Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 79: 117156, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640595

RESUMEN

A series of novel 9-N-substituted-13-alkylberberine derivatives from Chinese medicine were designed and synthesized with improved anti-hepatocellular carcinoma (HCC) activities. The optimal compound 4d showed strong activities against HepG2, Sk-Hep-1, Huh-7 and Hep3B cells with IC50 values of 0.58-1.15 µM, which were superior to positive reference cisplatin. Interestingly, 4d exhibited over 40-fold more potent activity against cisplatin-resistant HepG2/DPP cells while showing lower cytotoxicity in normal LX-2 cells. The mechanism studies revealed 4d greatly stabilized G-quadruplex DNA leading to intracellular c-MYC expression downregulation, blocked G2/M-phase cell cycle by affecting related p-cdc25c, cdc2 and cyclin B1 expressions, and induced apoptosis by a ROS-promoted PI3K/Akt-mitochondrial pathway. Furthermore, 4d possessed good pharmacokinetic properties and significantly inhibited the tumor growth in the H22 liver cancer xenograft mouse model without obvious toxicity. Altogether, the remarkably biological profiles of 4d both in vitro and in vivo would make it a promising candidate for HCC therapy.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Cisplatino/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Medicina Tradicional China , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Células Hep G2 , Apoptosis , Proliferación Celular , Línea Celular Tumoral
2.
J Sep Sci ; 46(11): e2300037, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004155

RESUMEN

In the classical natural product extraction and separation process, it is tedious and requires large amounts of reagents and time. In this study, an efficient coaxial liquid centrifugal oil-water-oil triple-liquid-phase system with a simple structure and convenient operation was successfully constructed and used to extract flavonoids from Platycladi Cacumen. The results showed that the coaxial liquid centrifugal platform constructed in this study had good stability and 6 ml was the minimum volume of the middle phase for 1000 rpm to stabilize the system. Besides, it was easy to repeat the operation: the relative standard deviations of the extraction yields of flavonoids and sugar in six parallel operations were all less than 10%. Moreover, it was only one-tenth of the time required for this method as traditional liquid-liquid extraction while reducing the use of volatile organic reagents. Finally, the new method was more selective than the traditional method for the extraction of flavonoids. Therefore, this study provides a possibility for the coaxial liquid centrifugal platform to be used in multi-liquid phase systems to achieve the simultaneous extraction of different parts of natural products by different liquid phases. It is expected to provide a reliable reference for further expansion of small-scale experimental operations to industrial production.


Asunto(s)
Productos Biológicos , Flavonoides/análisis , Extracción Líquido-Líquido , Cromatografía Líquida de Alta Presión
3.
J Sep Sci ; 45(14): 2591-2602, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35593082

RESUMEN

In this work, the hypoglycemic components in Platycladi Cacumen, an essential traditional Chinese medicine, were evaluated by combining phytochemical investigation, spectrum-effect relationship analysis, and chemometric methods. The phytochemical studies on Platycladi Cacumen extract lead to the isolation of 21 potential bioactive compounds. The chromatographic fingerprints of Platycladi Cacumen samples were established by high-performance liquid chromatography. The hypoglycemic effects of Platycladi Cacumen samples were further evaluated by inhibition of α-glucosidase and detected by the high-performance liquid chromatography method. The spectrum-effect relationship study by bivariate correlations analysis and orthogonal partial least squares regression revealed that myricitrin (P9), quercitrin (P13), afzelin (P18), and amentoflavone (P24) were more relevant to the α-glucosidase inhibitory activity. The results of α-glucosidase inhibitory activity of 21 isolated compounds and molecular docking studies also indicated these flavonoids had potent α-glucosidase inhibitory activity. Collectively, the present study established the spectrum-effect relationship mode of Platycladi Cacumen and discovered the major hypoglycemic components, which provides a feasible method for screening bioactive components.


Asunto(s)
Medicamentos Herbarios Chinos , Quimiometría , Medicamentos Herbarios Chinos/análisis , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales , alfa-Glucosidasas
4.
Phytochem Anal ; 33(5): 659-669, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35261095

RESUMEN

OBJECTIVES: Uncariae Rammulus Cum Uncis (URCU) is a commonly used herbal medicine to treat diabetes. This work is aimed to discover and identify the antidiabetic components from URCU extract. METHODS: Column chromatography and recrystallisation were used to separate individual compounds from URCU extract, and the obtained individual compounds were used for determination of α-glucosidase inhibitory activity. Molecular docking was applied to predict the molecular interactions. High-performance liquid chromatography (HPLC) was used for fingerprint analysis of 12 batches of URCU. HPLC fingerprints were assessed by the similarity analysis (SA) and hierarchical clustering analysis (HCA). The spectrum-effect relationship analysis of URCU was assessed by orthogonal partial least squares (OPLS) and bivariate correlation analysis (BCA). RESULTS: A total of 10 potential bioactive compounds were isolated and six of them showed potent α-glucosidase inhibitory activity (IC50 = 4.21-166.10 µM). The molecular docking results revealed that the binding energy was consistent with the results of α-glucosidase inhibition activity analysis (-8.55 to -4.84 kcal/mol). The ethanol extracts of the 12 batches of URCU showed inhibitory effect on α-glucosidase in a dose-dependent manner, and the IC50 values ranged from 0.94 µg/mL to 12.57 µg/mL. The spectrum-effect relationship analysis results indicated that 13 peaks might be potential antidiabetic compounds in URCU, including 18 (hyperoside) and 19 (rutin). CONCLUSION: A comprehensive connection between URCU chemical components and α-glucosidase inhibitory activity was established for the first time by using a spectrum-effect relationship model, which might be applicable to the quality control of URCU.


Asunto(s)
Medicamentos Herbarios Chinos , Hipoglucemiantes , Medicamentos Herbarios Chinos/química , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , alfa-Glucosidasas
5.
J Sep Sci ; 44(10): 2046-2053, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33682313

RESUMEN

In this study, the in vitro biotransformation of nobiletin by human intestinal microbiota, which is a bioactive polymethoxyflavone widely presented in Citrus plants, has been investigated via utilizing an anaerobic incubation protocol. The incubation samples were detected using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. A background subtraction strategy incorporated in Microsoft Office was employed to eliminate the interferences in medium and feces. The parent and three metabolites sinensetin, 5-hydroxy-6,7,3',4'-tetramethoxyflavone, and 5-demethylnobiletin were detected and identified based on the characteristics of their protonated molecules. The proposed metabolic pathway revealed that nobiletin went through phase I metabolism including demethylation and demethoxylation in human intestinal microbiota. The characterization of nobiletin metabolic profile transformed by human intestinal bacteria would be helpful for understanding its efficacy and action mechanism.


Asunto(s)
Bacterias/metabolismo , Flavonas/química , Flavonas/metabolismo , Microbioma Gastrointestinal , Biotransformación , Cromatografía Líquida de Alta Presión/métodos , Citrus/metabolismo , Heces/química , Heces/microbiología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Espectrometría de Masas/métodos
6.
Molecules ; 26(9)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063301

RESUMEN

Amomum Villosum Lour. (A. villosum) is a folk medicine that has been used for more than 1300 years. However, study of the polysaccharides of A. villosum is seriously neglected. The objectives of this study are to explore the structural characteristics of polysaccharides from A. villosum (AVPs) and their effects on immune cells. In this study, the acidic polysaccharides (AVPG-1 and AVPG-2) were isolated from AVPs and purified via anion exchange and gel filtration chromatography. The structural characteristics of the polysaccharides were characterized by methylation, HPSEC-MALLS-RID, HPLC, FT-IR, SEM, GC-MS and NMR techniques. AVPG-1 with a molecular weight of 514 kDa had the backbone of → 4)-α-d-Glcp-(1 → 3,4)-ß-d-Glcp-(1 → 4)-α-d-Glcp-(1 →. AVPG-2 with a higher molecular weight (14800 kDa) comprised a backbone of → 4)-α-d-Glcp-(1 → 3,6)-ß-d-Galp-(1 → 4)-α-d-Glcp-(1 →. RAW 264.7 cells were used to investigate the potential effect of AVPG-1 and AVPG-2 on macrophages, and lipopolysaccharide (LPS) was used as a positive control. The results from bioassays showed that AVPG-2 exhibited stronger immunomodulatory activity than AVPG-1. AVPG-2 significantly induced nitric oxide (NO) production as well as the release of interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α), and upregulated phagocytic capacities of RAW 264.7 cells. Real-time PCR analysis revealed that AVPG-2 was able to turn the polarization of macrophages to the M1 direction. These results suggested that AVPs could be explored as potential immunomodulatory agents of the functional foods or complementary medicine.


Asunto(s)
Amomum/química , Polisacáridos/química , Polisacáridos/metabolismo , Animales , Supervivencia Celular , Cromatografía Líquida de Alta Presión , Citocinas/metabolismo , Etanol , Factores Inmunológicos , Inmunomodulación/efectos de los fármacos , Lipopolisacáridos/química , Macrófagos/metabolismo , Espectroscopía de Resonancia Magnética , Ratones , Microscopía Electrónica de Rastreo , Peso Molecular , Óxido Nítrico/química , Fagocitosis , Células RAW 264.7 , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
7.
Chem Biodivers ; 17(5): e2000056, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32190963

RESUMEN

Osteoporosis (OP) is a metabolic bone disease affecting nearly 200 million individuals globally. Morinda officinalis F.C.How (MOH) has long been used as a traditional herbal medicine for the treatment of bone fractures and joint diseases in China. However, it still remains unclear how the compounds in MOH work synergistically for treating OP. In this study, we used prednisolone (PNSL)-induced zebrafish OP model to screen the antiosteoporosis components in MOH. A network pharmacology approach was further proposed to explore the underlying mechanism of MOH on OP. The PNSL-induced zebrafish model validated that two anthraquinones, one iridoid glycoside, and two saccharides exerted antiosteoporotic effect. We constructed the components-targets network and obtained the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 26 candidate compounds of MOH and 257 related targets could probably treat OP through regulating osteoclast differentiation and MAPK signaling pathway. Our work developed a strategy to screen the antiosteoporosis components and explore the underlying mechanism of MOH for treating OP at a network pharmacology level.


Asunto(s)
Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Morinda/química , Osteoporosis/tratamiento farmacológico , Animales , Diferenciación Celular/efectos de los fármacos , China , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicina Tradicional China , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/inducido químicamente , Osteoporosis/metabolismo , Prednisolona , Pez Cebra
8.
Phytochem Anal ; 30(1): 14-25, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30252165

RESUMEN

INTRODUCTION: Artemisiae argyi Folium and Artemisiae lavandulaefoliae Folium, two morphologically similar herbal medicines derived from Artemisia genus. Although the two Artemisia herbs have been used as medicines for a long time in China, the study of their phytochemical and bioactive composition is limited. OBJECTIVE: To comprehensively compare and evaluate the composition of Artemisiae argyi Folium and Artemisiae lavandulaefoliae Folium, and find the chemical makers for quality evaluation of the two Artemisia herbal medicines. METHODOLOGY: Eight compounds including six phenolic acids and two flavonoids were assayed by a single reference standard for simultaneous determination of multi-components method using 3-caffeoylquinic acid as the reference standard. The quantitative data were further analysed by chemometric approaches to compare and distinguish the two herbal medicines. RESULTS: The credibility and feasibility of the single reference standard for simultaneous determination of the multi-components method were carefully validated. The validated method was applied to analyse 16 batches of Artemisiae argyi Folium and 10 batches of Artemisiae lavandulaefoliae Folium samples. The quantitative results showed that 3,5-di-O-caffeoylquinic acid was the most abundant constituent, and the contents of flavonoids were notably different between the two herbal medicines. The chemometric analysis results indicated the two flavonoids, jaceosidin and eupatilin could be used as chemical markers for quality evaluation of the two herbal medicines. CONCLUSION: The single reference standard for simultaneous determination of the multi-components method coupled with chemometrics analysis could be a well-acceptable strategy to compare and evaluate the quality of Artemisiae argyi Folium and Artemisiae lavandulaefoliae Folium.


Asunto(s)
Artemisia/química , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/normas , Espectrofotometría Ultravioleta/métodos , Artemisia/clasificación , Análisis por Conglomerados , Límite de Detección , Análisis de Componente Principal , Control de Calidad , Estándares de Referencia , Especificidad de la Especie , Compuestos Orgánicos Volátiles/análisis
9.
J Sep Sci ; 40(22): 4347-4356, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28926203

RESUMEN

Ardisiae Japonicae Herba is a well-known traditional Chinese medicine for the treatment of bronchitis conjunctivitis, pneumonia, and trauma. In this work, a high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was first established for the separation and structural identification of the chemical constituents in Ardisiae Japonicae Herba. A total of 15 compounds including coumarins, flavonoid glycosides, and catechins were identified or tentatively characterized based on their chromatographic behaviors and mass spectral fragmentation and by comparisons with the reference standards. Furthermore, a simple high-performance liquid chromatography with diode array detection method was developed for the simultaneous determination of five major constituents. Results obtained from method validation, including linearity, precision, repeatability, stability, and recovery, showed that the established method was reliable and accurate. Bergenin and quercitrin were found to be the most abundant constituents and could be served as chemical markers for quality control of Ardisiae Japonicae Herba.


Asunto(s)
Ardisia/química , Catequina/aislamiento & purificación , Cumarinas/aislamiento & purificación , Medicamentos Herbarios Chinos/química , Flavonoides/aislamiento & purificación , Glicósidos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Medicina Tradicional China
10.
Anal Bioanal Chem ; 408(2): 527-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26514669

RESUMEN

Quassinoids, the predominant constituents in the seeds of Brucea javanica (BJ), have gained an increasing interest over the past decades since the discovery of their extensive biological activities. In the present study, a method based on the segment and exposure strategy coupled with two mass spectrometer data acquisition techniques was firstly developed and validated for comprehensive profiling of quassinoids in the seeds of BJ via high-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (HPLC-QTOF/MS). The segment and exposure strategy could significantly improve the detection efficiency for trace quassinoids in the seeds of BJ. Furthermore, the five-point screening approach based on modified mass defect filter (MDF) and the visual isotopic ion technique could rapidly screen the precursor ions of interest. The fragmentation behavior of quassinoids was systematically investigated, and a total of 148 quassinoids including 86 potentially new ones were unambiguously or tentatively identified in the seeds of BJ. Collectively, our results demonstrate that the integrated strategy reported in this study has considerable potential for rapid screening of natural compounds especially for the trace ones in herbal medicines.


Asunto(s)
Brucea/química , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Extractos Vegetales/química , Cuassinas/química , Semillas/química , Espectrometría de Masas/instrumentación , Estructura Molecular , Plantas Medicinales/química
11.
Anal Bioanal Chem ; 406(20): 4921-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24912990

RESUMEN

Absolute quantification of triacylglycerols (TAGs) in plant oils is a challenge for analysts, because most of the necessary chemical standards are unavailable. In this study, a new method for absolute quantification analysis of multi-components by use of a single marker (AQAMS), using two crucial technologies, evaluation of the collection recovery without chemical standards and enzymatic hydrolysis, was used for determining the absolute content of TAGs in brucea javanica oil (BJO), using glycerol as the marker. The TAGs in BJO were initially characterized using ultrafast liquid chromatography tandem atmospheric-pressure-chemical-ionization mass spectrometry. Then the TAGs in BJO were individually collected, by target-fraction collection via high-performance liquid chromatography coupled with an evaporative-light-scattering detector (HPLC-ELSD), and their recoveries were calculated by use of a novel non-standard evaluated recovery strategy (NSER). The results revealed that the collection procedure was feasible and reliable. Finally, modified commercial TAG assay kits using glycerol as the marker were used to determine the absolute abundance of individual TAGs in the plant oils. Comparing the result with that obtained by HPLC-ELSD analysis using triolein standard, the content of triolein determined by AQAMS was closely matched. The proposed strategy is a practical measure for solving the problem of the lack of chemical standards, and provides a new method for absolute quantification in natural products of multi-components with the same backbone.

12.
J Pharm Biomed Anal ; 249: 116337, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38986347

RESUMEN

This study aimed to identify and quantify the primary components in lotus leaf and to explore the hypolipidemic components through spectral-effect relationships and chemometric methods. Utilizing a data-dependent acquisition-diagnostic fragment ion/characteristic neutral loss screening strategy (DFI-NLS), a reliable HPLC-Q-TOF-MS analysis was conducted, identifying 77 compounds, including 36 flavonoids, 21 alkaloids, 3 terpenoids, 11 organic acids, 4 phenols, 1 lignin and 1 unsaturated hydrocarbon. A straightforward HPLC-DAD method was developed for the simultaneous determination of seven major components in lotus leaf, and quercetin-3-O-glucuronide (Q3GA) was identified as the most abundant component. The HPLC fingerprints of 36 lotus leaf sample batches were assessed using chemometric approaches such as principal component analysis and hierarchical cluster analysis. The hypolipidemic effect of these samples was analyzed by measuring total cholesterol (TC) and total triglycerides (TG) levels in palmitic acid (PA) and oleic acid (OA)-induced lipid modeling in HepG-2 cells, employing partial least squares regression and grey relation analysis to investigate the spectral-effect relationship of the lotus leaf. The in vivo hypolipidemic effect of these compounds was assessed using an egg yolk powder-induced high-fat zebrafish model. The findings indicated that peak No.11 (Q3GA) in the chemical fingerprint was significantly associated with hypolipidemic activity, suggesting it as a potential hypolipidemic compound in lotus leaf. In summary, this study facilitates the exploration of the phytochemical compounds and their bioactive properties in the lotus leaf.

13.
Front Pharmacol ; 15: 1423307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974042

RESUMEN

Background: Baitouweng decoction (BTW) is a classic botanical drugs formula that has been widely used clinically for the treatment of gut-related disorders in China. However, its role in ameliorating ulcerative colitis (UC) remains to be explored. Purpose: The study aimed to determine the therapeutic efficacy and potential mechanism of action of BTW on dextran sodium sulfate (DSS)-induced colitis mice. Methods: In vivo: 3.5% DSS-induced experimental colitis mice were treated with BTW (Pulsatilla chinensis (Bunge) Regel, Phellodendron chinense C. K. Schneid, Coptis chinensis Franch and Fraxinus chinensis Roxb), kynurenine or DOPA decarboxylase (DDC) inhibitor (carbidopa). In vitro: Caco-2 cells were stimulated with TNF-α to activate inflammation and later treated with various concentrations of BTW and carbidopa. Model evaluation included body weight, disease activity index (DAI) score, colon length and histopathology. Cytokine levels were measured by flow cytometry. Protein levels were analyzed by proteomics and functionally annotated. The levels of tryptophan metabolites in mouse serum and colon were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Alcian Blue/Phosphate Acid Schiff (AB/PAS) staining, immunohistochemistry and western blot were used to assess the intestinal barrier function and detect the protein expression levels. Results: BTW significantly reduced the DAI, ameliorated colonic injury and regulated inflammatory cytokines in DSS-induced colitis mice. The botanical drugs formula also promoted intestinal epithelial barrier repair by enhancing the expression of the tight junction (TJ) proteins. Tryptophan metabolic signaling pathway was significantly enriched in DSS-induced UC mice, and BTW decreased the level of kynurenine, increased indole metabolites. The therapeutic effect of BTW was evidently reduced when kynurenine was given to mice. Also, BTW promoted DDC protein expression and activated the aryl hydrocarbon receptor (AHR)/IL-22 signaling pathway. Conclusion: BTW improves ulcerative colitis by promoting DDC expression, regulating the conversion of tryptophan metabolism from the kynurenine pathway to the indole metabolism pathway, thereby modulating tryptophan metabolism to increase indole metabolites, and activating AHR receptors to restore intestinal barrier function.

14.
J Agric Food Chem ; 72(7): 3606-3621, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324392

RESUMEN

Ulcerative colitis is closely associated with the dysregulation of gut microbiota. There is growing evidence that natural products may improve ulcerative colitis by regulating the gut microbiota. In this research, we demonstrated that bergenin, a naturally occurring isocoumarin, significantly ameliorates colitis symptoms in dextran sulfate sodium (DSS)-induced mice. Transcriptomic analysis and Caco-2 cell assays revealed that bergenin could ameliorate ulcerative colitis by inhibiting TLR4 and regulating NF-κB and mTOR phosphorylation. 16S rRNA sequencing and metabolomics analyses revealed that bergenin could improve gut microbiota dysbiosis by decreasing branched-chain amino acid (BCAA) levels. BCAA intervention mediated the mTOR/p70S6K signaling pathway to exacerbate the symptoms of ulcerative colitis in mice. Notably, bergenin greatly decreased the symbiotic bacteria Bacteroides vulgatus (B. vulgatus), and the gavage of B. vulgatus increased BCAA concentrations and aggravated the symptoms of ulcerative colitis in mice. Our findings suggest that gut microbiota-mediated BCAA metabolism plays a vital role in the protective effect of bergenin on ulcerative colitis, providing novel insights for ulcerative colitis prevention through manipulation of the gut microbiota.


Asunto(s)
Bacteroides , Benzopiranos , Colitis Ulcerosa , Colitis , Animales , Ratones , Humanos , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Células CACO-2 , ARN Ribosómico 16S , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Aminoácidos de Cadena Ramificada , Serina-Treonina Quinasas TOR/genética , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon
15.
Nat Commun ; 15(1): 3991, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734724

RESUMEN

Citrus reticulata cv. Chachiensis (CRC) is an important medicinal plant, its dried mature peels named "Guangchenpi", has been used as a traditional Chinese medicine to treat cough, indigestion, and lung diseases for several hundred years. However, the biosynthesis of the crucial natural products polymethoxylated flavonoids (PMFs) in CRC remains unclear. Here, we report a chromosome-scale genome assembly of CRC with the size of 314.96 Mb and a contig N50 of 16.22 Mb. Using multi-omics resources, we discover a putative caffeic acid O-methyltransferase (CcOMT1) that can transfer a methyl group to the 3-hydroxyl of natsudaidain to form 3,5,6,7,8,3',4'-heptamethoxyflavone (HPMF). Based on transient overexpression and virus-induced gene silencing experiments, we propose that CcOMT1 is a candidate enzyme in HPMF biosynthesis. In addition, a potential gene regulatory network associated with PMF biosynthesis is identified. This study provides insights into PMF biosynthesis and may assist future research on mining genes for the biosynthesis of plant-based medicines.


Asunto(s)
Citrus , Flavonoides , Metiltransferasas , Citrus/genética , Citrus/metabolismo , Flavonoides/biosíntesis , Flavonoides/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Redes Reguladoras de Genes , Multiómica
16.
Phytomedicine ; 132: 155847, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38996505

RESUMEN

BACKGROUND: Gut microbiota dysbiosis significantly contributes to progression of depression. Hypericum perforatum L. (HPL) is traditionally used in Europe for treating depression. However, its mechanism remains largely underexplored. PURPOSE: This study aims to investigate the pivotal gut microbiota species and microbial signaling metabolites associated with the antidepressant effects of HPL. METHODS: Fecal microbiota transplantation was used to assess whether HPL mitigates depression through alterations in gut microbiota. Microbiota and metabolic profiling of control, chronic restraint stress (CRS)-induced depression, and HPL-treated CRS mice were examined using 16S rRNA gene sequencing and metabolomics analysis. The influence of gut microbiota on HPL's antidepressant effects was assessed by metabolite and bacterial intervention experiments. RESULTS: HPL significantly alleviated depression symptoms in a manner dependent on gut microbiota and restored gut microbial composition by enriching Akkermansia muciniphila (AKK). Metabolomic analysis indicated that HPL regulated tryptophan metabolism, reducing kynurenine (KYN) levels derived from microbiota and increasing 5-hydroxytryptophan (5-HTP) levels. Notably, supplementation with KYN activated the NFκB-NLRP2-Caspase1-IL1ß pathway and increased proinflammatory IL1ß in the hippocampus of mice with depression. Interestingly, mono-colonization with AKK notably increased 5-hydroxytryptamine (5-HT) and decreased KYN levels, ameliorating depression symptoms through modulation of the NFκB-NLRP2-Caspase1-IL1ß pathway. CONCLUSIONS: The promising therapeutic role of HPL in treating depression is primarily attributed to its regulation of the NFκB-NLRP2-Caspase1-IL1ß pathway, specifically by targeting AKK and tryptophan metabolites.

17.
Mol Cancer ; 12(1): 135, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24215632

RESUMEN

BACKGROUND: 6-Shogaol is a promising antitumor agent isolated from dietary ginger (Zingiber officinale). However, little is known about the efficacy of 6-shogaol on leukemia cells. Here we investigated the underlying mechanism of 6-shogaol induced apoptosis in human leukemia cells in vitro and in vivo. METHODS: Three leukemia cell lines and primary leukemia cells were used to investigate the apoptosis effect of 6-shogaol. A shotgun approach based on label-free proteome with LC-CHIP Q-TOF MS/MS was employed to identify the cellular targets of 6-shogaol and the differentially expressed proteins were analyzed by bioinformatics protocols. RESULTS: The present study indicated that 6-shogaol selectively induced apoptosis in transformed and primary leukemia cells but not in normal cells. Eukaryotic translation initiation factor 2 alpha (eIF2α), a key regulator in apoptosis signaling pathway, was significantly affected in both Jurkat and U937 proteome profiles. The docking results suggested that 6-shogaol might bind well to eIF2α at Ser51 of the N-terminal domain. Immunoblotting data indicated that 6-shogaol induced apoptosis through a process involving dephosphorylation of eIF2α and caspase activation-dependent cleavage of eIF2α. Furthermore, 6-shogaol markedly inhibited tumor growth and induced apoptosis in U937 xenograft mouse model. CONCLUSION: The potent anti-leukemia activity of 6-shogaol found both in vitro and in vivo in our study make this compound a potential anti-tumor agent for hematologic malignancies.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Catecoles/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Leucemia/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/química , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Catecoles/química , Activación Enzimática , Factor 2 Eucariótico de Iniciación/química , Células HL-60 , Humanos , Células Jurkat , Leucemia/enzimología , Leucemia/patología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/fisiología , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Simulación del Acoplamiento Molecular , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cell Commun Signal ; 11: 50, 2013 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-23895248

RESUMEN

BACKGROUND: Cofilin is a member of the actin depolymerizing factor (ADF)/cofilin family, which regulates actin dynamics. Increasing evidence suggests that mitochondrial translocation of cofilin appears necessary for the regulation of apoptosis. RESULTS: We report that allyl isothiocyanate (AITC) potently induces mitochondria injury and apoptosis. These events were accompanied by a loss of polymerized filamentous actin (F-actin) and increase in unpolymerized globular actin (G-actin). AITC also induces dephosphorylation of cofilin through activation of PP1 and PP2A. Only dephosphorylated cofilin binds to G-actin and translocates to mitochondria during AITC-mediated apoptosis. Mechanistic study revealed that interruption of ROCK1/PTEN/PI3K signaling pathway plays a critical role in AITC-mediated dephosphorylation and mitochondrial translocation of cofilin and apoptosis. Our in vivo study also showed that AITC-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with dephosphorylation of cofilin. CONCLUSIONS: These findings support a model in which induction of apoptosis by AITC stems primarily from activation of ROCK1 and PTEN, and inactivation of PI3K, leading in turn to activation of PP1 and PP2A, resulting in dephosphorylation of cofilin, which binds to G-actin and translocates to mitochondria, culminating in the dysfunction of mitochondria, release of cytochrome c and apoptosis.


Asunto(s)
Antineoplásicos/farmacología , Cofilina 1/metabolismo , Isotiocianatos/farmacología , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Quinasas Asociadas a rho/metabolismo , Actinas/metabolismo , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Células Cultivadas , Células HL-60 , Humanos , Isotiocianatos/uso terapéutico , Células Jurkat , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Analyst ; 138(8): 2279-88, 2013 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-23443607

RESUMEN

In this work, a rapid and simple method based on matrix solid-phase dispersion (MSPD) and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed. Guge Fengtong preparation (GGFT), a traditional Chinese herbal medicine, was investigated for validation, and eight major constituents were determined including four saponins (protodioscin, protogracillin, pseudoprotodioscin and dioscin) and four gingerols (6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol). Response surface methodology and desirability function were employed to optimize the extraction conditions, such as dispersant, dispersant/sample ratio, solvent concentration, and elution volume, of MSPD. Results showed that MSPD using C18 (1.75 g) as the dispersant material and methanol (89%, v/v) as the eluting solvent (12.00 mL) resulted in a high extraction efficiency. MSPD extraction had the advantages of combining extraction and clean-up in a single step, was less time consuming and required lower solvent volumes compared with conventional methods. Quantification of chemical compounds from GGFT preparations were performed using UPLC-MS/MS in multiple-reaction monitoring mode. The proposed method afforded a low limit of detection ranging from 0.02 to 0.40 ng for saponins and gingerols. For all the analytes, recoveries ranged from 80.9% to 103% and repeatabilities were acceptable with relative standard deviations of less than 6.81%. The proposed MSPD-UPLC-MS/MS method was successfully utilized to analyze five batches of GGFTs, and the results demonstrated that this method is simple, efficient and has potential to be applied for the quality control of herbal preparations.


Asunto(s)
Catecoles/análisis , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/química , Alcoholes Grasos/análisis , Saponinas/análisis , Espectrometría de Masas en Tándem
20.
Eur J Pharmacol ; 949: 175557, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716810

RESUMEN

Growing evidence suggests gut microbiota status affects human health, and microbiota imbalance will induce multiple disorders. Natural products are gaining increasing attention for their therapeutical effects and less side effects. The emerging studies support that the activities of many natural products are dependent on gut microbiota, meanwhile gut microbiota is modulated by natural products. In this review, we summarized the interplay between the gut microbiota and host disease, and the emerging molecular mechanisms of the interaction between natural products and gut microbiota. Focusing on gut microbiota metabolite of various natural products, and the effects of natural products on gut microbiota, we summarized the biotransformation pathways of natural products, and discussed the effect of natural products on the composition modulation of gut microbiota, protection of gut mucosal barrier and modulation of the gut microbiota metabolites. Dissecting the interplay between gut microbiota and natural products will help elucidate the therapeutic mechanisms of natural products.


Asunto(s)
Productos Biológicos , Microbioma Gastrointestinal , Humanos , Productos Biológicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA