Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Cell ; 166(1): 140-51, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27264606

RESUMEN

Caloric restriction (CR) extends the lifespan of flies, worms, and yeast by counteracting age-related oxidation of H2O2-scavenging peroxiredoxins (Prxs). Here, we show that increased dosage of the major cytosolic Prx in yeast, Tsa1, extends lifespan in an Hsp70 chaperone-dependent and CR-independent manner without increasing H2O2 scavenging or genome stability. We found that Tsa1 and Hsp70 physically interact and that hyperoxidation of Tsa1 by H2O2 is required for the recruitment of the Hsp70 chaperones and the Hsp104 disaggregase to misfolded and aggregated proteins during aging, but not heat stress. Tsa1 counteracted the accumulation of ubiquitinated aggregates during aging and the reduction of hyperoxidized Tsa1 by sulfiredoxin facilitated clearance of H2O2-generated aggregates. The data reveal a conceptually new role for H2O2 signaling in proteostasis and lifespan control and shed new light on the selective benefits endowed to eukaryotic peroxiredoxins by their reversible hyperoxidation.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Peróxido de Hidrógeno/metabolismo , Longevidad , Peroxidasas/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Restricción Calórica , Inestabilidad Genómica , Proteínas de Choque Térmico/metabolismo , Humanos , Oxidación-Reducción , Agregado de Proteínas , Saccharomyces cerevisiae/citología , Transducción de Señal
2.
Cell ; 140(2): 257-67, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20141839

RESUMEN

The paradigm sirtuin, Sir2p, of budding yeast is required for establishing cellular age asymmetry, which includes the retention of damaged and aggregated proteins in mother cells. By establishing the global genetic interaction network of SIR2 we identified the polarisome, the formin Bni1p, and myosin motor protein Myo2p as essential components of the machinery segregating protein aggregates during mitotic cytokinesis. Moreover, we found that daughter cells can clear themselves of damage by a polarisome- and tropomyosin-dependent polarized flow of aggregates into the mother cell compartment. The role of Sir2p in cytoskeletal functions and polarity is linked to the CCT chaperonin in sir2Delta cells being compromised in folding actin. We discuss the findings in view of recent models hypothesizing that polarity may have evolved to avoid clonal senescence by establishing an aging (soma-like) and rejuvenated (germ-like) lineage.


Asunto(s)
Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Actinas/metabolismo , Chaperoninas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Microfilamentos/metabolismo , Mitosis , Orgánulos/metabolismo , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo
3.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38711165

RESUMEN

Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.


Asunto(s)
Intrones , Fenotipo , Empalme del ARN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Empalmosomas , Empalmosomas/metabolismo , Empalmosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Histonas/metabolismo , Histonas/genética
4.
J Cell Sci ; 134(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34085697

RESUMEN

The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Arsénico , Arsenitos , Proteínas de Saccharomyces cerevisiae , Arsenitos/toxicidad , Agregado de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
BMC Microbiol ; 23(1): 382, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049732

RESUMEN

In bioethanol production, the main by-product, 5-hydroxymethylfurfural (HMF), significantly hinders microbial fermentation. Therefore, it is crucial to explore genes related to HMF tolerance in Saccharomyces cerevisiae for enhancing the tolerance of ethanol fermentation strains. A comprehensive analysis was conducted using genome-wide deletion library scanning and SGAtools, resulting in the identification of 294 genes associated with HMF tolerance in S. cerevisiae. Further KEGG and GO enrichment analysis revealed the involvement of genes OCA1 and SIW14 in the protein phosphorylation pathway, underscoring their role in HMF tolerance. Spot test validation and subcellular structure observation demonstrated that, following a 3-h treatment with 60 mM HMF, the SIW14 gene knockout strain exhibited a 12.68% increase in cells with abnormal endoplasmic reticulum (ER) and a 22.41% increase in the accumulation of reactive oxygen species compared to the BY4741 strain. These findings indicate that the SIW14 gene contributes to the protection of the ER structure within the cell and facilitates the clearance of reactive oxygen species, thereby confirming its significance as a key gene for HMF tolerance in S. cerevisiae.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Técnicas de Inactivación de Genes , Fermentación
6.
Cell Mol Life Sci ; 79(7): 380, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750966

RESUMEN

Upon stress challenges, proteins/RNAs undergo liquid-liquid phase separation (LLPS) to fine-tune cell physiology and metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeostasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomolecular condensates in aging and aging-related diseases.


Asunto(s)
Envejecimiento , Proteínas , Fenómenos Fisiológicos Celulares , Humanos , Concentración de Iones de Hidrógeno
7.
PLoS Genet ; 16(5): e1008798, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32469861

RESUMEN

Alterations in epigenetic silencing have been associated with ageing and tumour formation. Although substantial efforts have been made towards understanding the mechanisms of gene silencing, novel regulators in this process remain to be identified. To systematically search for components governing epigenetic silencing, we developed a genome-wide silencing screen for yeast (Saccharomyces cerevisiae) silent mating type locus HMR. Unexpectedly, the screen identified the mismatch repair (MMR) components Pms1, Mlh1, and Msh2 as being required for silencing at this locus. We further found that the identified genes were also required for proper silencing in telomeres. More intriguingly, the MMR mutants caused a redistribution of Sir2 deacetylase, from silent mating type loci and telomeres to rDNA regions. As a consequence, acetylation levels at histone positions H3K14, H3K56, and H4K16 were increased at silent mating type loci and telomeres but were decreased in rDNA regions. Moreover, knockdown of MMR components in human HEK293T cells increased subtelomeric DUX4 gene expression. Our work reveals that MMR components are required for stable inheritance of gene silencing patterns and establishes a link between the MMR machinery and the control of epigenetic silencing.


Asunto(s)
Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/genética , Proteína 2 Homóloga a MutS/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Reparación de la Incompatibilidad de ADN , Epigénesis Genética , Silenciador del Gen , Genes del Tipo Sexual de los Hongos , Herencia , Histonas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Telómero/genética
8.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37511037

RESUMEN

Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-ß, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico
9.
BMC Genomics ; 23(1): 514, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840887

RESUMEN

BACKGROUND: Ammonium is an important raw material for biomolecules and life activities, and the toxicity of ammonium is also an important ecological and agricultural issue. Ammonium toxicity in yeast has only recently been discovered, and information on its mechanism is limited. In recent years, environmental pollution caused by nitrogen-containing wastewater has been increasing. In addition, the use of yeast in bioreactors to produce nitrogen-containing compounds has been developed. Therefore, research on resistance mechanisms that allow yeast to grow under conditions of high concentrations of ammonium has become more and more important. RESULTS: To further understand the resistance mechanism of yeast to grow under high concentration of ammonium, we used NH4Cl to screen a yeast non-essential gene-deletion library. We identified 61 NH4Cl-sensitive deletion mutants from approximately 4200 mutants in the library, then 34 of them were confirmed by drop test analysis. Enrichment analysis of these 34 genes showed that biosynthesis metabolism, mitophagy, MAPK signaling, and other pathways may play important roles in NH4Cl resistance. Transcriptome analysis under NH4Cl stress revealed 451 significantly upregulated genes and 835 significantly downregulated genes. The genes are mainly enriched in: nitrogen compound metabolic process, cell wall, MAPK signaling pathway, mitophagy, and glycine, serine and threonine metabolism. CONCLUSIONS: Our results present a broad view of biological pathways involved in the response to NH4Cl stress, and thereby advance our understanding of the resistance genes and cellular transcriptional regulation under high concentration of ammonium.


Asunto(s)
Compuestos de Amonio , Saccharomyces cerevisiae , Compuestos de Amonio/toxicidad , Genoma Fúngico , Nitrógeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma
10.
PLoS Genet ; 15(8): e1008136, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31381575

RESUMEN

The S-phase checkpoint plays an essential role in regulation of the ribonucleotide reductase (RNR) activity to maintain the dNTP pools. How eukaryotic cells respond appropriately to different levels of replication threats remains elusive. Here, we have identified that a conserved GSK-3 kinase Mck1 cooperates with Dun1 in regulating this process. Deleting MCK1 sensitizes dun1Δ to hydroxyurea (HU) reminiscent of mec1Δ or rad53Δ. While Mck1 is downstream of Rad53, it does not participate in the post-translational regulation of RNR as Dun1 does. Mck1 phosphorylates and releases the Crt1 repressor from the promoters of DNA damage-inducible genes as RNR2-4 and HUG1. Hug1, an Rnr2 inhibitor normally silenced, is induced as a counterweight to excessive RNR. When cells suffer a more severe threat, Mck1 inhibits HUG1 transcription. Consistently, only a combined deletion of HUG1 and CRT1, confers a dramatic boost of dNTP levels and the survival of mck1Δdun1Δ or mec1Δ cells assaulted by a lethal dose of HU. These findings reveal the division-of-labor between Mck1 and Dun1 at the S-phase checkpoint pathway to fine-tune dNTP homeostasis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/genética , Daño del ADN , Replicación del ADN/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Glucógeno Sintasa Quinasa 3/genética , Hidroxiurea/toxicidad , Nucleótidos/metabolismo , Fosforilación , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética
11.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499653

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.


Asunto(s)
Proteínas de Ciclo Celular , Senescencia Celular , Humanos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Senescencia Celular/genética
13.
Mol Cell ; 42(3): 390-400, 2011 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-21549315

RESUMEN

Altered mitochondrial functionality can extend organism life span, but the underlying mechanisms are obscure. Here we report that inactivating SOV1, a member of the yeast mitochondrial translation control (MTC) module, causes a robust Sir2-dependent extension of replicative life span in the absence of respiration and without affecting oxidative damage. We found that SOV1 interacts genetically with the cAMP-PKA pathway and the chromatin remodeling apparatus. Consistently, Sov1p-deficient cells displayed reduced cAMP-PKA signaling and an elevated, Sir2p-dependent, genomic silencing. Both increased silencing and life span extension in sov1Δ cells require the PKA/Msn2/4p target Pnc1p, which scavenges nicotinamide, a Sir2p inhibitor. Inactivating other members of the MTC module also resulted in Sir2p-dependent life span extension. The data demonstrate that the nuclear silencing apparatus senses and responds to the absence of MTC proteins and that this response converges with a pathway for life span extension elicited by reducing TOR signaling.


Asunto(s)
Proteínas Mitocondriales/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/genética , Western Blotting , División Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Proteínas Mitocondriales/metabolismo , Mutación , Nicotinamidasa/genética , Nicotinamidasa/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Factores de Tiempo , Factores de Transcripción
14.
Physiol Plant ; 164(2): 145-162, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29243826

RESUMEN

Alkaline stress is a major form of abiotic stress that severely inhibits plant growth and development, thus restricting crop productivity. However, little is known about how plants respond to alkali. In this study, a slow-type anion channel homolog 3 gene, GsSLAH3, was isolated and functionally characterized. Bioinformatics analysis showed that the GsSLAH3 protein contains 10 transmembrane helices. Consistently, GsSLAH3 was found to locate on plasma membrane by transient expression in onion epidermal cells. In wild soybeans, GsSLAH3 expression was induced by NaHCO3 treatment, suggesting its involvement in plant response to alkaline stress. Ectopic expression of GsSLAH3 in yeast increased sensitivity to alkali treatment. Dramatically, overexpression of GsSLAH3 in Arabidopsis thaliana enhanced alkaline tolerance during the germination, seedling and adult stages. More interestingly, we found that transgenic lines also improved plant tolerance to KHCO3 rather than high pH treatment. A nitrate content analysis of Arabidopsis shoots showed that GsSLAH3 overexpressing lines accumulated more NO3- than wild-type. In summary, our data suggest that GsSLAH3 is a positive alkali responsive gene that increases bicarbonate resistance specifically.


Asunto(s)
Bicarbonatos/farmacología , Proteínas de Plantas/metabolismo , Compuestos de Potasio/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
15.
Physiol Plant ; 164(3): 268-278, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29578245

RESUMEN

Ubiquitin is a highly conserved protein with multiple essential regulatory functions through the ubiquitin-proteasome system. Even though its functions in the ubiquitin-mediated protein degradation pathway are very well characterized, the function of ubiquitin genes in the regulation of the alkaline stress response is not fully established. In this study, we identified 12 potential UBQ genes in the Glycine soja genome, and analyzed their evolutionary relationship, conserved domains and promoter cis-elements. We also explored the expression profiles of G. soja UBQ genes under alkaline stress, based on the transcriptome sequencing. We found that the expression of GsUBQ10 was significantly induced by alkaline stress, and the function of GsUBQ10 was characterized by overexpression in transgenic alfalfa (Medicago sativa). Our results suggested that GsUBQ10 transgenic lines significantly improved the alkaline tolerance in alfalfa. The GsUBQ10 transgenic lines showed lower relative membrane permeability, lower malon dialdehyde content and higher catalase activity than in the wild-type plants. This indicates that GsUBQ10 is involved in regulating the reactive oxygen species accumulation under alkaline stress. Taken together, we identified an ubiquitin gene GsUBQ10 from G. soja, which plays a positive role in responses to alkaline stress in alfalfa.


Asunto(s)
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Ubiquitina/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Medicago sativa/genética , Medicago sativa/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Glycine max/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
16.
Plant Mol Biol ; 95(3): 253-268, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28884328

RESUMEN

KEY MESSAGE: Overexpression of Gshdz4 or GsNAC019 enhanced alkaline tolerance in transgenic Arabidopsis. We proved that Gshdz4 up-regulated both GsNAC019 and GsRD29B but GsNAC019 may repress the GsRD29B expression under alkaline stress. Wild soybean (Glycine soja) has a high tolerance to environmental challenges. It is a model species for dissecting the molecular mechanisms of salt-alkaline stresses. Although many NAC transcription factors play important roles in response to multiple abiotic stresses, such as salt, osmotic and cold, their mode of action in alkaline stress resistance is largely unknown. In our study, we identified a G. soja NAC gene, GsNAC019, which is a homolog of the Arabidopsis AtNAC019 gene. GsNAC019 was highly up-regulated by 50 mM NaHCO3 treatment in the roots of wild soybean. Further investigation showed that a well-characterized transcription factor, Gshdz4 protein, bound the cis-acting element sequences (CAATA/TA), which are located in the promoter of the AtNAC019/GsNAC019 genes. Overexpression of Gshdz4 positively regulated AtNAC019 expression in transgenic Arabidopsis, implying that AtNAC019/GsNAC019 may be the target genes of Gshdz4. GsNAC019 was demonstrated to be a nuclear-localized protein in onion epidermal cells and possessed transactivation activity in yeast cells. Moreover, overexpression of GsNAC019 in Arabidopsis resulted in enhanced tolerance to alkaline stress at the seedling and mature stages, but reduced ABA sensitivity. The closest Arabidopsis homolog mutant plants of Gshdz4, GsNAC019 and GsRD29B containing athb40, atnac019 and atrd29b were sensitive to alkaline stress. Overexpression or the closest Arabidopsis homolog mutant plants of the GsNAC019 gene in Arabidopsis positively or negatively regulated the expression of stress-related genes, such as AHA2, RD29A/B and KIN1. Moreover, this mutation could phenotypically promoted or compromised plant growth under alkaline stress, implying that GsNAC019 may contribute to alkaline stress tolerance via the ABA signal transduction pathway and regulate expression of the downstream stress-related genes.


Asunto(s)
Ácido Abscísico/farmacología , Álcalis/farmacología , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Factores de Transcripción/genética , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Bicarbonatos/farmacología , Fabaceae/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Cloruro de Sodio/farmacología , Estrés Fisiológico , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
Plant Mol Biol ; 94(4-5): 509-530, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28681139

RESUMEN

KEY MESSAGE: Here we first found that GsERF71, an ERF factor from wild soybean could increase plant alkaline stress tolerance by up-regulating H+-ATPase and by modifing the accumulation of Auxin. Alkaline soils are widely distributed all over the world and greatly limit plant growth and development. In our previous transcriptome analyses, we have identified several ERF (ethylene-responsive factor) genes that responded strongly to bicarbonate stress in the roots of wild soybean G07256 (Glycine soja). In this study, we cloned and functionally characterized one of the genes, GsERF71. When expressed in epidermal cells of onion, GsERF71 localized to the nucleus. It can activate the reporters in yeast cells, and the C-terminus of 170 amino acids is essential for its transactivation activity. Yeast one-hybrid and EMSA assays indicated that GsERF71 specifically binds to the cis-acting elements of the GCC-box, suggesting that GsERF71 may participate in the regulation of transcription of the relevant biotic and abiotic stress-related genes. Furthermore, transgenic Arabidopsis plants overexpressing GsERF71 showed significantly higher tolerance to bicarbonate stress generated by NaHCO3 or KHCO3 than the wild type (WT) plants, i.e., the transgenic plants had greener leaves, longer roots, higher total chlorophyll contents and lower MDA contents. qRT-PCR and rhizosphere acidification assays indicated that the expression level and activity of H+-ATPase (AHA2) were enhanced in the transgenic plants under alkaline stress. Further analysis indicated that the expression of auxin biosynthetic genes and IAA contents were altered to a lower extent in the roots of transgenic plants than WT plants under alkaline stress in a short-term. Together, our data suggest that GsERF71 enhances the tolerance to alkaline stress by up-regulating the expression levels of H+-ATPase and by modifying auxin accumulation in transgenic plants.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Concentración de Iones de Hidrógeno , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Glycine max/genética , Factores de Transcripción/genética
18.
Biochem Biophys Res Commun ; 493(1): 708-717, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28864412

RESUMEN

The subcellular localization of polyQ-expanded huntingtin exon1 (Httex1) modulates polyQ toxicity in models of Huntington's disease. Using genome-wide screens in a yeast model system, we report that the ribosome quality control (RQC) machinery, recently implicated in neurodegeneration, is a key determinant for the nucleocytoplasmic distribution of Httex1-103Q. Deletion of the RQC genes, LTN1 or RQC1, caused the accumulation of Httex1-103Q in the nucleus through a process that required the CAT-tail tagging activity of Rqc2 and transport via the nuclear pore complex. We provide evidence that nuclear accumulation of Httex1-103Q enhances its cytotoxicity, suggesting that the RQC machinery plays an important role in protecting cells against the adverse effects of polyQ expansion proteins.


Asunto(s)
Núcleo Celular/metabolismo , Exones/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Péptidos/genética , Péptidos/metabolismo , Ribosomas/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Humanos , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Unión Proteica
19.
Nucleic Acids Res ; 43(15): 7306-14, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26138482

RESUMEN

The Med2, Med3 and Med15 proteins form a heterotrimeric subdomain in the budding yeast Mediator complex. This Med15 module is an important target for many gene specific transcription activators. A previous proteome wide screen in yeast identified Med3 as a protein with priogenic potential. In the present work, we have extended this observation and demonstrate that both Med3 and Med15 form amyloid-like protein aggregates under H2O2 stress conditions. Amyloid formation can also be stimulated by overexpression of Med3 or of a glutamine-rich domain present in Med15, which in turn leads to loss of the entire Med15 module from Mediator and a change in stress response. In combination with genome wide transcription analysis, our data demonstrate that amyloid formation can change the subunit composition of Mediator and thereby influence transcriptional output in budding yeast.


Asunto(s)
Amiloide/metabolismo , Complejo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/fisiología , Peróxido de Hidrógeno/farmacología , Complejo Mediador/química , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/química
20.
PLoS Genet ; 10(11): e1004763, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375155

RESUMEN

To reduce expression of gene products not required under stress conditions, eukaryotic cells form large and complex cytoplasmic aggregates of RNA and proteins (stress granules; SGs), where transcripts are kept translationally inert. The overall composition of SGs, as well as their assembly requirements and regulation through stress-activated signaling pathways remain largely unknown. We have performed a genome-wide screen of S. cerevisiae gene deletion mutants for defects in SG formation upon glucose starvation stress. The screen revealed numerous genes not previously implicated in SG formation. Most mutants with strong phenotypes are equally SG defective when challenged with other stresses, but a considerable fraction is stress-specific. Proteins associated with SG defects are enriched in low-complexity regions, indicating that multiple weak macromolecule interactions are responsible for the structural integrity of SGs. Certain SG-defective mutants, but not all, display an enhanced heat-induced mutation rate. We found several mutations affecting the Ran GTPase, regulating nucleocytoplasmic transport of RNA and proteins, to confer SG defects. Unexpectedly, we found stress-regulated transcripts to reach more extreme levels in mutants unable to form SGs: stress-induced mRNAs accumulate to higher levels than in the wild-type, whereas stress-repressed mRNAs are reduced further in such mutants. Our findings are consistent with the view that, not only are SGs being regulated by stress signaling pathways, but SGs also modulate the extent of stress responses. We speculate that nucleocytoplasmic shuttling of RNA-binding proteins is required for gene expression regulation during stress, and that SGs modulate this traffic. The absence of SGs thus leads the cell to excessive, and potentially deleterious, reactions to stress.


Asunto(s)
Gránulos Citoplasmáticos/genética , Saccharomyces cerevisiae/genética , Eliminación de Secuencia/genética , Estrés Fisiológico/genética , Gránulos Citoplasmáticos/metabolismo , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Glucosa/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Saccharomyces cerevisiae/fisiología , Inanición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA