RESUMEN
Divergence of gene function is a hallmark of evolution, but assessing functional divergence over deep time is not trivial. The few alleles available for cross-species studies often fail to expose the entire functional spectrum of genes, potentially obscuring deeply conserved pleiotropic roles. Here, we explore the functional divergence of WUSCHEL HOMEOBOX9 (WOX9), suggested to have species-specific roles in embryo and inflorescence development. Using a cis-regulatory editing drive system, we generate a comprehensive allelic series in tomato, which revealed hidden pleiotropic roles for WOX9. Analysis of accessible chromatin and conserved cis-regulatory sequences identifies the regions responsible for this pleiotropic activity, the functions of which are conserved in groundcherry, a tomato relative. Mimicking these alleles in Arabidopsis, distantly related to tomato and groundcherry, reveals new inflorescence phenotypes, exposing a deeply conserved pleiotropy. We suggest that targeted cis-regulatory mutations can uncover conserved gene functions and reduce undesirable effects in crop improvement.
Asunto(s)
Genes de Plantas , Pleiotropía Genética/genética , Proteínas de Homeodominio/genética , Proteínas de Plantas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Alelos , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Inflorescencia/genética , Solanum lycopersicum/genética , Mutagénesis , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Solanaceae/genética , Solanaceae/crecimiento & desarrolloRESUMEN
Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.
Asunto(s)
Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Variación Estructural del Genoma , Solanum lycopersicum/genética , Alelos , Sistema Enzimático del Citocromo P-450/genética , Ecotipo , Epistasis Genética , Frutas/genética , Duplicación de Gen , Genoma de Planta , Genotipo , Endogamia , Anotación de Secuencia Molecular , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genéticaRESUMEN
Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits.
Asunto(s)
Productos Agrícolas/genética , Edición Génica , Genoma de Planta , Sistemas CRISPR-Cas , Regiones Promotoras Genéticas , Sitios de Carácter CuantitativoRESUMEN
Selection for inflorescence architecture with improved flower production and yield is common to many domesticated crops. However, tomato inflorescences resemble wild ancestors, and breeders avoided excessive branching because of low fertility. We found branched variants carry mutations in two related transcription factors that were selected independently. One founder mutation enlarged the leaf-like organs on fruits and was selected as fruit size increased during domestication. The other mutation eliminated the flower abscission zone, providing "jointless" fruit stems that reduced fruit dropping and facilitated mechanical harvesting. Stacking both beneficial traits caused undesirable branching and sterility due to epistasis, which breeders overcame with suppressors. However, this suppression restricted the opportunity for productivity gains from weak branching. Exploiting natural and engineered alleles for multiple family members, we achieved a continuum of inflorescence complexity that allowed breeding of higher-yielding hybrids. Characterizing and neutralizing similar cases of negative epistasis could improve productivity in many agricultural organisms. VIDEO ABSTRACT.
Asunto(s)
Epistasis Genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Secuencia de Aminoácidos , Domesticación , Inflorescencia/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Proteínas de Dominio MADS/química , Proteínas de Dominio MADS/metabolismo , Meristema/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo , Alineación de SecuenciaRESUMEN
Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.
Asunto(s)
Productos Agrícolas/genética , Epistasis Genética/genética , Variación Genética/genética , Sitios de Carácter Cuantitativo/genética , Animales , Domesticación , Edición Génica/métodos , Genoma de Planta/genética , Genómica/métodos , Humanos , Fitomejoramiento/métodosRESUMEN
A striking paradox is that genes with conserved protein sequence, function and expression pattern over deep time often exhibit extremely divergent cis-regulatory sequences. It remains unclear how such drastic cis-regulatory evolution across species allows preservation of gene function, and to what extent these differences influence how cis-regulatory variation arising within species impacts phenotypic change. Here, we investigated these questions using a plant stem cell regulator conserved in expression pattern and function over ~125 million years. Using in-vivo genome editing in two distantly related models, Arabidopsis thaliana (Arabidopsis) and Solanum lycopersicum (tomato), we generated over 70 deletion alleles in the upstream and downstream regions of the stem cell repressor gene CLAVATA3 (CLV3) and compared their individual and combined effects on a shared phenotype, the number of carpels that make fruits. We found that sequences upstream of tomato CLV3 are highly sensitive to even small perturbations compared to its downstream region. In contrast, Arabidopsis CLV3 function is tolerant to severe disruptions both upstream and downstream of the coding sequence. Combining upstream and downstream deletions also revealed a different regulatory outcome. Whereas phenotypic enhancement from adding downstream mutations was predominantly weak and additive in tomato, mutating both regions of Arabidopsis CLV3 caused substantial and synergistic effects, demonstrating distinct distribution and redundancy of functional cis-regulatory sequences. Our results demonstrate remarkable malleability in cis-regulatory structural organization of a deeply conserved plant stem cell regulator and suggest that major reconfiguration of cis-regulatory sequence space is a common yet cryptic evolutionary force altering genotype-to-phenotype relationships from regulatory variation in conserved genes. Finally, our findings underscore the need for lineage-specific dissection of the spatial architecture of cis-regulation to effectively engineer trait variation from conserved productivity genes in crops.
Asunto(s)
Arabidopsis , Arabidopsis/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Productos Agrícolas , Alelos , Secuencia de AminoácidosRESUMEN
The highly diverse Solanaceae family contains several widely studied models and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative Physalis pruinosa and use these resources to study natural and engineered variations in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR-Cas9-targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system and establish a paradigm in the search for factors driving ICS.
Asunto(s)
Physalis , Solanaceae , Solanaceae/genética , Physalis/genética , Physalis/metabolismo , Evolución Biológica , Mutación , Edición GénicaRESUMEN
An increasingly important scenario in population genetics is when a large cohort has been genotyped using a low-resolution approach (e.g., microarrays, exome capture, short-read WGS), from which a few individuals are resequenced using a more comprehensive approach, especially long-read sequencing. The subset of individuals selected should ensure that the captured genetic diversity is fully representative and includes variants across all subpopulations. For example, human variation has historically focused on individuals with European ancestry, but this represents a small fraction of the overall diversity. Addressing this, SVCollector identifies the optimal subset of individuals for resequencing by analyzing population-level VCF files from low-resolution genotyping studies. It then computes a ranked list of samples that maximizes the total number of variants present within a subset of a given size. To solve this optimization problem, SVCollector implements a fast, greedy heuristic and an exact algorithm using integer linear programming. We apply SVCollector on simulated data, 2504 human genomes from the 1000 Genomes Project, and 3024 genomes from the 3000 Rice Genomes Project and show the rankings it computes are more representative than alternative naive strategies. When selecting an optimal subset of 100 samples in these cohorts, SVCollector identifies individuals from every subpopulation, whereas naive methods yield an unbalanced selection. Finally, we show the number of variants present in cohorts selected using this approach follows a power-law distribution that is naturally related to the population genetic concept of the allele frequency spectrum, allowing us to estimate the diversity present with increasing numbers of samples.
Asunto(s)
Genoma Humano , Polimorfismo de Nucleótido Simple , Exoma/genética , Frecuencia de los Genes , Genética de Población , Humanos , Análisis de Secuencia de ADN/métodosRESUMEN
Plant productivity depends on inflorescences, flower-bearing shoots that originate from the stem cell populations of shoot meristems. Inflorescence architecture determines flower production, which can vary dramatically both between and within species. In tomato plants, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcription factor gene TERMINATING FLOWER (TMF), but the underlying mechanism is unknown. We show that TMF protein acts together with homologs of the Arabidopsis BLADE-ON-PETIOLE (BOP) transcriptional cofactors, defined by the conserved BTB (Broad complex, Tramtrack, and Bric-a-brac)/POZ (POX virus and zinc finger) domain. TMF and three tomato BOPs (SlBOPs) interact with themselves and each other, and TMF recruits SlBOPs to the nucleus, suggesting formation of a transcriptional complex. Like TMF, SlBOP gene expression is highest during vegetative and transitional stages of meristem maturation, and CRISPR/Cas9 elimination of SlBOP function causes pleiotropic defects, most notably simplification of inflorescences into single flowers, resembling tmf mutants. Flowering defects are enhanced in higher-order slbop tmf mutants, suggesting that SlBOPs function with additional factors. In support of this, SlBOPs interact with TMF homologs, mutations in which cause phenotypes like slbop mutants. Our findings reveal a new flowering module defined by SlBOP-TMF family interactions that ensures a progressive meristem maturation to promote inflorescence complexity.
Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Inflorescencia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Dominio BTB-POZ , Inflorescencia/química , Solanum lycopersicum/fisiología , MutaciónRESUMEN
One of the most remarkable manifestations of plant evolution is the diversity for floral branching systems. These "inflorescences" arise from stem cell populations in shoot meristems that mature gradually to reproductive states in response to environmental and endogenous signals. The morphology of the shoot meristem maturation process is conserved across distantly related plants, raising the question of how diverse inflorescence architectures arise from seemingly common maturation programs. In tomato and related nightshades (Solanaceae), inflorescences range from solitary flowers to highly branched structures bearing hundreds of flowers. Since reproductive barriers between even closely related Solanaceae have precluded a genetic dissection, we captured and compared meristem maturation transcriptomes from five domesticated and wild species reflecting the evolutionary continuum of inflorescence complexity. We find these divergent species share hundreds of dynamically expressed genes, enriched for transcription factors. Meristem stages are defined by distinct molecular states and point to modified maturation schedules underlying architectural variation. These modified schedules are marked by a peak of transcriptome expression divergence during the reproductive transition, driven by heterochronic shifts of dynamic genes, including transcriptional regulators with known roles in flowering. Thus, evolutionary diversity in Solanaceae inflorescence complexity is determined by subtle modifications of transcriptional programs during a critical transitional window of meristem maturation, which we propose underlies similar cases of plant architectural variation. More broadly, our findings parallel the recently described transcriptome "inverse hourglass" model for animal embryogenesis, suggesting both plant and animal morphological variation is guided by a mid-development period of transcriptome divergence.
Asunto(s)
Inflorescencia/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Proteínas de Plantas/genética , Solanum/crecimiento & desarrollo , Evolución Molecular , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inflorescencia/genética , Meristema/clasificación , Meristema/genética , Filogenia , Solanum/clasificación , Solanum/genética , Factores de Transcripción/genéticaRESUMEN
Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. However, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT function in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings point to a major role for HPATs in influencing cell elongation during tip growth in plants.
Asunto(s)
Arabidopsis/enzimología , Bryopsida/enzimología , Pentosiltransferasa/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hidroxiprolina/metabolismo , Pentosiltransferasa/metabolismo , Proteínas de Plantas/metabolismoRESUMEN
The superiority of hybrids has long been exploited in agriculture, and although many models explaining "heterosis" have been put forth, direct empirical support is limited. Particularly elusive have been cases of heterozygosity for single gene mutations causing heterosis under a genetic model known as overdominance. In tomato (Solanum lycopersicum), plants carrying mutations in SINGLE FLOWER TRUSS (SFT) encoding the flowering hormone florigen are severely delayed in flowering, become extremely large, and produce few flowers and fruits, but when heterozygous, yields are dramatically increased. Curiously, this overdominance is evident only in the background of "determinate" plants, in which the continuous production of side shoots and inflorescences gradually halts due to a defect in the flowering repressor SELF PRUNING (SP). How sp facilitates sft overdominance is unclear, but is thought to relate to the opposing functions these genes have on flowering time and shoot architecture. We show that sft mutant heterozygosity (sft/+) causes weak semi-dominant delays in flowering of both primary and side shoots. Using transcriptome sequencing of shoot meristems, we demonstrate that this delay begins before seedling meristems become reproductive, followed by delays in subsequent side shoot meristems that, in turn, postpone the arrest of shoot and inflorescence production. Reducing SFT levels in sp plants by artificial microRNAs recapitulates the dose-dependent modification of shoot and inflorescence production of sft/+ heterozygotes, confirming that fine-tuning levels of functional SFT transcripts provides a foundation for higher yields. Finally, we show that although flowering delays by florigen mutant heterozygosity are conserved in Arabidopsis, increased yield is not, likely because cyclical flowering is absent. We suggest sft heterozygosity triggers a yield improvement by optimizing plant architecture via its dosage response in the florigen pathway. Exploiting dosage sensitivity of florigen and its family members therefore provides a path to enhance productivity in other crops, but species-specific tuning will be required.
Asunto(s)
Florigena/metabolismo , Vigor Híbrido/genética , Redes y Vías Metabólicas/genética , Brotes de la Planta/genética , Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Heterocigoto , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Mutación , Brotes de la Planta/crecimiento & desarrollo , Especificidad de la EspecieRESUMEN
Flower production and crop yields are highly influenced by the architectures of inflorescences. In the compound inflorescences of tomato and related nightshades (Solanaceae), new lateral inflorescence branches develop on the flanks of older branches that have terminated in flowers through a program of plant growth known as "sympodial." Variability in the number and organization of sympodial branches produces a remarkable array of inflorescence architectures, but little is known about the mechanisms underlying sympodial growth and branching diversity. One hypothesis is that the rate of termination modulates branching. By performing deep sequencing of transcriptomes, we have captured gene expression dynamics from individual shoot meristems in tomato as they gradually transition from a vegetative state to a terminal flower. Surprisingly, we find thousands of age-dependent expression changes, even when there is little change in meristem morphology. From these data, we reveal that meristem maturation is an extremely gradual process defined molecularly by a "meristem maturation clock." Using hundreds of stage-enriched marker genes that compose this clock, we show that extreme branching, conditioned by loss of expression of the COMPOUND INFLORESCENCE gene, is driven by delaying the maturation of both apical and lateral meristems. In contrast, we find that wild tomato species display a delayed maturation only in apical meristems, which leads to modest branching. Our systems genetics approach reveals that the program for inflorescence branching is initiated surprisingly early during meristem maturation and that evolutionary diversity in inflorescence architecture is modulated by heterochronic shifts in the acquisition of floral fate.
Asunto(s)
Evolución Biológica , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Factores de Edad , Composición de Base , Secuencia de Bases , Perfilación de la Expresión Génica , Biblioteca de Genes , Marcadores Genéticos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Solanum lycopersicum/genética , Meristema/ultraestructura , Microscopía Electrónica de Rastreo , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Especificidad de la EspecieRESUMEN
Studying morphological novelties offers special insights into developmental biology and evolution. The inflated calyx syndrome (ICS) is a largely unrecognized but fascinating feature of flower development, where sepals form balloon-like husks that encapsulate fruits. Despite its independent emergence in many lineages of flowering plants, the genetic and molecular mechanisms of ICS remain unknown. Early studies in the Solanaceae genus Physalis put forth key roles of MADS-box genes in ICS. However, recent work suggests these classical floral identity transcription factors were false leads. With newfound capabilities that allow rapid development of genetic systems through genomics and genome editing, Physalis has re-emerged as the most tractable model species for dissecting ICS. This review revisits current understanding of ICS and highlights how recent advancements enable a reset in the search for genetic and molecular mechanisms using unbiased, systematic approaches.
Asunto(s)
Flores , Flores/crecimiento & desarrollo , Flores/genética , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMEN
Stem cell homeostasis is pivotal for continuous and programmed formation of organs in plants. The precise control of meristem proliferation is mediated by the evolutionarily conserved signaling that encompasses complex interactions among multiple peptide ligands and their receptor-like kinases. Here, we identified compensation mechanisms involving the CLAVATA1 (CLV1) receptor and its paralogs, BARELY ANY MERISTEMs (BAMs), for stem cell proliferation in two Solanaceae species, tomato and groundcherry. Genetic analyses of higher-order mutants deficient in multiple receptor genes, generated via CRISPR-Cas9 genome editing, reveal that tomato SlBAM1 and SlBAM2 compensate for slclv1 mutations. Unlike the compensatory responses between orthologous receptors observed in Arabidopsis, tomato slclv1 mutations do not trigger transcriptional upregulation of four SlBAM genes. The compensation mechanisms within receptors are also conserved in groundcherry, and critical amino acid residues of the receptors associated with the physical interaction with peptide ligands are highly conserved in Solanaceae plants. Our findings demonstrate that the evolutionary conservation of both compensation mechanisms and critical coding sequences between receptor-like kinases provides a strong buffering capacity during stem cell homeostasis in tomato and groundcherry.
RESUMEN
An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles-sharp epidermal projections-that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genus Solanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing new Solanum genetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.
Asunto(s)
Evolución Biológica , Citocininas , Genes de Plantas , Epidermis de la Planta , Solanum , Citocininas/biosíntesis , Citocininas/genética , Evolución Molecular , Mutación , Oryza/genética , Filogenia , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/genética , Solanum/anatomía & histología , Solanum/genéticaRESUMEN
A striking paradox is that genes with conserved protein sequence, function and expression pattern over deep time often exhibit extremely divergent cis -regulatory sequences. It remains unclear how such drastic cis -regulatory evolution across species allows preservation of gene function, and to what extent these differences influence how cis- regulatory variation arising within species impacts phenotypic change. Here, we investigated these questions using a plant stem cell regulator conserved in expression pattern and function over â¼125 million years. Using in-vivo genome editing in two distantly related models, Arabidopsis thaliana (Arabidopsis) and Solanum lycopersicum (tomato), we generated over 70 deletion alleles in the upstream and downstream regions of the stem cell repressor gene CLAVATA3 ( CLV3 ) and compared their individual and combined effects on a shared phenotype, the number of carpels that make fruits. We found that sequences upstream of tomato CLV3 are highly sensitive to even small perturbations compared to its downstream region. In contrast, Arabidopsis CLV3 function is tolerant to severe disruptions both upstream and downstream of the coding sequence. Combining upstream and downstream deletions also revealed a different regulatory outcome. Whereas phenotypic enhancement from adding downstream mutations was predominantly weak and additive in tomato, mutating both regions of Arabidopsis CLV3 caused substantial and synergistic effects, demonstrating distinct distribution and redundancy of functional cis -regulatory sequences. Our results demonstrate remarkable malleability in cis -regulatory structural organization of a deeply conserved plant stem cell regulator and suggest that major reconfiguration of cis -regulatory sequence space is a common yet cryptic evolutionary force altering genotype-to-phenotype relationships from regulatory variation in conserved genes. Finally, our findings underscore the need for lineage-specific dissection of the spatial architecture of cis -regulation to effectively engineer trait variation from conserved productivity genes in crops. Author summary: We investigated the evolution of cis -regulatory elements (CREs) and their interactions in the regulation of a plant stem cell regulator gene, CLAVATA3 (CLV3) , in Arabidopsis and tomato. Despite diverging â¼125 million years ago, the function and expression of CLV3 is conserved in these species; however, cis -regulatory sequences upstream and downstream have drastically diverged, preventing identification of conserved non-coding sequences between them. We used CRISPR-Cas9 to engineer dozens of mutations within the cis -regulatory regions of Arabidopsis and tomato CLV3. In tomato, our results show that tomato CLV3 function primarily relies on interactions among CREs in the 5' non-coding region, unlike Arabidopsis CLV3 , which depends on a more balanced distribution of functional CREs between the 5' and 3' regions. Therefore, despite a high degree of functional conservation, our study demonstrates divergent regulatory strategies between two distantly related CLV3 orthologs, with substantial alterations in regulatory sequences, their spatial arrangement, and their relative effects on CLV3 regulation. These results suggest that regulatory regions are not only extremely robust to mutagenesis, but also that the sequences underlying this robustness can be lineage-specific for conserved genes, due to the complex and often redundant interactions among CREs that ensure proper gene function amidst large-scale sequence turnover.
RESUMEN
Epistasis between genes is traditionally studied with mutations that eliminate protein activity, but most natural genetic variation is in cis-regulatory DNA and influences gene expression and function quantitatively. In this study, we used natural and engineered cis-regulatory alleles in a plant stem-cell circuit to systematically evaluate epistatic relationships controlling tomato fruit size. Combining a promoter allelic series with two other loci, we collected over 30,000 phenotypic data points from 46 genotypes to quantify how allele strength transforms epistasis. We revealed a saturating dose-dependent relationship but also allele-specific idiosyncratic interactions, including between alleles driving a step change in fruit size during domestication. Our approach and findings expose an underexplored dimension of epistasis, in which cis-regulatory allelic diversity within gene regulatory networks elicits nonlinear, unpredictable interactions that shape phenotypes.
Asunto(s)
Epistasis Genética , Frutas , Solanum lycopersicum , Alelos , Frutas/anatomía & histología , Frutas/genética , Variación Genética , Genotipo , Fenotipo , Solanum lycopersicum/anatomía & histología , Solanum lycopersicum/genética , Regulación de la Expresión Génica de las Plantas , Regiones Promotoras Genéticas , Dosificación de GenRESUMEN
Advancing crop genomics requires efficient genetic systems enabled by high-quality personalized genome assemblies. Here, we introduce RagTag, a toolset for automating assembly scaffolding and patching, and we establish chromosome-scale reference genomes for the widely used tomato genotype M82 along with Sweet-100, a new rapid-cycling genotype that we developed to accelerate functional genomics and genome editing in tomato. This work outlines strategies to rapidly expand genetic systems and genomic resources in other plant species.
Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Edición Génica , Genómica , Genoma , GenotipoRESUMEN
Gene duplications are a hallmark of plant genome evolution and a foundation for genetic interactions that shape phenotypic diversity1-5. Compensation is a major form of paralogue interaction6-8 but how compensation relationships change as allelic variation accumulates is unknown. Here we leveraged genomics and genome editing across the Solanaceae family to capture the evolution of compensating paralogues. Mutations in the stem cell regulator CLV3 cause floral organs to overproliferate in many plants9-11. In tomato, this phenotype is partially suppressed by transcriptional upregulation of a closely related paralogue12. Tobacco lost this paralogue, resulting in no compensation and extreme clv3 phenotypes. Strikingly, the paralogues of petunia and groundcherry nearly completely suppress clv3, indicating a potent ancestral state of compensation. Cross-species transgenic complementation analyses show that this potent compensation partially degenerated in tomato due to a single amino acid change in the paralogue and cis-regulatory variation that limits its transcriptional upregulation. Our findings show how genetic interactions are remodelled following duplications and suggest that dynamic paralogue evolution is widespread over short time scales and impacts phenotypic variation from natural and engineered mutations.