Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612788

RESUMEN

Proteasome inhibitors are used in the therapy of several cancers, and clinical trials are underway for their use in the treatment of glioblastoma (GBM). However, GBM becomes resistant to chemotherapy relatively rapidly. Recently, the overexpression of ribonucleotide reductase (RNR) genes was found to mediate therapy resistance in GBM. The use of combinations of chemotherapeutic agents is considered a promising direction in cancer therapy. The present work aimed to evaluate the efficacy of the combination of proteasome and RNR inhibitors in yeast and GBM cell models. We have shown that impaired proteasome function results in increased levels of RNR subunits and increased enzyme activity in yeast. Co-administration of the proteasome inhibitor bortezomib and the RNR inhibitor hydroxyurea was found to significantly reduce the growth rate of S. cerevisiae yeast. Accordingly, the combination of bortezomib and another RNR inhibitor gemcitabine reduced the survival of DBTRG-05MG compared to the HEK293 cell line. Thus, yeast can be used as a simple model to evaluate the efficacy of combinations of proteasome and RNR inhibitors.


Asunto(s)
Glioblastoma , Saccharomyces cerevisiae , Humanos , Complejo de la Endopetidasa Proteasomal , Glioblastoma/tratamiento farmacológico , Bortezomib/farmacología , Células HEK293
2.
Biochemistry (Mosc) ; 88(6): 823-841, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37748878

RESUMEN

Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.


Asunto(s)
Neoplasias , Virus Oncolíticos , Virus Vaccinia/genética , Virus Oncolíticos/genética , Inmunoterapia , Edición Génica , Genoma Viral , Neoplasias/terapia
3.
Int J Mol Sci ; 23(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35563635

RESUMEN

Cancer cell lines responded differentially to type I interferon treatment in models of oncolytic therapy using vesicular stomatitis virus (VSV). Two opposite cases were considered in this study, glioblastoma DBTRG-05MG and osteosarcoma HOS cell lines exhibiting resistance and sensitivity to VSV after the treatment, respectively. Type I interferon responses were compared for these cell lines by integrative analysis of the transcriptome, proteome, and RNA editome to identify molecular factors determining differential effects observed. Adenosine-to-inosine RNA editing was equally induced in both cell lines. However, transcriptome analysis showed that the number of differentially expressed genes was much higher in DBTRG-05MG with a specific enrichment in inflammatory proteins. Further, it was found that two genes, EGFR and HER2, were overexpressed in HOS cells compared with DBTRG-05MG, supporting recent reports that EGF receptor signaling attenuates interferon responses via HER2 co-receptor activity. Accordingly, combined treatment of cells with EGF receptor inhibitors such as gefitinib and type I interferon increases the resistance of sensitive cell lines to VSV. Moreover, sensitive cell lines had increased levels of HER2 protein compared with non-sensitive DBTRG-05MG. Presumably, the level of this protein expression in tumor cells might be a predictive biomarker of their resistance to oncolytic viral therapy.


Asunto(s)
Interferón Tipo I , Viroterapia Oncolítica , Virus Oncolíticos , Estomatitis Vesicular , Animales , Línea Celular Tumoral , Receptores ErbB/genética , Interferón Tipo I/metabolismo , Virus Oncolíticos/fisiología , Virus de la Estomatitis Vesicular Indiana/genética , Vesiculovirus/fisiología
4.
BMC Med Genet ; 20(Suppl 1): 52, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30967137

RESUMEN

BACKGROUND: CpG island methylator phenotype (CIMP) is found in 15-20% of malignant colorectal tumors and is characterized by strong CpG hypermethylation over the genome. The molecular mechanisms of this phenomenon are not still fully understood. The development of CIMP is followed by global gene expression alterations and metabolic changes. In particular, CIMP-low colon adenocarcinoma (COAD), predominantly corresponded to consensus molecular subtype 3 (CMS3, "Metabolic") subgroup according to COAD molecular classification, is associated with elevated expression of genes participating in metabolic pathways. METHODS: We performed bioinformatics analysis of RNA-Seq data from The Cancer Genome Atlas (TCGA) project for CIMP-high and non-CIMP COAD samples with DESeq2, clusterProfiler, and topGO R packages. Obtained results were validated on a set of fourteen COAD samples with matched morphologically normal tissues using quantitative PCR (qPCR). RESULTS: Upregulation of multiple genes involved in glycolysis and related processes (ENO2, PFKP, HK3, PKM, ENO1, HK2, PGAM1, GAPDH, ALDOA, GPI, TPI1, and HK1) was revealed in CIMP-high tumors compared to non-CIMP ones. Most remarkably, the expression of the PKLR gene, encoding for pyruvate kinase participating in gluconeogenesis, was decreased approximately 20-fold. Up to 8-fold decrease in the expression of OGDHL gene involved in tricarboxylic acid (TCA) cycle was observed in CIMP-high tumors. Using qPCR, we confirmed the increase (4-fold) in the ENO2 expression and decrease (2-fold) in the OGDHL mRNA level on a set of COAD samples. CONCLUSIONS: We demonstrated the association between CIMP-high status and the energy metabolism changes at the transcriptomic level in colorectal adenocarcinoma against the background of immune pathway activation. Differential methylation of at least nine CpG sites in OGDHL promoter region as well as decreased OGDHL mRNA level can potentially serve as an additional biomarker of the CIMP-high status in COAD.


Asunto(s)
Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Islas de CpG/genética , Metilación de ADN , Metabolismo Energético/genética , Anciano , Biología Computacional , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Fenotipo , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Federación de Rusia
5.
Mol Ther Oncolytics ; 29: 158-168, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37387795

RESUMEN

We developed recombinant variants of oncolytic vaccinia virus LIVP strain expressing interleukin-15 (IL-15) or its receptor subunit alpha (IL-15Rα) to stimulate IL-15-dependent immune cells. We evaluated their oncolytic activity either alone or in combination with each other in vitro and in vivo using the murine CT26 colon carcinoma and 4T1 breast carcinoma models. We demonstrated that the admixture of these recombinant variants could promote the generation of the IL-15/IL-15Rα complex. In vitro studies indicated that 4T1 breast cancer cells were more susceptible to the developed recombinant viruses. In vivo studies showed significant survival benefits and tumor regression in 4T1 breast cancer syngeneic mice that received a combination of LIVP-IL15-RFP with LIVP-IL15Ra-RFP. Histological analysis showed recruited lymphocytes at the tumor region, while no harmful effects to the liver or spleen of the animals were detected. Evaluating tumor-infiltrated lymphocytes represented profound activation of cytotoxic T cells and macrophages in mice receiving combination therapy. Thus, our experiments showed superior oncolytic effectiveness of simultaneous injection of LIVP-IL15-RFP and LIVP-IL15Ra-RFP in breast cancer-bearing mice. The combined therapy by these recombinant variants represents a potent and versatile approach for developing new immunotherapies for breast cancer.

6.
Viruses ; 15(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37112810

RESUMEN

Oncolytic viral therapy is a promising novel approach to cancer treatment. Oncolytic viruses cause tumor regression through direct cytolysis on the one hand and recruiting and activating immune cells on the other. In this study, to enhance the antitumor efficacy of the thymidine kinase-deficient vaccinia virus (VV, Lister strain), recombinant variants encoding bacterial flagellin (subunit B) of Vibrio vulnificus (LIVP-FlaB-RFP), firefly luciferase (LIVP-Fluc-RFP) or red fluorescent protein (LIVP-RFP) were developed. The LIVP-FLuc-RFP strain demonstrated exceptional onco-specificity in tumor-bearing mice, detected by the in vivo imaging system (IVIS). The antitumor efficacy of these variants was explored in syngeneic murine tumor models (B16 melanoma, CT26 colon cancer and 4T1 breast cancer). After intravenous treatment with LIVP-FlaB-RFP or LIVP-RFP, all mice tumor models exhibited tumor regression, with a prolonged survival rate in comparison with the control mice. However, superior oncolytic activity was observed in the B16 melanoma models treated with LIVP-FlaB-RFP. Tumor-infiltrated lymphocytes and the cytokine analysis of the serum and tumor samples from the melanoma-xenografted mice treated with these virus variants demonstrated activation of the host's immune response. Thus, the expression of bacterial flagellin by VV can enhance its oncolytic efficacy against immunosuppressive solid tumors.


Asunto(s)
Melanoma Experimental , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Ratones , Virus Vaccinia/genética , Flagelina/genética , Virus Oncolíticos/genética , Viroterapia Oncolítica/métodos , Línea Celular Tumoral
7.
Oncotarget ; 7(33): 53959-53983, 2016 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-27276710

RESUMEN

Colorectal cancer (CRC) ranks third in the incidences of cancer morbidity and mortality worldwide. CRC is rather heterogeneous with regard to molecular genetic characteristics and pathogenic pathways. A wide spectrum of biomarkers is used for molecular subtype determination, prognosis, and estimation of sensitivity to different drugs in practice. These biomarkers can include germline and somatic mutations, chromosomal aberrations, genomic abnormalities, gene expression alterations at mRNA or protein level and changes in DNA methylation status. In the present review we discuss the most important and well-studied CRC biomarkers, and their potential clinical significance and current approaches to molecular classification of colorectal tumors.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales/genética , Marcadores Genéticos/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA