show, for the first time, that hematopoiesis-specific activation of cyclin D2 is sufficient to drive murine MCL-like lymphoma development. Furthermore, we demonstrate that cyclin D2 overexpression can synergize with loss of p53 to form aggressive and transplantable MCL-like lymphomas. Strikingly, cyclin D2-driven lymphomas display transcriptional, immunophenotypic, and functional similarities with B1a B cells. These MCL-like lymphomas have B1a-specific B cell receptors (BCRs), show elevated BCR and NF-κB pathway activation, and display increased MALT1 protease activity. Finally, we provide preclinical evidence that inhibition of MALT1 protease activity, which is essential for the development of early life-derived B1a cells, can be an effective therapeutic strategy to treat MCL.


Asunto(s)
Ciclina D2/genética , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/patología , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , Aloinjertos , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Ciclina D2/metabolismo , Regulación Neoplásica de la Expresión Génica , Linfoma de Células del Manto/tratamiento farmacológico , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Células Neoplásicas Circulantes , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Clin Invest ; 131(6)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33555272

RESUMEN

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy with inferior outcome compared with that of B cell ALL. Here, we show that Runt-related transcription factor 2 (RUNX2) was upregulated in high-risk T-ALL with KMT2A rearrangements (KMT2A-R) or an immature immunophenotype. In KMT2A-R cells, we identified RUNX2 as a direct target of the KMT2A chimeras, where it reciprocally bound the KMT2A promoter, establishing a regulatory feed-forward mechanism. Notably, RUNX2 was required for survival of immature and KMT2A-R T-ALL cells in vitro and in vivo. We report direct transcriptional regulation of CXCR4 signaling by RUNX2, thereby promoting chemotaxis, adhesion, and homing to medullary and extramedullary sites. RUNX2 enabled these energy-demanding processes by increasing metabolic activity in T-ALL cells through positive regulation of both glycolysis and oxidative phosphorylation. Concurrently, RUNX2 upregulation increased mitochondrial dynamics and biogenesis in T-ALL cells. Finally, as a proof of concept, we demonstrate that immature and KMT2A-R T-ALL cells were vulnerable to pharmacological targeting of the interaction between RUNX2 and its cofactor CBFß. In conclusion, we show that RUNX2 acts as a dependency factor in high-risk subtypes of human T-ALL through concomitant regulation of tumor metabolism and leukemic cell migration.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animales , Línea Celular Tumoral , Quimiotaxis de Leucocito , Niño , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Progresión de la Enfermedad , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Hematopoyesis , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Técnicas In Vitro , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Biogénesis de Organelos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal
14.
Sci Rep ; 9(1): 10577, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332244

RESUMEN

In cancer research, it remains challenging to functionally validate putative novel oncogenic drivers and to establish relevant preclinical models for evaluation of novel therapeutic strategies. Here, we describe an optimized and efficient pipeline for the generation of novel conditional overexpression mouse models in which putative oncogenes, along with an eGFP/Luciferase dual reporter, are expressed from the endogenous ROSA26 (R26) promoter. The efficiency of this approach was demonstrated by the generation and validation of novel R26 knock-in (KI) mice that allow conditional overexpression of Jarid2, Runx2, MN1 and a dominant negative allele of ETV6. As proof of concept, we confirm that MN1 overexpression in the hematopoietic lineage is sufficient to drive myeloid leukemia. In addition, we show that T-cell specific activation of MN1 in combination with loss of Pten increases tumour penetrance and stimulates the formation of Lyl1+ murine T-cell lymphoblastic leukemias or lymphomas (T-ALL/T-LBL). Finally, we demonstrate that these luciferase-positive murine AML and T-ALL/T-LBL cells are transplantable into immunocompromised mice allowing preclinical evaluation of novel anti-leukemic drugs in vivo.


Asunto(s)
Neoplasias Hematológicas/genética , Oncogenes/genética , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Femenino , Técnicas de Sustitución del Gen , Genes Reporteros , Neoplasias Hematológicas/etiología , Humanos , Leucemia/etiología , Leucemia/genética , Leucemia Mieloide/genética , Masculino , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Complejo Represivo Polycomb 2/genética , Transactivadores/genética , Proteínas Supresoras de Tumor/genética
15.
Gene ; 426(1-2): 23-31, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18793707

RESUMEN

The serotonin (5-HT) 5-HT(7) receptors are expressed in both the central nervous system and in peripheral tissues. Receptor distribution studies and pharmacological studies have established that 5-HT(7) receptors play an important role in the control of circadian rhythms and thermoregulation. Selective 5-HT(7) receptor ligands have potential therapeutic applications for the treatment of pain and migraine, schizophrenia, anxiety, cognitive disturbances and inflammation. We have cloned two novel C-terminal splice variants of the 5-HT(7) receptor from mouse brain. These two new splice variants have almost identical sequences as the rat 5-HT(7(b)) and 5-HT(7(c)) splice variants and so were given the same name. Ligand binding assays ([(3)H]5-CT), membrane localization and functional studies in transiently transfected cells indicated that all three splice variants are well expressed on the membrane and no major differences in their respective pharmacology and their ability to activate adenylyl cyclase were observed. This is in analogy with previous reports comparing either the rat or the human variants.


Asunto(s)
Empalme Alternativo , Ratones/genética , Ratas/genética , Receptores de Serotonina/genética , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Células CHO , Línea Celular , Clonación Molecular , Cricetinae , Cricetulus , Humanos , Riñón/citología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Ensayo de Unión Radioligante , Receptores de Serotonina/metabolismo , Homología de Secuencia de Aminoácido , Transfección
16.
Cell Signal ; 19(2): 278-88, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16935469

RESUMEN

Three 5-HT(7) receptor isoforms are expressed in rat and man, which differ in the amino acid sequence of their C-terminus. Thus far, no changes have been observed in the pharmacological profile of all three isoforms. To further elucidate the signal transduction pathway specific for these receptor variants, we screened for possible interacting proteins of the C-terminus of the h5-HT(7(a)) variant in a human foetal brain cDNA library. Using a yeast two-hybrid assay, we isolated PLAC-24/eIF3k as a possible interacting candidate. The association of PLAC-24 with all three receptor variants was observed and further reconfirmed in vivo by co-immunoprecipitation of PLAC-24 with the full-length receptor isoforms in transfected COS-7 cells. Studies with different deletion mutants of the receptor showed that the interaction between PLAC-24 and the receptor is not restricted to the C-terminus of the receptor. PLAC-24/eIF3k consists of 3 domains: an N-terminal HAM domain, a central WH domain and a C-terminal tail. We generated different domain constructs of PLAC-24, which indicated that the HAM and WH domain both interact with the 5-HT(7(a)) receptor. Overexpression of PLAC-24 in HEK293 cells, stably expressing the h5-HT(7(a)) receptor, caused a threefold augmentation in the expression levels of the receptor. Co-localisation studies in COS-7 cells showed that PLAC-24 relocates from the nucleus and perinuclear sites towards the plasma membrane upon co-expression with the receptor. On the other hand, the expression of domain variants of PLAC-24 seems to block the translocation of the receptor towards the membrane. These observations suggest that PLAC-24 may play a role in the transport and the stabilisation of newly synthesised 5-HT(7) receptor towards the plasma membrane.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Receptores de Serotonina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Humanos , Proteínas Asociadas a Microtúbulos/fisiología , Datos de Secuencia Molecular , Isoformas de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/genética , Homología de Secuencia de Aminoácido , Transfección , Técnicas del Sistema de Dos Híbridos
17.
Life Sci ; 80(1): 74-81, 2006 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-16978659

RESUMEN

The dopamine D4 receptor is a G protein-coupled receptor that binds with high affinity various antipsychotics. The receptor may be involved in attention/cognition, and in genetic studies a polymorphic repeat sequence in its coding sequence has been associated with attention deficit/hyperactivity disorder. We developed an inducible episomal expression system based on the reverse tetracycline transactivator and Epstein-Barr viral sequences. In HEK293rtTA cells expressing the dopamine D4 receptor from this episomal expression vector, addition of doxycycline in combination with sodium butyrate and trichostatin A induces high levels of receptor expression, resulting in 1970 +/- 20 fmol/mg membrane protein. Addition of the dopamine D4 receptor and serotonin 5-HT2A receptor antagonist pipamperone to these cells further increased the expression of the dopamine receptor, reaching 3800 +/- 60 fmol/mg membrane protein. This up-regulation was not restricted to the dopamine D4 receptor but was also found for the serotonin 5-HT2A receptor. We further provide evidence that the increase in receptor expression is not due to increased mRNA synthesis. As pipamperone could rescue the expression of a folding mutant of the dopamine D4 receptor (M345), we propose that pipamperone acts as a pharmacological chaperone for correct receptor folding thereby resulting in an increased dopamine D4 receptor expression. This study describes a strong and inducible expression system for proteins, difficult to express in other heterologous expression systems. This study also demonstrates that pipamperone, an antipsychotic, acts as a pharmacological chaperone and by doing so, increases the expression level of the dopamine D4 receptor. The fact that ligands can also act as pharmacological chaperones is a fairly new additional element in the regulation of receptor expression levels with potential great impact in drug treatment.


Asunto(s)
Antipsicóticos/farmacología , Butirofenonas/farmacología , Receptores de Dopamina D2/efectos de los fármacos , Animales , Células CHO , Células Cultivadas , Cricetinae , Humanos , Ratones , Chaperonas Moleculares/farmacología , ARN Mensajero/análisis , Receptor de Serotonina 5-HT2A/análisis , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptor de Serotonina 5-HT2A/genética , Receptores de Dopamina D2/análisis , Receptores de Dopamina D2/genética
18.
Cell Signal ; 28(8): 1001-14, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27155323

RESUMEN

Dopamine receptors are G protein-coupled receptors involved in regulation of cognition, learning, movement and endocrine signaling. The action of G protein-coupled receptors is highly regulated by multifunctional proteins, such as ß-arrestins which can control receptor desensitization, ubiquitination and signaling. Previously, we have reported that ß-arrestin 2 interacts with KLHL12, a BTB-Kelch protein which functions as an adaptor in a Cullin3-based E3 ligase complex and promotes ubiquitination of the dopamine D4 receptor. Here, we have investigated the molecular basis of the interaction between KLHL12 and ß-arrestins and questioned its functional relevance. Our data demonstrate that ß-arrestin 1 and ß-arrestin 2 bind constitutively to the most common dopamine D4 receptor polymorphic variants and to KLHL12 and that all three proteins can interact within a single macromolecular complex. Surprisingly, stimulation of the receptor has no influence on the association between these proteins or their cellular distribution. We found that Cullin3 also interacts with both ß-arrestins but has no influence on their ubiquitination. Knockout of one of the two ß-arrestins hampers neither interaction between the dopamine D4 receptor and KLHL12, nor ubiquitination of the receptor. Finally, our results indicate that p44/42 MAPK phosphorylation, the signaling pathway which is often regulated by ß-arrestins is not influenced by KLHL12, but seems to be exclusively mediated by Gαi protein upon dopamine D4 receptor stimulation.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Receptores de Dopamina D4/metabolismo , beta-Arrestinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Cullin/metabolismo , Dopamina/farmacología , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Secuencia Kelch , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Toxina del Pertussis/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Multimerización de Proteína/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
19.
PLoS One ; 10(12): e0145654, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26717573

RESUMEN

DOPAMINE D4 RECEPTOR POLYMORPHISM: The dopamine D4 receptor has an important polymorphism in its third intracellular loop that is intensively studied and has been associated with several abnormal conditions, among others, attention deficit hyperactivity disorder. KLHL12 PROMOTES UBIQUITINATION OF THE DOPAMINE D4 RECEPTOR ON NON-LYSINE RESIDUES: In previous studies we have shown that KLHL12, a BTB-Kelch protein, specifically interacts with the polymorphic repeats of the dopamine D4 receptor and enhances its ubiquitination, which, however, has no influence on receptor degradation. In this study we provide evidence that KLHL12 promotes ubiquitination of the dopamine D4 receptor on non-lysine residues. By using lysine-deficient receptor mutants and chemical approaches we concluded that ubiquitination on cysteine, serine and/or threonine is possible. DIFFERENTIAL UBIQUITINATION OF THE DOPAMINE D4 RECEPTOR POLYMORPHIC VARIANTS: Additionally, we show that the dopamine D4.7 receptor variant, which is associated with a predisposition to develop attention deficient hyperactivity disorder, is differentially ubiquitinated compared to the other common receptor variants D4.2 and D4.4. Together, our study suggests that GPCR ubiquitination is a complex and variable process.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Lisina/genética , Proteínas de Microfilamentos/genética , Polimorfismo Genético/genética , Receptores de Dopamina D4/genética , Ubiquitinación/genética , Proteínas Adaptadoras Transductoras de Señales , Línea Celular , Genotipo , Células HEK293 , Humanos
20.
Methods Cell Biol ; 117: 323-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24143985

RESUMEN

With 356 members in the human genome, G protein-coupled receptors (GPCRs) constitute the largest family of proteins involved in signal transduction across biological membranes. GPCRs are integral membrane proteins featuring a conserved structural topology with seven transmembrane domains. By recognizing a large diversity of hormones and neurotransmitters, GPCRs mediate signal transduction pathways through their interactions with both extracellular small-molecule ligands and intracellular G proteins to initiate appropriate cellular signaling cascades. As there is a clear link between GPCRs and several disorders, GPCRs currently constitute the largest family of proteins targeted by marketed pharmaceuticals. Therefore, a detailed understanding of the biogenesis of these receptors and of GPCR-protein complex assembly can help to answer some important questions. In this chapter, we will discuss several methods to isolate GPCRs and to study, via coimmunoprecipitation, protein-protein interactions. Special attention will be given to GPCR dimerization, which often starts already in the endoplasmic reticulum and influences the maturation of the receptor. Next, we will also explain an elegant tool to study GPCR biogenesis based on the glycosylation pattern of the receptor of interest.


Asunto(s)
Inmunoprecipitación/métodos , Receptores de Dopamina D4/metabolismo , Detergentes/química , Expresión Génica , Glicosilación , Células HEK293 , Humanos , Cinética , Plásmidos , Unión Proteica , Mapeo de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Receptores de Dopamina D4/química , Receptores de Dopamina D4/genética , Transducción de Señal , Dodecil Sulfato de Sodio/química , Transfección/métodos , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA