Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(27): e2310250, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295142

RESUMEN

The commercialization of rechargeable Zn-air batteries (ZABs) relies on the material innovation to accelerate the sluggish oxygen electrocatalysis kinetics. Due to the differentiated mechanisms of reverse processes, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), rationally integrating dual sites for bifunctional oxygen electrocatalysis is prerequisite yet remains challenging. Herein, multicomponent synergistic active sites within highly graphitic carbon substrate are exquisitely constructed, which is accomplished by fluorine (F) modulation strategy. The incorporation of F dopants facilitates pyridinic N formation for anchoring single metal sites, thus guaranteeing the coexistence of sufficient M-Nx sites and metal nanoparticles toward bifunctional oxygen electrocatalysis. As a result, the optimal catalyst, denoted as F NH2-FeNi-800, outperforms commercial Pt/C+RuO2 with smaller gap between Ej = 10 and E1/2 (ΔE) of 0.63 V (vs 0.7 V for Pt/C+RuO2), demonstrating its superior bifunctionality. Beyond that, its superiority is validated in homemade rechargeable ZABs. ZABs assembled using F NH2-FeNi-800 as the air cathode delivers higher peak power density (123.8 mW cm-2) and long-cycle lifetime (over 660 cycles) in comparison with Pt/C@RuO2 (68.8 mW cm-2; 300 cycles). The finding not only affords a highly promising oxygen electrocatalyst, but also opens an avenue to constructing multifunctional active sites for heterogeneous catalysts.

2.
BMC Public Health ; 24(1): 723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448849

RESUMEN

BACKGROUND: Deep learning (DL), a specialized form of machine learning (ML), is valuable for forecasting survival in various diseases. Its clinical applicability in real-world patients with gastric cancer (GC) has yet to be extensively validated. METHODS: A combined cohort of 11,414 GC patients from the Surveillance, Epidemiology and End Results (SEER) database and 2,846 patients from a Chinese dataset were utilized. The internal validation of different algorithms, including DL model, traditional ML models, and American Joint Committee on Cancer (AJCC) stage model, was conducted by training and testing sets on the SEER database, followed by external validation on the Chinese dataset. The performance of the algorithms was assessed using the area under the receiver operating characteristic curve, decision curve, and calibration curve. RESULTS: DL model demonstrated superior performance in terms of the area under the curve (AUC) at 1, 3, and, 5 years post-surgery across both datasets, surpassing other ML models and AJCC stage model, with AUCs of 0.77, 0.80, and 0.82 in the SEER dataset and 0.77, 0.76, and 0.75 in the Chinese dataset, respectively. Furthermore, decision curve analysis revealed that the DL model yielded greater net gains at 3 years than other ML models and AJCC stage model, and calibration plots at 3 years indicated a favorable level of consistency between the ML and actual observations during external validation. CONCLUSIONS: DL-based model was established to accurately predict the survival rate of postoperative patients with GC.


Asunto(s)
Aprendizaje Profundo , Neoplasias Gástricas , Humanos , Algoritmos , Área Bajo la Curva , Pueblo Asiatico , Neoplasias Gástricas/cirugía , Pueblos de América del Norte
3.
Proc Natl Acad Sci U S A ; 118(43)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34663729

RESUMEN

The CO electrooxidation is long considered invincible in the proton exchange membrane fuel cell (PEMFC), where even a trace level of CO in H2 seriously poisons the anode catalysts and leads to huge performance decay. Here, we describe a class of atomically dispersed IrRu-N-C anode catalysts capable of oxidizing CO, H2, or a combination of the two. With a small amount of metal (24 µgmetal⋅cm-2) used in the anode, the H2 fuel cell performs its peak power density at 1.43 W⋅cm-2 When operating with pure CO, this catalyst exhibits its maximum current density at 800 mA⋅cm-2, while the Pt/C-based cell ceases to work. We attribute this exceptional catalytic behavior to the interplay between Ir and Ru single-atom centers, where the two sites act in synergy to favorably decompose H2O and to further facilitate CO activation. These findings open up an avenue to conquer the formidable poisoning issue of PEMFCs.

4.
J Acoust Soc Am ; 155(2): 1103-1118, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341741

RESUMEN

In deep water, deploying a short vertical line array (VLA) is an effective way for source localization. In the past decade, most studies focused on localizing sources at the short to moderate ranges in the reliable acoustic path or the direct arrival zone (DAZ), with a VLA deployed near the ocean bottom. Little work has been done for the end part of the DAZ and the zones outside the DAZ. In addition, a VLA deployed at other depths rather than near the bottom is rarely studied. This paper proposes a near-surface source depth estimation method by matching the measured time delay with a library of modeled values under different source depths calculated by a simple formula. This method is suitable for zones, which contains two paths (one is reflected from the sea surface) with very close arrival angles, of a VLA deployed not only near the bottom, but also at other depths of the water column. Source depth estimation strategy for the end part of each zone, which faces the problem of poor depth resolution, is also analyzed. Simulation and experimental data of the airgun and explosive sources in the South China Sea are used to demonstrate the method.

5.
Angew Chem Int Ed Engl ; 63(7): e202315119, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38129317

RESUMEN

Alleviating the degradation issue of Pt based alloy catalysts, thereby simultaneously achieving high mass activity and high durability in proton exchange membrane fuel cells (PEMFCs), is highly challenging. Herein, we provide a new paradigm to address this issue via delaying the place exchange between adsorbed oxygen species and surface Pt atoms, thereby inhibiting Pt dissolution, through introducing rare earth bonded subsurface oxygen atoms. We have succeeded in introducing Gd-O dipoles into Pt3 Ni via a high temperature entropy-driven process, with direct spectral evidence attained from both soft and hard X-ray absorption spectroscopies. The higher rated power of 0.93 W cm-2 and superior current density of 562.2 mA cm-2 at 0.8 V than DOE target for heavy-duty vehicles in H2 -air mode suggest the great potential of Gd-O-Pt3 Ni towards practical application in heavy-duty transportation. Moreover, the mass activity retention (1.04 A mgPt -1 ) after 40 k cycles accelerated durability tests is even 2.4 times of the initial mass activity goal for DOE 2025 (0.44 A mgPt -1 ), due to the weakened Pt-Oads bond interaction and the delayed place exchange process, via repulsive forces between surface O atoms and those in the sublayer. This work addresses the critical roadblocks to the widespread adoption of PEMFCs.

6.
Chemistry ; 29(26): e202203173, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36626348

RESUMEN

Alkaline hydrogen-electricity energy conversion technologies, involving anion exchange membrane fuel cells (AEMFCs) and anion exchange membrane water electrolyzers (AEMWEs) are more appealing than the acidic counterparts due to the elimination of precious metal catalysts. However, the physicochemical properties of anion exchange membrane (AEMs), i.e., ionic conductivity, mechanical strength, stability, etc., are inferior to that of proton exchange membranes (PEMs), thus hindering these alkaline technologies from practical employment. To promote their development, we summarize the main challenges and the corresponding strategies of AEMs for the application of AEMFCs and AEMWEs in this review. The hydroxide transportation mechanism, ion exchange capacity, hydration and microscopic morphology that are relevant to the ionic conductivity are discussed firstly. Following the ionic conductivity, another obstacle, stability of AEMs is comprehensively described in terms of alkaline stability, mechanical stability and electrochemical stability. Upon integrating into the devices, water management, carbonation effect and membrane-electrode interface that are critical to the cell performance are highlighted as well. This review is anticipated to provide insights into the AEM design for hydrogen-electric energy conversion devices, thus accelerating the widespread commercialization of these promising technologies.

7.
Chemistry ; 29(12): e202203180, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36378121

RESUMEN

Electrochemical production of hydrogen peroxide (H2 O2 ) via two-electron oxygen reduction reaction (ORR) process is emerging as a promising alternative method to the conventional anthraquinone process. To realize high-efficiency H2 O2 electrosynthesis, robust and low cost electrocatalysts have been intensively pursued, among which Co-based catalysts attract particular research interests due to the earth-abundance and high selectivity. Here, we provide a comprehensive review on the advancement of Co-based electrocatalyst for H2 O2 electroproduction. The fundamental chemistry of 2-electron ORR is discussed firstly for guiding the rational design of electrocatalysts. Subsequently, the development of Co-based electrocatalysts involving nanoparticles, compounds and single atom catalysts is summarized with the focus on active site identification, structure regulation and mechanism understanding. Moreover, the current challenges and future directions of the Co-based electrocatalysts are briefly summarized in this review.

8.
Thromb J ; 21(1): 2, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600287

RESUMEN

BACKGROUND: Fusobacterium nucleatum (F. nucleatum) often colonizes cancerous gastric tissues and is characterized by the promotion of platelet aggregation and the development of visceral thrombosis. Venous thromboembolism (VTE) leads to a significant increase in the mortality of gastric cancer (GC) patients. However, the relationship between the colonization of F. nucleatum and the prognosis of GC patients is still unknown. AIM: The aim of this study was to explore whether the colonization of F. nucleatum is related to the prognosis of GC patients complicated with VTE and to explore other potential risk factors. METHODS: From 2017-2021, the data of 304 patients with new VTEs during the treatment of GC at the Affiliated Cancer Hospital of Zhengzhou University were collected. Fluorescence in situ hybridization of F. nucleatum was performed on pathological sections of cancer tissues from the patients. Survival analysis methods, including the Kaplan‒Meier method and Cox proportional hazard model, were performed. RESULTS: F. nucleatum colonization was significantly associated with splanchnic vein thrombosis, higher platelet-lymphocyte ratio (PLR), and lower absolute lymphocyte count. In the multivariable Cox model, F. nucleatum colonization was found to be an independent risk factor for the prognosis of GC, with an adjusted HR of 1.77 (95% CI, 1.17 to 2.69 [P = 0.007]). In addition, patients with high PLR (HR: 2.65, P = 0.004) or VTE occurring during four cycles of chemotherapy (HR: 2.32, P = 0.012) exhibited shorter survival. Conversely, those experiencing VTE later (HR per month from diagnosis of GC: 0.95, P = 0.006) or using IVC filters (HR: 0.27, P = 0.011) had longer survival. CONCLUSION: Colonization of F. nucleatum in GC tissues was associated with lower absolute lymphocyte count and higher PLR in GC patients with VTE. F. nucleatum colonization also appeared to be associated with the development of VTE in specific sites, in particular the splanchnic vein. Colonization of F. nucleatum may potentially represent an independent predictor of poor prognosis in GC patients. Additional research is necessary to validate these findings.

9.
Acta Pharmacol Sin ; 44(11): 2282-2295, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37280363

RESUMEN

Abnormalities of FGFR1 have been reported in multiple malignancies, suggesting FGFR1 as a potential target for precision treatment, but drug resistance remains a formidable obstacle. In this study, we explored whether FGFR1 acted a therapeutic target in human T-cell acute lymphoblastic leukemia (T-ALL) and the molecular mechanisms underlying T-ALL cell resistance to FGFR1 inhibitors. We showed that FGFR1 was significantly upregulated in human T-ALL and inversely correlated with the prognosis of patients. Knockdown of FGFR1 suppressed T-ALL growth and progression both in vitro and in vivo. However, the T-ALL cells were resistant to FGFR1 inhibitors AZD4547 and PD-166866 even though FGFR1 signaling was specifically inhibited in the early stage. Mechanistically, we found that FGFR1 inhibitors markedly increased the expression of ATF4, which was a major initiator for T-ALL resistance to FGFR1 inhibitors. We further revealed that FGFR1 inhibitors induced expression of ATF4 through enhancing chromatin accessibility combined with translational activation via the GCN2-eIF2α pathway. Subsequently, ATF4 remodeled the amino acid metabolism by stimulating the expression of multiple metabolic genes ASNS, ASS1, PHGDH and SLC1A5, maintaining the activation of mTORC1, which contributed to the drug resistance in T-ALL cells. Targeting FGFR1 and mTOR exhibited synergistically anti-leukemic efficacy. These results reveal that FGFR1 is a potential therapeutic target in human T-ALL, and ATF4-mediated amino acid metabolic reprogramming contributes to the FGFR1 inhibitor resistance. Synergistically inhibiting FGFR1 and mTOR can overcome this obstacle in T-ALL therapy.


Asunto(s)
Aminoácidos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Línea Celular Tumoral , Antígenos de Histocompatibilidad Menor , Sistema de Transporte de Aminoácidos ASC/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción Activador 4/metabolismo
10.
Environ Health ; 22(1): 23, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36879322

RESUMEN

Exposure to fine particulate matter (PM2.5) is linked to lung cancer incidence and mortality. However, the impact of PM2.5 exposure on lung cancer patients after lobectomy, which remains the primary treatment for early-stage lung cancer, is unknown. Therefore, we investigated the correlation between PM2.5 exposure and the survival of lung cancer patients after lobectomy. This study included 3,327 patients with lung cancer who underwent lobectomy procedures. We converted residential addresses into coordinates and estimated individual patients' daily PM2.5 and O3 exposure levels. A Cox multivariate regression model was used to analyze the specific monthly association between PM2.5 exposure and lung cancer survival. Every 10 µg/m3 increase in monthly PM2.5 concentration in the first and second months after lobectomy increased the risk of death (hazard ratio [HR]: 1.043, 95% confidence interval [CI]: 1.019-1.067 and HR: 1.036, 95% CI: 1.013-1.060, respectively). Non-smokers, younger patients, and patients with longer hospitalization durations had worse survival rates when exposed to greater concentrations of PM2.5. High postoperative PM2.5 exposure immediately after lobectomy reduced the survival of patients with lung cancer. Patients living in areas with high PM2.5 should be offered the opportunity to transfer to areas with better air quality after undergoing lobectomies, to prolong their survival times.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/cirugía , Hospitalización , Material Particulado/efectos adversos , Pacientes
11.
J Acoust Soc Am ; 154(5): 2800-2811, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916868

RESUMEN

A publication by McCargar and Zurk [J. Acoust. Soc. Am. 133(4), EL320-EL325 (2013)] introduced a passive source depth estimation method for a moving tonal source with a vertical line array (VLA), utilizing the depth-dependent modulation in the arrival angle domain caused by the interference between the direct and surface-reflected acoustic arrivals. Under the isovelocity approximation, this method can estimate the depth of sources at close ranges, but the depth estimation error will increase with the increase in source range, as the impact of the sound speed profile on sound propagation is ignored. This paper presents a theoretical formula for calculating the modeled interference structure in the arrival angle domain with the knowledge of the sound speed profile. By matching the measured interference structure obtained from the beamforming of the acoustic data received by the VLA with the modeled structure under different assumed source depths, the tonal source depth estimation is achieved, even for sources at the remote part of the direct arrival zone. The performance of this method is verified by simulation data, as well as experimental data radiated from a towed source and a non-cooperative passing ship.

12.
J Acoust Soc Am ; 154(6): 3955-3972, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149817

RESUMEN

The multi-path and dispersion properties of shallow water waveguides make conventional beamforming (CBF) face issues such as beam shift, broadening, splitting, output distortion, and array gain reduction. In this paper, the striation-based beamforming (SBF) is investigated to address these issues. SBF differs from CBF by utilizing frequency-shift processing along interference striations. The performance difference between CBF and SBF is compared. It demonstrates that under ideal waveguide modeling with pulse sources, SBF can achieve a beam output response that is close to the plane wave condition. The speed term of SBF's response is approximately independent of modal indexes, which equips SBF to form a unique beam output and guarantee the beam resolution. The processing of consistent signals along the striation maintains the optimal signal correlation, which makes SBF ensure the output fidelity and array gain. To shift the mainlobe of SBF to the source azimuth, the time delay related to the waveform truncation point can be introduced to pre-compensate the array signals. There exist two theoretical accuracy limits to using the truncation. First, truncation time corresponds to the waveform point at r0/c (r0 is the source range), and the mainlobe of SBF is directed to the source azimuth. Second, truncation corresponds to the pulse peak point, and the azimuth estimation accuracy of SBF gets close to CBF. Simulations and experimental results are given as illustrations.

13.
J Acoust Soc Am ; 153(2): 773, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36859116

RESUMEN

In deep water, multipath time delays or frequency-domain interference periods of the acoustic intensity combined with multipath arrival angles are typically used for source localization. However, depth estimate is hard to achieve for a narrowband source at a remote part of the direct arrival zone as the required bandwidth increases with the source range. In this paper, a passive source localization method with a vertical line array, suitable for both broadband and narrowband sources, is proposed. Based on the variation trends of multipath angles with source range and depth, source localization is achieved by only matching the measured angles of the direct path and surface-reflected path with model-based values of a predefined grid of potential source locations. Considering the angle resolution limited by the array aperture and the presence of coherent multipath, sparse Bayesian learning is used and compared with the conventional beamforming and the minimum-variance distortionless-response beamforming to resolve and estimate the multipath angles. Simulations and experimental data of explosive sources collected by a vertical line array in the South China Sea are carried out to illustrate the method and demonstrate the performance.

14.
Angew Chem Int Ed Engl ; 61(52): e202212341, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36254795

RESUMEN

Catalyst/support interaction plays a vital role in catalysis towards acidic oxygen evolution (OER), and the performance reinforcement is currently interpreted by either strain or electron donation effect. We herein report that these views are insufficient, where the dynamic evolution of the interface under potential bias must be considered. Taking Nb2 O5-x supported iridium (Ir/Nb2 O5-x ) as a model catalyst, we uncovered the dynamic migration of oxygen species between IrOx and Nb2 O5-x during OER. Direct spectroscopic evidence combined with theoretical computation suggests these migrations not only regulate the in situ Ir structure towards boosted activity, but also suppress its over-oxidation via spontaneously delivering excessive oxygen from IrOx to Nb2 O5-x . The optimized Ir/Nb2 O5-x thus demonstrated exceptional performance in scalable water electrolyzers, i.e., only need 1.839 V to attain 3 A cm-2 (surpassing the DOE 2025 target), and no activity decay during a 2000 h test at 2 A cm-2 .

15.
Emerg Infect Dis ; 27(1): 69-75, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33350921

RESUMEN

A 13-valent pneumococcal conjugate vaccine against invasive pneumococcal disease (IPD) was introduced in China in April 2017. We describe 105 children <5 years of age who were hospitalized for IPD at Soochow University Affiliated Children's Hospital in Suzhou, China, during January 2010-December 2017. We calculated the incidence of hospitalization for IPD as 14.55/100,000 children in Suzhou. We identified 8 different capsular serotypes: 6B (28.4% of cases), 14 (18.9% of cases), 19A (18.9% of cases), 19F (12.2% of cases), 23F (10.8% of cases), 20 (4.1% of cases), 9V (4.1% of cases), and 15B/C (2.7% of cases). These results provide baseline data of IPD before the introduction of this vaccine in China, enabling researchers to better understand its effects on IPD incidence.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Niño , Preescolar , China/epidemiología , Hospitalización , Humanos , Incidencia , Lactante , Infecciones Neumocócicas/epidemiología , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , Vacunas Conjugadas
16.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884846

RESUMEN

Pesticides have been used extensively in the field of plant protection to maximize crop yields. However, the long-term, unmanaged application of pesticides has posed severe challenges such as pesticide resistance, environmental contamination, risk in human health, soil degradation, and other important global issues. Recently, the combination of nanotechnology with plant protection strategies has offered new perspectives to mitigate these global issues, which has promoted a rapid development of NCs-based pesticides. Unlike certain conventional pesticides that have been applied inefficiently and lacked targeted control, pesticides delivered by nanocarriers (NCs) have optimized formulations, controlled release rate, and minimized or site-specific application. They are receiving increasing attention and are considered as an important part in sustainable and smart agriculture. This review discussed the limitation of traditional pesticides or conventional application mode, focused on the sustainable features of NCs-based pesticides such as improved formulation, enhanced stability under harsh condition, and controlled release/degradation. The perspectives of NCs-based pesticides and their risk assessment were also suggested in this view for a better use of NCs-based pesticides to facilitate sustainable, smart agriculture in the future.


Asunto(s)
Agricultura , Portadores de Fármacos/química , Nanoestructuras/química , Control de Plagas/métodos , Plaguicidas/química , Quitosano/química , Plaguicidas/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Solubilidad
17.
Angew Chem Int Ed Engl ; 60(50): 26177-26183, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34738702

RESUMEN

Proton-exchange membrane fuel cells (PEMFCs) are limited by their extreme sensitivity to trace-level CO impurities, thus setting a strict requirement for H2 purity and excluding the possibility to directly use cheap crude hydrogen as fuel. Herein, we report a proof-of-concept study, in which a novel catalyst comprising both Ir particles and Ir single-atom sites (IrNP @IrSA -N-C) addresses the CO poisoning issue. The Ir single-atom sites are found not only to be good CO oxidizing sites, but also excel in scavenging the CO molecules adsorbed on Ir particles in close proximity, thereby enabling the Ir particles to reserve partial active sites towards H2 oxidation. The interplay between Ir nanoparticles and Ir single-atom centers confers the catalyst with both excellent H2 oxidation activity (1.19 W cm-2 ) and excellent CO electro-oxidation activity (85 mW cm-2 ) in PEMFCs; the catalyst also tolerates CO in H2 /CO mixture gas at a level that is two times better than that of the current best PtRu/C catalyst.

18.
Int J Cancer ; 146(6): 1730-1740, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31840816

RESUMEN

Immune checkpoint blockade (ICB) has shown long-term survival benefits, but only in a small fraction of cancer patients. Recent studies suggest that improved vessel perfusion by ICB positively correlates with its therapeutic outcomes. However, the underlying mechanism of such a process remains unclear. Here, we show that anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) treatment-induced tumor vessel normalization was accompanied by an increased infiltration of eosinophils into breast tumors. Eosinophil accumulation was positively correlated with the responsiveness of a breast tumor to anti-CTLA4 therapy. Depletion of eosinophils subsequently negated vessel normalization, reduced antitumor immunity and attenuated tumor growth inhibition by anti-CTLA4 therapy. Moreover, intratumoral accumulation of eosinophils relied on T lymphocytes and interferon γ production. Together, these results suggest that eosinophils partially mediate the antitumor effects of CTLA4 blockade through vascular remodeling. Our findings uncover an unidentified role of eosinophils in anti-CTLA4 therapy, providing a potential new target to improve ICB therapy and to predict its efficacy.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores , Línea Celular Tumoral , Eosinófilos/inmunología , Femenino , Humanos , Inmunidad , Inmunomodulación/efectos de los fármacos , Inmunofenotipificación , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Depleción Linfocítica , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
19.
J Acoust Soc Am ; 148(1): EL88, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32752754

RESUMEN

For an acoustic receiver deployed at the bottom of the direct arrival zone of a submerged source at short horizontal ranges in deep ocean, the interference pattern of the direct and surface-reflected acoustic arrivals shows periodic modulation, which is directly related to the source depth, source frequency, and vertical arrival angle. In this work, the interference cycle presented in the frequency domain is used to extract the broadband source depth, with the vertical arrival angle obtained from the ratio of vertical acoustic intensity and horizontal acoustic intensity from the signal recorded by a single vector sensor. Experimental results demonstrate the source depth estimation without requiring knowledge of the ocean environment.

20.
Angew Chem Int Ed Engl ; 59(33): 13923-13928, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32436324

RESUMEN

The applications of the most promising Fe-N-C catalysts are prohibited by their limited intrinsic activities. Manipulating the Fe energy level through anchoring electron-withdrawing ligands is found effective in boosting the catalytic performance. However, such regulation remains elusive as the ligands are only uncontrollably introduced oweing to their energetically unstable nature. Herein, we report a rational manipulation strategy for introducing axial bonded O to the Fe sites, attained through hexa-coordinating Fe with oxygen functional groups in the precursor. Moreover, the O modifier is stabilized by forming the Fe-O-Fe bridge bond, with the approximation of two FeN4 sites. The energy level modulation thus created confers the sites with an intrinsic activity that is over 10 times higher than that of the normal FeN4 site. Our finding opens a novel strategy to manage coordination environments at an atomic level for high activity ORR catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA