Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(16): 6375-6386, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30792309

RESUMEN

Contactin-associated protein 1 (CASPR1 or CNTNAP1) was recently reported to be expressed in brain microvascular endothelial cells (BMECs), the major component of the blood-brain barrier. To investigate CASPR1's physiological role in BMECs, here we used CASPR1 as a bait in a yeast two-hybrid screen to identify CASPR1-interacting proteins and identified the ß3 subunit of Na+/K+-ATPase (ATP1B3) as a CASPR1-binding protein. Using recombinant and purified CASPR1, RNAi, GST-pulldown, immunofluorescence, immunoprecipitation, and Na+/K+-ATPase activity assays, we found that ATP1B3's core proteins, but not its glycosylated forms, interact with CASPR1, which was primarily located in the endoplasmic reticulum of BMECs. CASPR1 knockdown reduced ATP1B3 glycosylation and prevented its plasma membrane localization, phenotypes that were reversed by expression of full-length CASPR1. We also found that the CASPR1 knockdown reduces the plasma membrane distribution of the α1 subunit of Na+/K+-ATPase, which is the major component assembled with ATP1B3 in the complete Na+/K+-ATPase complex. The binding of CASPR1 with ATP1B3, but not the α1 subunit, indicated that CASPR1 binds with ATP1B3 to facilitate the assembly of Na+/K+-ATPase. Furthermore, the activity of Na+/K+-ATPase was reduced in CASPR1-silenced BMECs. Interestingly, shRNA-mediated CASPR1 silencing reduced glutamate efflux through the BMECs. These results demonstrate that CASPR1 binds with ATP1B3 and thereby contributes to the regulation of Na+/K+-ATPase maturation and trafficking to the plasma membrane in BMECs. We conclude that CASPR1-mediated regulation of Na+/K+-ATPase activity is important for glutamate transport across the blood-brain barrier.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Membrana Celular/metabolismo , Células Endoteliales/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/citología , Encéfalo/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Membrana Celular/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células Endoteliales/citología , Eliminación de Gen , Humanos , Microvasos/citología , Microvasos/metabolismo , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/genética
2.
Int J Mol Sci ; 18(5)2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28467355

RESUMEN

The formation of brain vasculature is an essential step during central nervous system development. The molecular mechanism underlying brain angiogenesis remains incompletely understood. The role of Atg7, an autophagy-related protein, in brain angiogenesis was investigated in this study. We found that the microvessel density in mice brains with endothelial-specific knockout of Atg7 (Atg7 EKO) was significantly decreased compared to wild-type control. Consistently, in vitro angiogenesis assays showed that Atg7 knockdown impaired angiogenesis in brain microvascular endothelial cells. Further results indicated that knockdown of Atg7 reduced interleukin-6 (IL-6) expression in brain microvascular endothelial cells, which is mediated by NF-κB-dependent transcriptional control. Interestingly, exogenous IL-6 restored the impaired angiogenesis and reduced cell motility caused by Atg7 knockdown. These results demonstrated that Atg7 has proangiogenic activity in brain angiogenesis which is mediated by IL-6 production in a NF-κB-dependent manner.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/metabolismo , Encéfalo/irrigación sanguínea , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Neovascularización Fisiológica/fisiología , Análisis de Varianza , Animales , Proteína 7 Relacionada con la Autofagia/genética , Movimiento Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Ratones , Ratones Noqueados , Microvasos/crecimiento & desarrollo , Microvasos/metabolismo , Neovascularización Fisiológica/genética
3.
J Hazard Mater ; 471: 134400, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691927

RESUMEN

VX, a well-known organophosphorus nerve agent (OPNA), poses a significant threat to public safety if employed by terrorists. Obtaining complete metabolites is critical to unequivocally confirm its alleged use/exposure and elucidate its whole-molecular metabolism. However, the nitrogenous VX metabolites containing 2-diisopropylaminoethyl moiety from urinary excretion remain unknown. Therefore, this study applied a newly developed untargeted workflow platform to discover and identify them using VX-exposed guinea pigs as animal models. 2-(N,N-diisopropylamino)ethanesulfonic acid (DiPSA) was revealed as a novel nitrogenous VX metabolite in urine, and 2-(Diisopropylaminoethyl) methyl sulfide (DAEMS) was confirmed as another in plasma, indicating that VX metabolism differed between urine and plasma. It is the first report of a nitrogenous VX metabolite in urine and a complete elucidation of the VX metabolic pathway. DiPSA was evaluated as an excellent VX exposure biomarker. The whole-molecule VX metabolism in urine was characterized entirely for the first time via the simultaneous quantification of DiPSA and two known P-based biomarkers. About 52.1% and 32.4% of VX were excreted in urine as P-based and nitrogenous biomarkers within 24 h. These findings provide valuable insights into the unambiguous detection of OPNA exposure/intoxication and human and environmental exposure risk assessment.


Asunto(s)
Sustancias para la Guerra Química , Compuestos Organotiofosforados , Animales , Compuestos Organotiofosforados/orina , Compuestos Organotiofosforados/metabolismo , Cobayas , Sustancias para la Guerra Química/metabolismo , Masculino , Biomarcadores/orina , Agentes Nerviosos/metabolismo
4.
Biomed Environ Sci ; 37(2): 157-169, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582978

RESUMEN

Objective: China is among the 30 countries with a high burden of tuberculosis (TB) worldwide, and TB remains a public health concern. Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China. However, molecular epidemiological studies of Kashgar are lacking. Methods: A population-based retrospective study was conducted using whole-genome sequencing (WGS) to determine the characteristics of drug resistance and the transmission patterns. Results: A total of 1,668 isolates collected in 2020 were classified into lineages 2 (46.0%), 3 (27.5%), and 4 (26.5%). The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid (7.4%, 124/1,668), streptomycin (6.0%, 100/1,668), and rifampicin (3.3%, 55/1,668). The rate of rifampicin resistance was 1.8% (23/1,290) in the new cases and 9.4% (32/340) in the previously treated cases. Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains, respectively: 18.6% vs. 8.7 or 9%, P < 0.001. The estimated proportion of recent transmissions was 25.9% (432/1,668). Multivariate logistic analyses indicated that sex, age, occupation, lineage, and drug resistance were the risk factors for recent transmission. Despite the low rate of drug resistance, drug-resistant strains had a higher risk of recent transmission than the susceptible strains (adjusted odds ratio, 1.414; 95% CI, 1.023-1.954; P = 0.036). Among all patients with drug-resistant tuberculosis (DR-TB), 78.4% (171/218) were attributed to the transmission of DR-TB strains. Conclusion: Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Rifampin/farmacología , Estudios Retrospectivos , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Mutación
5.
Redox Biol ; 59: 102588, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592568

RESUMEN

Escherichia coli (E. coli) is the most common Gram-negative bacterial organism causing neonatal meningitis. The pathogenesis of E. coli meningitis, especially how E. coli escape the host immune defenses, remains to be clarified. Here we show that deletion of bacterial Lpp encoding lipoprotein significantly reduces the pathogenicity of E. coli K1 to induce high-degree of bacteremia necessary for meningitis. The Lpp-deleted E. coli K1 is found to be susceptible to the intracellular bactericidal activity of neutrophils, without affecting the release of neutrophil extracellular traps. The production of reactive oxygen species (ROS), representing the primary antimicrobial mechanism in neutrophils, is significantly increased in response to Lpp-deleted E. coli. We find this enhanced ROS response is associated with the membrane translocation of NADPH oxidase p47phox and p67phox in neutrophils. Then we constructed p47phox knockout mice and we found the incidence of bacteremia and meningitis in neonatal mice induced by Lpp-deleted E. coli is significantly recovered by p47phox knockout. Proteomic profile analysis show that Lpp deficiency induces upregulation of flagellar protein FliC in E. coli. We further demonstrate that FliC is required for the ROS induction in neutrophils by Lpp-deleted E. coli. Taken together, these data uncover the novel role of Lpp in facilitating intracellular survival of E. coli K1 within neutrophils. It can be inferred that Lpp of E. coli K1 is able to suppress FliC expression to restrain the activation of NADPH oxidase in neutrophils resulting in diminished bactericidal activity, thus protecting E. coli K1 from the elimination by neutrophils.


Asunto(s)
Bacteriemia , Proteínas de Escherichia coli , Ratones , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Proteómica , NADPH Oxidasas/metabolismo , Bacteriemia/metabolismo , Bacteriemia/microbiología , Proteínas del Citoesqueleto/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
6.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995368

RESUMEN

Microvascular basement membrane (BM) plays a pivotal role in the interactions of astrocyte with endothelium to maintain the blood-brain barrier (BBB) homeostasis; however, the significance and precise regulation of the endothelial cell-derived BM component in the BBB remain incompletely understood. Here, we report that conditional knockout of Atg7 in endothelial cells (Atg7-ECKO) leads to astrocyte-microvascular disassociation in the brain. Our results reveal astrocytic endfeet detachment from microvessels and BBB leakage in Atg7-ECKO mice. Furthermore, we find that the absence of endothelial Atg7 downregulates the expression of fibronectin, a major BM component of the BBB, causing significantly reduced coverage of astrocytes along cerebral microvessels. We reveal Atg7 triggers the expression of endothelial fibronectin via regulating PKA activity to affect the phosphorylation of cAMP-responsive element-binding protein. These results suggest that Atg7-regulated endothelial fibronectin production is required for astrocytes adhesion to microvascular wall for maintaining the BBB homeostasis. Thus, endothelial Atg7 plays an essential role in astrocyte-endothelium interactions to maintain the BBB integrity.


Asunto(s)
Astrocitos , Proteína 7 Relacionada con la Autofagia , Barrera Hematoencefálica , Animales , Ratones , Astrocitos/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Fibronectinas/metabolismo , Membrana Basal/metabolismo , Adhesión Celular
7.
Cell Physiol Biochem ; 30(1): 123-36, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22759961

RESUMEN

AIMS: Quercetin, a flavonoid present in vegetables, has anti-inflammatory properties and potential inhibitory effects on bone resorption. Up to date, the effect of quercetin on lipopolysaccharide (LPS)-induced osteoclastogenesis has not yet been reported. In the current study, we evaluated the effect of quercetin on LPS-induced osteoclast apoptosis and bone resorption. METHODS: RAW264.7 cells were non-treated, treated with LPS alone, or treated with both LPS and quercetin. After treatment, the number of osteoclasts, cell viability, bone resorption and osteoclast apoptosis were measured. The expressions of osteoclast-related genes including tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinase-9 (MMP9) and cathepsin K (CK) were determined by real-time quantitative polymerase chain reaction (qPCR). Protein levels of receptor activator of nuclear factor-ĸB (RANK), tumor necrosis factor receptor-associated factor 6 (TRAF6), cyclooxygenase-2 (COX-2), Bax, Bcl-2 and mitogenactivated protein kinases (MAPKs) were measured using Western blotting assays. The MAPK signaling pathway was blocked by pretreatment with MAPK inhibitors. RESULTS: LPS directly promoted osteoclast differentiation of RAW264.7 cells and upregulated the protein expression of RANK, TRAF6 and COX-2; while quercetin significantly decreased the number of LPS-induced osteoclasts in a dose-dependent manner. None of the treatments increased cytotoxicity in RAW264.7 cells. Quercetin inhibited mRNA expressions of osteoclast-related genes and protein levels of RANK, TRAF6 and COX-2 in LPS-induced mature osteoclasts. Quercetin also induced apoptosis and inhibited bone resorptive activity in LPS-induced mature osteoclasts. Furthermore, quercetin promoted the apoptotic signaling pathway including increasing the phosphorylation of p38-MAPK, c-Jun N-terminal kinases/stress-activated protein kinases (JNK/SAPK), and Bax, while inhibited Bcl-2 expression. CONCLUSIONS: Quercetin could supress LPS-induced osteoclast bone resorption through blocking RANK signaling and inhibiting the expression of osteoclast-related genes. Quercetin also promoted LPS-induced osteoclast apoptosis via activation of the MAPK apoptotic signaling pathway. These findings suggest that quercetin could be of potential use as a therapeutic agent to treat bacteria-induced bone resorption.


Asunto(s)
Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Resorción Ósea , Lipopolisacáridos/farmacología , Osteoclastos/fisiología , Quercetina/farmacología , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Activación Enzimática , Expresión Génica/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Fosfatasa Ácida Tartratorresistente
8.
Biochem Biophys Res Commun ; 417(3): 925-30, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22138395

RESUMEN

Cronobacter sakazakii (C. sakazakii) is an opportunistic pathogen that causes sepsis and meningitis in neonate. The molecular mechanism involved in the pathogenesis of C. sakazakii meningitis remains unclear. In this study, we found that C. sakazakii invasion was significantly decreased in human brain microvascular endothelial cells (HBMEC) treated with cytosolic phospholipases A(2)α (cPLA(2)α) inhibitor. Increased phosphorylation of cPLA(2)α was observed in HBMEC infected with C. sakazakii, which was prevented by treatment with cPLA(2)α inhibitor. cPLA(2)α knockdown in HBMEC significantly attenuated C. sakazakii invasion into HBMEC. Immunofluorescence demonstrated that the rearrangements of actin filaments in HBMEC induced by C. sakazakii were effectively blocked by either treatment with cPLA(2)α inhibitor or transfection with cPLA(2)α siRNA. Interestingly, we found that C. sakazakii infection promoted the aggregation of phosphorylated cPLA(2)α, which was associated with depolymerized actin filaments in HBMEC. Furthermore, our data revealed that cPLA(2)α acts downstream of Akt signaling pathway in HBMEC stimulated with C. sakazakii. Taken together, our results illustrated that cPLA(2)α-mediated actin filament rearrangements downstream of Akt activation is required for C. sakazakii invasion into brain endothelial cells.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Encéfalo/microbiología , Cronobacter sakazakii/patogenicidad , Endotelio Vascular/microbiología , Infecciones por Enterobacteriaceae/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Infecciones Oportunistas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores Despolimerizantes de la Actina/antagonistas & inhibidores , Encéfalo/irrigación sanguínea , Células Cultivadas , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Humanos , Microvasos/microbiología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Transducción de Señal
9.
Cell Physiol Biochem ; 28(2): 367-76, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21865745

RESUMEN

The Chinese medicinal herb, Panax notoginseng, has long been used to treat bone fractures and Panax notoginseng saponins (PNS) could promote bone formation. Here, we investigated whether PNS could promote osteogenesis of bone marrow stromal cells (BMSCs) through modulating the MAPK signaling pathways, which are implicated in BMSC osteogenesis. We found that PNS markedly increased the mineralization of BMSCs by alizarin red S assays and stimulate alkaline phosphatase activity of these cells. Additionally, PNS significantly increased the mRNA levels of alkaline phosphatase, core-binding factor a1, and bone sialoprotein while decreasing PPARγ2 mRNA levels. Furthermore, inhibitors of ERK, PD98059, and p38, SB203580 inhibited the osteogenesis-potentiating effects by PNS. PNS stimulated the activation of ERK and p38 as evidenced by increased phosphorylation of these proteins, which was inhibited by PD98059 and SB203580. Our findings indicate that PNS could promote BMSC osteogenesis by activating the ERK and p38 signaling pathways.


Asunto(s)
Osteogénesis/efectos de los fármacos , Panax notoginseng/química , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Flavonoides/farmacología , Imidazoles/farmacología , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Masculino , PPAR gamma/genética , PPAR gamma/metabolismo , Fosforilación , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Células del Estroma/citología , Células del Estroma/patología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Microvasc Res ; 82(2): 113-21, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21726568

RESUMEN

Eph receptor tyrosine kinases and ephrin ligands participate in the regulation of a wide variety of biological processes, such as axon guidance, synaptic plasticity, angiogenesis, and tumorigenesis. The role of Eph receptors and ephrin ligands in brain endothelial cells remains unknown. Here, we examined the expression profile of EphA receptors and ephrin-A ligands in human brain microvascular endothelial cell line (HBMEC). Our results showed that multiple EphA receptors and ephrin-A ligands are expressed in HBMEC. We found that the phosphorylation of EphA2, but not other EphA receptors, was significantly increased in HBMEC treated with recombinant ephrin-A1/Fc. Meanwhile, elevated EphA2 phosphorylation was accompanied by disassembly of tight junctions in HBMEC. Furthermore, EphA2 RNAi in HBMEC could promote tight junction formation and prevent the ephrin-A1-induced tight junction disruption. Also, when a kinase-inactive mutant of EphA2 (EphA2-K646M) was expressed in HBMEC, the tight junction was enhanced and the ephrin-A1-induced tight junction disruption was blocked. In addition, EphA2 RNAi and expression of EphA2-K646M in HBMEC inhibited in vitro cell migration and angiogenesis of HBMEC. These data indicated an important role of EphA2 in regulating both tight junction formation and angiogenesis in brain endothelial cells.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/patología , Células Endoteliales/citología , Microcirculación , Neovascularización Patológica , Receptor EphA2/metabolismo , Uniones Estrechas/metabolismo , Regulación de la Expresión Génica , Humanos , Ligandos , Permeabilidad , Fosforilación , Interferencia de ARN , Receptor EphA2/fisiología , Fracciones Subcelulares , Cicatrización de Heridas
11.
J Trauma ; 70(5): E93-7, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21336202

RESUMEN

OBJECTIVE: To introduce our experiences of using the flap based on the distal cutaneous branch of the ulnar artery. METHODS: Twenty-four patients sought surgical treatment for soft tissue defects of the hand at our medical institution between January 2003 and December 2008. Fifteen cases had soft tissue defect on the palmar aspect of the hand, and nine cases had soft tissue defects on the dorsal aspect of the hand. The flap based on the distal cutaneous branch of the ulnar artery was performed in all these patients. The size of the flaps ranged from 5 cm to 12 cm in length and from 4 cm to 8 cm in width. RESULTS: Two flaps developed partial necrosis (25-35% of their area). In the other cases, both the donor and recipient sites healed successfully. No patient complained of cold intolerance of the hand or any altered sensation in the forearm. The range of motion of the wrist and hand joints was within normal limits in most cases, with 14 cases with excellent, 8 cases with good, 2 cases with fair, and 0 case with poor results according to the total active motion (TAM) criteria. None of the patients had limitations in activities of daily living. CONCLUSION: Because the flap does not compromise the dominant hand arteries and provides a reliable blood supply, it is a good choice for soft tissue reconstruction of defects in the dorsal and palmar aspects of the hand.


Asunto(s)
Traumatismos del Antebrazo/cirugía , Procedimientos de Cirugía Plástica/métodos , Piel/irrigación sanguínea , Traumatismos de los Tejidos Blandos/cirugía , Colgajos Quirúrgicos/irrigación sanguínea , Arteria Cubital/cirugía , Anciano , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
12.
Arch Orthop Trauma Surg ; 131(5): 675-80, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21069361

RESUMEN

INTRODUCTION: Reverse radial forearm flap has been proven reliable and effective for hand reconstruction. Here we report our experience with the use of reverse forearm flap that does not contain the radial or ulnar artery for reconstruction of hand defects in 65 cases with soft tissue defects of the hand. METHOD: Sixty-five patients who sought surgical treatment for soft tissue defects of the hand at our hospital between January 2003 and December 2008 were included in the study. 39 cases had soft tissue defect on the dorsal aspect of the hand and 26 cases on the palmar aspect of the hand. 65 flaps were performed with the posterior interosseous artery flap in 26 cases, island flap supplied by the distal cutaneous branch of the ulnar artery in 23 cases, and the flap based on distally perforator of the radial artery in sixteen cases with the size of the flaps ranging from 5 to 12 cm in length and from 4 to 8 cm in width. RESULTS: The distal cutaneous branch of the ulnar artery flap showed partial necrosis (25-35% of their area) in two cases. Both the donor and the recipient sites healed successfully in other cases. At 8.4 months of follow up, all patients had insensitivity in recipient sites. No patient complained of cold intolerance, pain, numbness and so on in the forearm and hand. According to the TAM criteria (the total active motion of the finger joint) and DASH (Disability of the Arm, Shoulder, and Hand) score showed that postoperative functions were excellent and symptoms were minor, with no significant differences among the groups (P > 0.05). CONCLUSION: Our results indicated that the reverse forearm flap preserving the radial and ulnar artery is a reliable and effective method to cover skin defects of the hand.


Asunto(s)
Traumatismos Craneocerebrales/cirugía , Procedimientos de Cirugía Plástica/métodos , Colgajos Quirúrgicos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Traumatismos de los Tejidos Blandos/cirugía , Adulto Joven
13.
Zhong Yao Cai ; 34(4): 553-5, 2011 Apr.
Artículo en Zh | MEDLINE | ID: mdl-21809542

RESUMEN

OBJECTIVE: To study the chemical constituents of Codonopsis lanceolata. METHODS: Chemical constituents were separated with the column chromatographic, and their structures were identified by chemical and spectroscopic methods. RESULTS: Six compounds were isolated and identified as syringin (1), shikimic acid (2), friedelin (3), alpha-spinasterol (4), stigmasterol (5), stigmasta-7-dien-3beta-ol (6). CONCLUSION: Compounds 3-6 are isolated from this plant for the first time.


Asunto(s)
Codonopsis/química , Plantas Medicinales/química , Estigmasterol/aislamiento & purificación , Triterpenos/aislamiento & purificación , Glucósidos/química , Glucósidos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Fenilpropionatos/química , Fenilpropionatos/aislamiento & purificación , Raíces de Plantas/química , Ácido Shikímico/química , Ácido Shikímico/aislamiento & purificación , Estigmasterol/análogos & derivados , Estigmasterol/química , Triterpenos/química
14.
Biomed Environ Sci ; 34(8): 616-622, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34474721

RESUMEN

OBJECTIVE: To evaluate multidrug resistant loop-mediated isothermal amplification (MDR-LAMP) assay for the early diagnosis of multidrug-resistant tuberculosis and to compare the mutation patterns associated with the rpoB, katG, and inhA genes at the Chinese Center for Disease Control and Prevention. METHODS: MDR-LAMP assay was evaluated using 100 Mycobacterium tuberculosis ( Mtb) isolates obtained from the National Reference Laboratory for Tuberculosis in China. Phenotypic resistance to isoniazid and rifampicin and whole-genome sequencing served as reference standards. RESULTS: The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MDR-LAMP were 85.5%, 93.6%, 96.7%, and 74.4% for the detection of resistance to isoniazid and rifampicin, respectively, and 80.5%, 92.3%, 98.6%, and 41.4% for the detection of Mtb cultured from smear-positive sputum samples, respectively. When DNA sequencing was used as the reference standard, the sensitivity, specificity, PPV, and NPV of MDR-LAMP were 93.1%, 92.3%, 97.2%, and 82.8% for the detection of katG and inhA gene mutations, respectively, and 89.1%, 88.9%, 93.4%, and 81.1% for the detection of rpoB gene mutation, respectively. CONCLUSION: MDR-LAMP is a rapid and accessible assay for the laboratory identification of rifampicin and isoniazid resistance of Mtb isolates.


Asunto(s)
ADN Bacteriano/análisis , Farmacorresistencia Bacteriana Múltiple/genética , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Antituberculosos , Proteínas Bacterianas/genética , Catalasa/genética , ARN Polimerasas Dirigidas por ADN/genética , Isoniazida , Mutación , Mycobacterium tuberculosis/aislamiento & purificación , Oxidorreductasas/genética , Fenotipo , Rifampin , Secuenciación Completa del Genoma
15.
Infect Dis Poverty ; 10(1): 59, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33926548

RESUMEN

BACKGROUND: Information on the prevalence and resistance spectrum of nontuberculous mycobacteria (NTM) in China is mainly based on regional or local data. To estimate the proportion of NTM cases in China, a national survey of NTM pulmonary disease was carried out based on acid-fast positive sputum samples collected in 2013. METHODS: Sputum samples collected from enrolled presumptive cases in 72 nationwide tuberculosis surveillance sites from the 31 provinces in the mainland of China were cultured using L-J medium at the National tuberculosis reference laboratory (NTRL). MALDI-TOF MS identified the species of re-cultured strains, and minimal inhibitory concentrations (MICs) were determined to evaluate the drug susceptibility of NTM isolates. Data analysis used statistical software SPSS version 22.0 for Windows statistical package. RESULTS: Of 4917 mycobacterial isolates cultured, 6.4% [317/4917, 95% confidence interval (CI) 5.8%-7.2%] were confirmed as NTM, among which 7.7% (287/3709, 95% CI 6.9%-8.6%) were from the southern region. In inland and coastal China, 87.7% (95% CI 78.7%-93.2%) and 50.0% (95% CI 43.7%-56.3%) of isolates, respectively, were slow-growing mycobacteria (SGM), with the remaining rapid growing mycobacteria (RGM). A total of 29 species were detected, Mycobacterium abscessus had higher clarithromycin-inducible resistance rates than M. massiliense (65.67% vs 2.22%). M. kansasii presented lower resistance rates in linezolid and moxifloxacin than M. avium-intracellulare complex (3.23% vs 66.67%, 0 vs 47.22%) and other SGM (3.23% vs 38%, 0 vs 26%). CONCLUSIONS: More NTM pulmonary disease was observed in the south and coastal China (P < 0.01). SGM was widely distributed, and more RGM are present in southern and coastal China (P < 0.01). The antimicrobial resistance spectrum of different NTM species was significantly different and accurate species identification would be facilitated to NTM pulmonary disease treatment.


Asunto(s)
Antibacterianos , Micobacterias no Tuberculosas , Antibacterianos/farmacología , China/epidemiología , Farmacorresistencia Bacteriana , Incidencia
16.
Cell Physiol Biochem ; 26(6): 1081-92, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21220939

RESUMEN

AIMS: The Chinese medicinal herb, Panax notoginseng, has long been used to treat bone fractures and Panax notoginseng saponins (PNS) could promote bone formation. We investigated the effects of PNS on gap junction intercellular communication (GJIC) and osteogenesis-associated genes in rat bone marrow stromal cells (BMSCs). METHODS AND RESULTS: Our MTT assays demonstrated that PNS enhanced BMSC proliferation under basal medium culture in vitro. Alkaline phosphatase (ALP) assays and alizarin Red staining showed that PNS stimulated ALP activity and calcium deposition by BMSCs. Measurement of the traversing of Lucifer yellow through intercellular junctions revealed that PNS significantly stimulated GJIC activities. RT-PCR assays further showed that PNS augmented the increase in the mRNA levels of ALP, core-binding factor a1, and bone sialoprotein while decreasing the mRNA level of PPARγ2. PNS also reduced RANKL levels and increased osteoprotegerin levels. Gap junction inhibitor, 18a-glycyrrhetinic acid, could partially reverse the actions of PNS on BMSCs. CONCLUSIONS: Our findings indicate that PNS could promote osteogenesis of BMSCs by targeting osteogenesis-associated genes, which could be mediated by their actions on GJIC.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Osteogénesis , Panax notoginseng/química , Saponinas/farmacología , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Células de la Médula Ósea/citología , Comunicación Celular/fisiología , Proliferación Celular , Uniones Comunicantes/fisiología , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacología , Isoquinolinas/química , Masculino , Osteogénesis/efectos de los fármacos , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Células del Estroma/efectos de los fármacos
17.
Sci Rep ; 10(1): 6897, 2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327695

RESUMEN

Recent experimental study shows that the pre-lithiated MoS2 monolayer exhibits an enhanced electrochemical performance, coulombic efficiency of which is 26% higher than the pristine MoS2 based anode. The underlying mechanism of such significant enhancement, however, has not yet been addressed. By means of density functional theory (DFT) calculations, we systematically investigated the adsorption and diffusion behavior of lithium (Li) atoms on the MS2 (M = Mo, W, V) monolayers. On the pre-lithiated MS2 monolayers, the adsorption energy of extra Li ions are not significantly changed, implying the feasibility of multilayer adsorption. Of importance, the Li diffusion barriers on pre-lithiated MS2 are negligibly small because of the charge accumulation between the diffusing Li ions and the pre-lithiating Li layer. Correspondingly, we report that the pre-lithiation should be a general treatment which can be employed on many transition-metal di-chalcogenides to improve their storage capacities and charge-discharge performance in Li ion batteries. In addition, we propose that the pre-lithiated VS2 may serve as an outstanding anode material in LIBs.

18.
Front Mol Neurosci ; 13: 23, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210761

RESUMEN

The expression of contactin-associated protein 1 (Caspr1) in brain microvascular endothelial cells (BMECs), one of the major cellular components of the neurovascular unit (NVU), has been revealed recently. However, the physiological role of Caspr1 in BMECs remains unclear. We previously reported the nonamyloidogenic processing of amyloid protein precursor (APP) pathway in the human BMECs (HBMECs). In this study, we found Caspr1 depletion reduced the levels of soluble amyloid protein precursor α (sAPPα) in the supernatant of HBMECs, which could be rescued by expression of full-length Caspr1. Our further results showed that ADAM9, the α-secretase essential for processing of APP to generate sAPPα, was decreased in Caspr1-depleted HBMECs. The reduced sAPPα secretion in Caspr1-depleted HBMECs was recovered by expression of exogenous ADAM9. Then, we identified that Caspr1 specifically regulates the expression of ADAM9, but not ADAM10 and ADAM17, at transcriptional level by nuclear factor-κB (NF-κB) signaling pathway. Caspr1 knockout attenuated the activation of NF-κB and prevented the nuclear translocation of p65 in brain endothelial cells, which was reversed by expression of full-length Caspr1. The reduced sAPPα production and ADAM9 expression upon Caspr1 depletion were effectively recovered by NF-κB agonist. The results of luciferase assays indicated that the NF-κB binding sites are located at -859 bp to -571 bp of ADAM9 promoter. Taken together, our results demonstrated that Caspr1 facilitates sAPPα production by transcriptional regulation of α-secretase ADAM9 in brain endothelial cells.

19.
Anat Rec (Hoboken) ; 302(12): 2255-2260, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31265765

RESUMEN

Cerebral angiogenesis is a key event during brain development and recovery from brain injury. We previously demonstrated that Atg7 knockout impaired angiogenesis in the mouse brain. However, the role of Atg7 in angiogenesis is not completely understood. In this study, we used human brain microvascular endothelial cells (HBMECs) to investigate the mechanism of Atg7-regulated cerebral angiogenesis. We found that Atg7 depletion specifically diminished the expression of the ß3 and γ2 chains of laminin-5, a major component of the extracellular matrix. In contrast, autophagy inhibitors did not affect laminin-5 expression, suggesting that Atg7-regulated laminin-5 expression is autophagy-independent. We also found that Atg7-regulated laminin-5 expression occurred at the transcriptional level through NF-κB signaling. Exogenous laminin-5 or the NF-κB agonist betulinic acid effectively rescued tube formation by Atg7-deficient HBMECs. Taken together, our study identified a novel mechanism by which Atg7 regulates laminin-5 expression via NF-κB to modulate tube formation by brain endothelial cells during cerebral angiogenesis. Anat Rec, 302:2255-2260, 2019. © 2019 American Association for Anatomy.


Asunto(s)
Proteína 7 Relacionada con la Autofagia/antagonistas & inhibidores , Autofagia , Encéfalo/irrigación sanguínea , Moléculas de Adhesión Celular/antagonistas & inhibidores , Endotelio Vascular/citología , Neovascularización Fisiológica , ARN Interferente Pequeño/genética , Proteína 7 Relacionada con la Autofagia/genética , Encéfalo/citología , Encéfalo/metabolismo , Moléculas de Adhesión Celular/genética , Endotelio Vascular/metabolismo , Humanos , Morfogénesis , Transducción de Señal , Kalinina
20.
Microb Cell ; 5(9): 418-420, 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30280104

RESUMEN

Escherichia coli (E. coli) penetration of the blood-brain barrier (BBB) is the key step essential for the development of meningitis. In a recent paper (Nat Commun 9:2296), we identify Caspr1 as a host receptor for E. coli virulence factor IbeA to pave the way the penetration of bacteria through the BBB. Bacterial IbeA interacts with endothelial Caspr1 to trigger intracellular focal adhesion kinase activation, leading to E. coli internalization into the brain endothelial cells. Importantly, endothelial knockout of Caspr1 in mice significantly reduced E. coli crossing through the BBB. Based on the results that extracellular aa 203-355 of Caspr1 bind with IbeA, we tested the blocking effect of recombinant Caspr1(203-355) peptides in neonatal rat model of meningitis. The results showed that Caspr1(203-355) peptides effectively attenuated E. coli penetration into the brain during meningitis, indicating that Caspr1(203-355) peptides could be used to neutralize the virulent IbeA to prevent meningitis. We further found that E. coli can directly invade into hippocampal neurons causing apoptosis which required the interaction between bacterial IbeA and neuronal Caspr1. These findings demonstrate that E. coli hijack Caspr1 as a host receptor for penetration of BBB and invasion of hippocampal neurons, resulting in progression of meningitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA