RESUMEN
In our previous study, intranuclear cardiac troponin I (cTnI) may function as a co-factor of Yin Yang 1(YY1). Here, we aimed to explore the role of intranuclear cTnI in ageing hearts. Nuclear translocation of cTnI was demonstrated using Western blot and immunofluorescence. The potential nuclear localization sequences (NLSs) of cTnI were predicted by a web server and then verified in 293T cells by putative NLS-eGFP-GST and NLS-mutant transfection. The ratio of Nuclear cTnI/ Total cTnI (Nu/T) decreased significantly in ageing hearts, accompanied with ATG5-decline-related impaired cardiac autophagy. RNA sequencing was performed in cTnI knockout hearts. The differential expressed genes (DEGs) were analysed by overlapping with YY1 ChIP-sequencing data. cTnI gain and loss experiments in vitro determined those filtered DEGs' expression levels. A strong correlation was found between expression patterns cTnI and FOS. Using ChIP-q-PCR, we demonstrated that specific binding DNA sequences of cTnI were enriched in the FOS promoter -299 to -157 region. It was further verified that pcDNA3.1 (-)-cTnI could increase the promoter activity of FOS by using luciferase report assay. At last, we found that FOS can regulate the ATG5 (autophagy-related gene 5) gene by using a luciferase report assay. Taken together, our results indicate that decreased intranuclear cTnI in ageing hearts may cause impaired cardiac autophagy through the FOS/ATG5 pathway.
Asunto(s)
Envejecimiento , Proteína 5 Relacionada con la Autofagia , Autofagia , Núcleo Celular , Miocardio , Troponina I , Troponina I/metabolismo , Troponina I/genética , Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Envejecimiento/metabolismo , Envejecimiento/genética , Animales , Miocardio/metabolismo , Humanos , Núcleo Celular/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ratones , Células HEK293 , Masculino , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Ratones NoqueadosRESUMEN
Cardiomyopathy (CM) is a heterogeneous group of myocardial diseases in children. This study aimed to identify demographic features, clinical presentation and prognosis of children with CM. Clinical characteristics and prognostic factors associated with mortality were evaluated by Cox proportional hazards regression analyses. Genetic testing was also conducted on a portion of patients. Among the 317 patients, 40.1%, 25.2%, 24.6% and 10.1% were diagnosed with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), left ventricular noncompaction cardiomyopathy (LVNC) and restrictive cardiomyopathy (RCM), respectively. The most common symptom observed was dyspnea (84.2%). Except for HCM, the majority of patients were classified as NYHA/Ross class III or IV. The five-year survival rates were 75.5%, 67.3%, 74.1% and 51.1% in DCM, HCM, LVNC and RCM, respectively. The ten-year survival rates were 60.1%, 56.1%, 57.2% and 41.3% in DCM, HCM, LVNC and RCM, respectively. Survival was inversely related to NYHA/Ross class III or IV in patients with DCM, HCM and RCM. Out of 42 patients, 32 were reported to carry gene mutations. CONCLUSIONS: This study demonstrates that CM, especially RCM, is related to a high incidence of death. NYHA/Ross class III or IV is a predictor of mortality in the patients and gene mutations may be a common cause. TRIAL REGISTRATION: MR-50-23-011798. WHAT IS KNOWN: ⢠Cardiomyopathy (CM) is a heterogeneous group of myocardial diseases and one of the leading causes of heart failure in children due to the lack of effective treatments. ⢠There remains scarce data on Asian pediatric populations though emerging studies have assessed the clinical characteristics and outcomes of CM. WHAT IS NEW: ⢠A retrospective study was conducted and the follow-up records were established to investigate the clinical characteristics, the profile of gene mutations and prognostic outcomes of children with CM in Western China. ⢠CM, especially RCM, is related to a high incidence of death. NYHA/Ross class III or IV is a predictor of mortality in the patients and gene mutations may be a common cause.
Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Cardiomiopatía Restrictiva , Niño , Humanos , Estudios Retrospectivos , Perfil Genético , Cardiomiopatías/genética , Cardiomiopatía Restrictiva/complicaciones , Cardiomiopatía Restrictiva/genética , Cardiomiopatía Dilatada/genéticaRESUMEN
Root hair is regarded as a pivotal complementary survival tactic for mycorrhizal plant like Abies beshanzuensis when symbiosis is disrupted. Relatively little is known about the mechanism underlying root hair morphogenesis in plant species that are strongly dependent on mycorrhizal symbiosis. Many of these species are endangered, and this knowledge is critical for ensuring their survival. Here, a MYB6/bHLH13-sucrose synthase 2 (AbSUS2) module was newly identified and characterized in A. beshanzuensis using bioinformatics, histochemistry, molecular biology, and transgenesis. Functional, expression pattern, and localization analysis showed that AbSUS2 participated in sucrose synthesis and was involved in root hair initiation in A. beshanzuensis. Additionally, the major enzymatic product of AbSUS2 was found to suppress root hair initiation in vitro. Our data further showed that a complex involving the transcription factors AbMYB6 and AbbHLH13 directly interacted with the promoter of AbSUS2 and strengthened its expression, thereby inhibiting root hair initiation in response to exogenous sucrose. Our findings offer novel insights into how root hair morphogenesis is regulated in mycorrhizal plants and also provide a new strategy for the preservation of endangered mycorrhizal plant species.
Asunto(s)
Abies , Micorrizas , Micorrizas/fisiología , Simbiosis , Sacarosa/metabolismo , Azúcares/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
PURPOSE: To compare the use of singlepass fourthrow (SFT) and traditional double-pass two-throw knotting (DTT) techniques in pupilloplasty for traumatic mydriasis combined with lens dislocation, and to evaluate the learning curve between the two knotting techniques by wet lab. METHOD: The eyes of 45 patients (45 eyes) were divided into two groups according to the knotting technique used: singlepass fourthrow (22 eyes) or traditional double-pass-two-throw knotting (23 eyes). Combined phacoemulsification and pupilloplasty with pars plana vitrectomy were performed in traumatic mydriasis patients with lens dislocation. Preoperative and postoperative corrected distance visual acuity (CDVA), pupil diameter, intraocular pressure (IOP), pupilloplasty time, and complications were compared. Twenty ophthalmology residents were randomized to perform a pupilloplasty suturing exam with or without SFT knotting techniques in porcine eyes. RESULT: All cases had a minimum followup period of 6 months (range 6-12 months). There was no significant difference in the CDVA (P = 0.55), postoperative pupil diameter (P = 0.79), IOP (P > 0.05), anterior chamber exudate degree, and loosening or shedding of the line knot between the two groups. The duration of the pupilloplasty was 22.32 ± 4.58 min in the SFT group and 30.35 ± 5.55 min in the traditional group, which was a significant difference (P < 0.01). The residents in the SFT group had higher test scores and fewer surgical mistakes (P < 0.05). CONCLUSION: The SFT knotting technique has a similar treatment effect and safety as the traditional technique but requires a shorter time and is easier to perform in pupilloplasty surgery.
Asunto(s)
Extracción de Catarata , Oftalmopatías , Lesiones Oculares , Subluxación del Cristalino , Midriasis , Humanos , Midriasis/cirugía , Iris/cirugía , Vitrectomía , Lesiones Oculares/cirugía , Oftalmopatías/cirugía , Subluxación del Cristalino/cirugía , Estudios RetrospectivosRESUMEN
Cell-cell fusion studies provide an experimental platform for evaluating disease progression and investigating cell infection. However, to realize sensitive and quantitative detection on cell-cell fusion is still a challenge. Herein, we report a facile molecular beacon (MB)-based method for precise detection on cell-cell fusion. By transfection of the spike protein (S protein) and enhanced green fluorescent protein (EGFP) in HEK 293 cells, the virus-mimicking fusogenic effector cells 293-S-EGFP cells were constructed to interact with target cells. Before mixing the effector cells with the target cells, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in 293-S-EGFP cells was silenced, and the MB for GAPDH mRNA detection was delivered into the GAPDH silenced 293-S-EGFP cells. Once cell-cell fusion occurred, MB migrated from the GAPDH silenced effector cells to the target cells and hybridized with GAPDH mRNA in the target cells to induce fluorescence emission. The cell-cell fusion can be easily visualized and quantitated by fluorescence microscopy and flow cytometry. The fluorescence intensity is strongly dependent on the number of fused target cells. This MB-based method can easily identify the differences in the cell fusions for various target cells with different angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) expression levels, resulting in dramatically different fluorescence intensities in fused target cells. Our study provides a convenient and efficient quantitative detection approach to study cell-cell fusion.
Asunto(s)
Fusión Celular , Humanos , Células HEK293 , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Transfección , Citometría de Flujo , ARN Mensajero/genéticaRESUMEN
BACKGROUND: To investigate the mechanisms of potential cardioprotective effects of epigallocatechin-3-gallate (EGCG) in pressure overload-induced cardiac dysfunction. METHODS: A chronic heart failure model was established using abdominal aortic constriction (AAC) surgery, rats were divided into sham, AAC, and AAC + EGCG groups. Echocardiography and tissue section staining were performed to evaluate cardiac function and pathology, respectively. Gene expression level were detected with quantitative real-time polymerase chain reactions. Label-free quantitative proteomics was used to investigate the whole proteomes of heart, and the differentially expressed proteins were analyzed using bioinformatics methods. Western blot was performed to validate the levels and the reliability of the differential proteins. RESULTS: Compared with the AAC group, systolic dysfunction was improved in AAC + EGCG group after EGCG treatment. EGCG inhibited myocardial fibrosis and cardiac hypertrophy after AAC, along with reducing atrial natriuretic protein, B-type natriuretic peptide, collagen types 1 and 3 alpha 1, and transforming growth factor ß-1. Quantitative proteomics identified a total of 162 differentially expressed proteins, among them, 18 were closely related to cardiovascular disorders. Bioinformatics analyses showed that EGCG played a therapeutic role mainly by changing energy metabolism processes, such as oxidative phosphorylation and lipid metabolism. Furthermore, NADH: ubiquinone oxidoreductase subunit S4, an important component of the mitochondrial respiratory chain, was increased after AAC and then reversed by EGCG, which was consistent with the proteomics results. CONCLUSIONS: EGCG may correct cardiac systolic dysfunction and prevent cardiac remodeling after heart failure via enhancing the energy metabolism, which provides us with new insights into cardioprotective effects of EGCG related to the energy metabolisms in pressure overload-induced cardiac dysfunction.
Asunto(s)
Catequina , Insuficiencia Cardíaca , Animales , Cardiomegalia/patología , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/farmacología , Catequina/uso terapéutico , Modelos Animales de Enfermedad , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Ratas , Reproducibilidad de los ResultadosRESUMEN
ABSTRACT: The aim of this study was to investigate whether Treg/Th17 ratio regulation plays an important role in epigallocatechin-3-gallate (EGCG) in attenuating increased afterload-induced cardiac hypertrophy. Three-month-old male C57BL/6 mice were divided into sham + vehicle, abdominal aortic constriction (AAC) + vehicle, and AAC + EGCG groups. Intraperitoneal EGCG (50 mg/kg/d) administration was conducted. Cardiac structure and function were examined by ultrasonography. Pathology was examined by hematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichome staining. T-lymphocyte subtypes were analyzed using immunofluorescence and flow cytometry assays. Ultrasonography showed that the ventricular wall in the AAC + vehicle group was thicker than that in the sham + vehicle group (P < 0.05). Hematoxylin and eosin staining revealed cardiomyocyte hypertrophy accompanied by a small amount of inflammatory cell infiltration in the AAC + vehicle group. The results of wheat germ agglutinin staining demonstrated the presence of hypertrophic cardiomyocytes in the AAC + vehicle group (P < 0.01). Masson's trichome staining showed cardiac fibrosis in the AAC + vehicle group, and the immunofluorescence assay revealed infiltration of CD4+ cells in both AAC + vehicle and AAC + EGCG groups. Splenic flow cytometry showed a significant increase in the proportion of Treg cells in the AAC + EGCG group (P < 0.05). The proportion of Th17 cells in the AAC + vehicle group was significantly higher than that in the sham + vehicle group (P < 0.05). In conclusion, changes in the Treg/Th17 ratio are associated with the occurrence of myocardial hypertrophy caused by increased afterload. Moreover, regulation of the Treg/Th17 ratio by EGCG may play an important role in the attenuation of myocardial hypertrophy.
Asunto(s)
Linfocitos T Reguladores , Células Th17 , Animales , Cardiomegalia/patología , Catequina/análogos & derivados , Modelos Animales de Enfermedad , Eosina Amarillenta-(YS) , Hematoxilina , Masculino , Ratones , Ratones Endogámicos C57BL , Aglutininas del Germen de TrigoRESUMEN
BACKGROUND: An increased prevalence of adolescent metabolic syndrome (MS) is associated with adulthood cardiovascular diseases. This study aimed to explore the potential relationship of quality of life (QoL) and personality traits with adolescent MS. METHODS: A total of 1961 participants from Chongqing with an average age of 11.68 years old from a cohort study established in 2014 and followed up through 2019 were included. QoL information, Eysenck's personality questionnaire and MS components were collected. RESULTS: A higher QoL domain score of physical activity ability (PAA) was a protective factor for both MS and MS score (all P < 0.01), which was mainly negatively correlated with the MS components of central obesity, diastolic blood pressure (DBP) and triglyceride levels, as well as positively correlated with high density lipoprotein cholesterol (HDL-C) level. The total QoL score was negatively correlated with triglyceride levels and positively correlated with DBP (all P < 0.01). High extraversion personality score was a protective factor against adolescent MS (P = 0.04) and MS score (P < 0.05), which were mainly negatively correlated with the MS components of waist circumference, systolic blood pressure and TGs, and positively correlated with HDL-C (all P ≤ 0.01). CONCLUSIONS: QoL score and extraversion personality score were independent protective factors against both MS prevalence and MS score, suggesting that community intervention to improve the QoL and psychological health of children are essential.
Asunto(s)
Salud del Adolescente , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Síndrome Metabólico/complicaciones , Síndrome Metabólico/fisiopatología , Personalidad/fisiología , Calidad de Vida , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Adulto JovenRESUMEN
BACKGROUND: Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide, and imposes a serious economic load. Thus, it is crucial to perform a timely and accurate diagnosis and monitoring in the early stage of myocardial ischemia. Currently, nanoparticles (NPs) have emerged as promising tools for multimodal imaging, because of their advantages of non-invasion, high-safety, and real-time dynamic imaging, providing valuable information for the diagnosis of heart diseases. RESULTS: In this study, we prepared a targeted nanoprobe (termed IMTP-Fe3O4-PFH NPs) with enhanced ultrasound (US), photoacoustic (PA), and magnetic resonance (MR) performance for direct and non-invasive visual imaging of ischemic myocardium in a rat model. This successfully designed nanoprobe had excellent properties such as nanoscale size, good stability, phase transformation by acoustic droplet vaporization (ADV), and favorable safety profile. Besides, it realized obvious targeting performance toward hypoxia-injured cells as well as model rat hearts. After injection of NPs through the tail vein of model rats, in vivo imaging results showed a significantly enhanced US/PA/MR signal, well indicating the remarkable feasibility of nanoprobe to distinguish the ischemic myocardium. CONCLUSIONS: IMTP-Fe3O4-PFH NPs may be a promising nanoplatform for early detection of ischemic myocardium and targeted treatment under visualization for the future.
Asunto(s)
Imagen Multimodal/métodos , Miocardio , Nanopartículas/química , Isquemia de la Médula Espinal/diagnóstico por imagen , Animales , Línea Celular , Imagen por Resonancia Magnética/métodos , Masculino , Ratas , Ratas Sprague-Dawley , UltrasonografíaRESUMEN
MG53 is an important membrane repair protein and partially protects bone marrow multipotent adult progenitor cells (MAPCs) against oxidized low-density lipoprotein (ox-LDL). The present study was to test the hypothesis that the limited protective effect of MG53 on MAPCs was due to ox-LDL-induced reduction of MG53. MAPCs were cultured with and without ox-LDL (0-20 µg/mL) for up to 48 hours with or without MG53 and antioxidant N-acetylcysteine (NAC). Serum MG53 level was measured in ox-LDL-treated mice with or without NAC treatment. Ox-LDL induced significant membrane damage and substantially impaired MAPC survival with selective inhibition of Akt phosphorylation. NAC treatment effectively prevented ox-LDL-induced reduction of Akt phosphorylation without protecting MAPCs against ox-LDL. While having no effect on Akt phosphorylation, MG53 significantly decreased ox-LDL-induced membrane damage and partially improved the survival, proliferation and apoptosis of MAPCs in vitro. Ox-LDL significantly decreased MG53 level in vitro and serum MG53 level in vivo without changing MG53 clearance. NAC treatment prevented ox-LDL-induced MG53 reduction both in vitro and in vivo. Combined NAC and MG53 treatment significantly improved MAPC survival against ox-LDL. These data suggested that NAC enhanced the protective effect of MG53 on MAPCs against ox-LDL through preventing ox-LDL-induced reduction of MG53.
Asunto(s)
Acetilcisteína/farmacología , Células de la Médula Ósea/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Lipoproteínas LDL/toxicidad , Proteínas de la Membrana/metabolismo , Células Madre Multipotentes/efectos de los fármacos , Factores Protectores , Animales , Apoptosis , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Ciclo Celular , Proliferación Celular , Depuradores de Radicales Libres/farmacología , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/patología , RatasRESUMEN
In this study, we investigated whether unique pathological characteristics exist in teratomas that can trigger autoimmune anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis. We compared a case of retroperitoneal teratoma associated with anti-NMDAR encephalitis and four control cases. The encephalitis-positive case showed that (i) more dysplastic neuroglia with higher Ki-67 labeling index values than the control cases, which met the diagnostic criteria of astrocytoma, (ii) the NMDAR subunit NR1 was expressed more abundantly in neuroglial tissue where many neuroglial cells co-expressed glial fibrillary acidic protein (GFAP) and NR1 and formed abnormally large cellular masses, (iii) intense NR1 expression occurs in squamous epithelium near neuroglial tissue and lymphocyte infiltration. This study showed that dysplastic neuroglial tissue resembling central nervous system tumors, which might promote autoimmunity, distinguished the case with NMDAR encephalitis from the controls. Additionally, abnormal expression of NR1 occurs in non-neural tissues and could be triggered by inflammation and participate in autoimmunity.
Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/inmunología , Neuroglía/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Lesiones Intraepiteliales Escamosas/patología , Adulto , Autoanticuerpos , Autoinmunidad , Niño , Femenino , Regulación Neoplásica de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Receptores de N-Metil-D-Aspartato/inmunología , TeratomaRESUMEN
BACKGROUND: Ultrasonography is commonly used to diagnose left ventricular noncompaction (LVNC). A ratio of noncompacted to compacted myocardium (NC/C ratio) > >2 is often used to diagnose LVNC. However, a large proportion of patients with noncompact myocardium have NC/C < 2, and the prognosis of these patients have not been studied. METHODS: We included children diagnosed with LVNC between 0 and 15 years of age from January 2007 to December 2018. LVNC was diagnosed based on Stöllberger standard when over three trabeculae were found to be associated with the interventricular recesses. A maximal end systolic ratio of noncompacted to compacted layers was NC/C ratio. Outcomes for LVNC subjects with NC/C < 2 and NC/C > 2 were compared using Kaplan-Meier methods. RESULTS: There were 124 newly diagnosed LVNC cases, classified as isolated (i-LVNC, n = 47) or non-isolated (ni-LVNC, n = 77) LVNC and NC/C > 2 (n = 43) or < 2 (n = 81). The median (interquartile range) follow-up duration was 12 (3-30) months for all patients and 16 (6-36) months for survivors. Sixteen patients with i-LVNC died during follow-up. Patients with i-LVNC and NC/C > 2 had worse survival than those with NC/C < 2 (p = 0.022). CONCLUSIONS: In conclusion, during a 12-month follow-up, patients with i-LVNC with NC/C < 2 had a benign prognosis and better outcomes than those with NC/C > 2, suggesting that the former could have a more active and routine lifestyle.
Asunto(s)
No Compactación Aislada del Miocardio Ventricular , Niño , Humanos , No Compactación Aislada del Miocardio Ventricular/diagnóstico por imagen , Miocardio , Pronóstico , UltrasonografíaRESUMEN
OBJECTIVES: To analyze the clinical characteristics and prognosis of children with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and to provide a basis for early clinical identification of this disease. METHODS: The clinical data of 42 cases of anti-NMDAR encephalitis at Department of Pediatrics, Second Xiangya Hospital, Central South University from January 2015 to March 2018 were collected. The clinical features and followed-up outcomes were analyzed retrospectively. RESULTS: There were 15 cases (35.7%) of males and 27 cases (64.3%) of females in 42 children, with a ratio of 1ê1.8. They were aged from 4 months to 17 years, with an average of (9.20±4.66) years. The most common initial symptoms were seizures (47.6%, 20/42) and mental behavior disorder (35.7%, 15/42). During the course of the disease, 85.7% patients(36/42) had mental and behavior disorder, 85.7% patients (36/42) had epilepsy, 76.2% (32/42) had speech disorder, 66.7% patients (28/42) had dyskinesia, 66.7% patients (28/42) had the decreased level of consciousness, 61.9% patients (26/42) had autonomic instability, and 57.1% (24/42) patients had sleep disorder. All the children had positive antibody against NMDA receptor resistance encephalitis in cerebrospinal fluid. Head MRI showed the abnormal incidence was 50.0% (21/42), and the lesions involved in parietal lobe, frontal lobe, temporal lobe, occipital lobe, midbrain, thalamus, basal ganglia and optic nerve. There was a patient with optic nerve damage combined with myelin oligodendrocyte glycoprotein (MOG) antibody positive. Forty cases were examined by electroencephalogram (EEG), 92.5% cases (37/40) were abnormal, mainly showing diffuse slow waves, and δ brushes could be seen in severe cases. And there was 1 patient (2.4%) complicated with mesenteric teratoma. The mRS score (2.14±1.46) at discharge was significantly lower than the highest mRS score (3.88±1.38) during hospitalization (P<0.05). After 3-39 months of follow-up, mRS score at 3 months after discharge was only 0.81±1.29, which was still improved compared with that at discharge, 76.2% cases (32/42) experienced complete or near-complete recovery (mRS score≤2), and 4.8% (2/42) cases relapsed. There was no mortality; the initial time of immunotherapy and the highest mRS score in the course of the disease were the factors affecting the prognosis. The earlier the starting time for immunotherapy and the lower mRS score in the course of the disease were, the better the prognosis was. CONCLUSIONS: Seizures, mental and behavior disorder, dyskinesias, speech disorder and autonomic instability are common clinical manifestations of anti-NMDAR encephalitis in children. The effect of immunotherapy is significant, and the time to start immunotherapy and the severity of the disease are important factors affecting the prognosis. Anti-NMDAR encephalitis can be combined with other autoantibodies, but its clinical significance and mechanism need further study.
Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Adolescente , Autoanticuerpos , Niño , Preescolar , Electroencefalografía , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Receptores de N-Metil-D-Aspartato , Estudios RetrospectivosRESUMEN
Endothelial progenitor cells (EPCs) are a group of heterogeneous cells in bone marrow (BM) and blood. Ischaemia increases reactive oxygen species (ROS) production that regulates EPC number and function. The present study was conducted to determine if ischaemia-induced ROS differentially regulated individual EPC subpopulations using a mouse model concomitantly overexpressing superoxide dismutase (SOD)1, SOD3 and glutathione peroxidase. Limb ischaemia was induced by femoral artery ligation in male transgenic mice with their wild-type littermate as control. BM and blood cells were collected for EPCs analysis and mononuclear cell intracellular ROS production, apoptosis and proliferation at baseline, day 3 and day 21 after ischaemia. Cells positive for c-Kit+ /CD31+ or Sca-1+ /Flk-1+ or CD34+ /CD133+ or CD34+ /Flk-1+ were identified as EPCs. ischaemia significantly increased ROS production and cell apoptosis and decreased proliferation of circulating and BM mononuclear cells and increased BM and circulating EPCs levels. Overexpression of triple antioxidant enzymes effectively prevented ischaemia-induced ROS production with significantly decreased cell apoptosis and preserved proliferation and significantly increased circulating EPCs level without significant changes in BM EPC populations, associated with enhanced recovery of blood flow and function of the ischemic limb. These data suggested that ischaemia-induced ROS was differentially involved in the regulation of circulating EPC population.
Asunto(s)
Antioxidantes/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Miembro Posterior/metabolismo , Miembro Posterior/patología , Isquemia/metabolismo , Isquemia/patología , Animales , Apoptosis/fisiología , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Proliferación Celular/fisiología , Células Cultivadas , Glutatión Peroxidasa/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
Ambient particles with a diameter of <2.5 µm (PM2.5) is a global health concern, and exposure to PM2.5 contributes to the progression of cardiovascular morbidity and mortality. In this study, pregnant c57 mice were exposed to PM2.5 during the whole gestation (approximately 300 µg/m 3 PM2.5 for 2 hours/d). A significantly low birth weight was found after in utero PM2.5 exposure, and low body weight continued for 12 weeks after birth. In the offspring, remarkable destructions of cardiac ultrastructures were determined both in newborn and adult hearts. In adulthood, hearts of mice in the PM2.5 exposed group showed cardiac hypertrophy. Protein levels of p300, CBP (histone acetyltransferase), and acetylated histone3 lysine 9 (H3K9ac) increased in the trial group; messenger RNA (mRNA) levels of GATA binding protein 4 (GATA4) and myocyte enhancer factor 2C (Mef2c) (prohypertrophic transcription factors), and mRNA levels of the classic hypertrophic genes, such as α-MHC and ß-MHC, increased significantly in the hearts of the PM2.5 exposed group. H3K9ac levels near the promoter region of GATA4 and Mef2c went up in the PM2.5 group. The binding affinities of p300/CBP with promoters of GATA4 and Mef2c increased notably. Taken together, out data indicated that maternal exposure to PM2.5 during gestation may cause a series of cardiovascular events in the offspring; histone acetylation modification may play an important role in the programming of cardiac hypertrophy.
Asunto(s)
Cardiomegalia , Exposición Materna/efectos adversos , Proteínas Musculares/biosíntesis , Miocardio , Miocitos Cardíacos , Material Particulado/toxicidad , Efectos Tardíos de la Exposición Prenatal , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Femenino , Ratones , Miocardio/metabolismo , Miocardio/ultraestructura , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/patologíaRESUMEN
BACKGROUND: Our previous studies have demonstrated that Ca2+ desensitizing catechin could correct diastolic dysfunction in experimental animals with restrictive cardiomyopathy. In this study, it is aimed to assess the effects of green tea extract catechin on cardiac function and other clinical features in pediatric patients with cardiomyopathies. METHODS: Twelve pediatric cardiomyopathy patients with diastolic dysfunction were enrolled for the study. Echocardiography, ECG, and laboratory tests were performed before and after the catechin administration for 12 months. Comparison has been made in these patients before and after the treatment with catechin. Next Generation Sequencing was conducted to find out the potential causative gene variants in all patients. RESULTS: A significant decrease of isovolumetric relaxation time (115 ± 46 vs 100 ± 42 ms, P = 0.047 at 6 months; 115 ± 46 vs 94 ± 30 ms, P = 0.033 at 12 months), an increase of left ventricle end diastolic volume (40 ± 28 vs 53 ± 28 ml, P = 0.028 at 6 months; 40 ± 28 vs 48 ± 33 ml, P = 0.011 at 12 months) and stroke volume (25 ± 16 vs 32 ± 17 ml, P = 0.022 at 6 months; 25 ± 16 vs 30 ± 17 ml, P = 0.021 at 12 months) were observed with echocardiography in these patients 6-month after the treatment with catechin. Ejection fraction, left ventricular wall thickness, biatrial dimension remained unchanged. No significant side effects were observed in the patients tested. CONCLUSIONS: This study indicates that Ca2+ desensitizing green tea extract catechin, is helpful in correcting the impaired relaxation in pediatric cardiomyopathy patients with diastolic dysfunction.
Asunto(s)
Camellia sinensis/química , Cardiomiopatías/tratamiento farmacológico , Catequina/farmacología , Extractos Vegetales/farmacología , Adolescente , Niño , Preescolar , Ecocardiografía , Electrocardiografía , Femenino , Humanos , Lactante , MasculinoRESUMEN
Cardiovascular disease remains a worldwide public health issue. As fructose consumption is dramatically increasing, it has been demonstrated that a fructose-rich intake would increase the risk of cardiovascular disease. In addition, emerging evidences suggest that low concentration alcohol intake may exert a protective effect on cardiovascular system. This study aimed to investigate whether low-concentration alcohol consumption would prevent the adverse effects on cardiovascular events induced by high fructose in mice. From the results of hematoxylin-eosin staining, echocardiography, heart weight/body weight ratio and the expression of hypertrophic marker ANP, we found high-fructose result in myocardial hypertrophy and the low-concentration alcohol consumption would prevent the cardiomyocyte hypertrophy from happening. In addition, we observed low-concentration alcohol consumption could inhibit mitochondria swollen induced by high-fructose. The elevated levels of glucose, triglyceride, total cholesterol in high-fructose group were reduced by low concentration alcohol. Low expression levels of SIRT1 and PPAR-γ induced by high-fructose were significantly elevated when fed with low-concentration alcohol. The histone lysine 9 acetylation (acH3K9) level was decreased in PPAR-γ promoter in high-fructose group but elevated when intake with low concentration alcohol. The binding levels of histone deacetylase SIRT1 were increased in the same region in high-fructose group, while the low concentration alcohol can prevent the increased binding levels. Overall, our study indicates that low-concentration alcohol consumption could inhibit high-fructose related myocardial hypertrophy, cardiac mitochondria damaged and disorders of glucose-lipid metabolism. Furthermore, these findings also provide new insights into histone acetylation-deacetylation mechanisms of low-concentration alcohol treatment that may contribute to the prevention of cardiovascular disease induced by high-fructose intake.
Asunto(s)
Cardiomegalia/etiología , Cardiomegalia/prevención & control , Cardiotónicos/administración & dosificación , Etanol/administración & dosificación , Fructosa/efectos adversos , Mitocondrias Cardíacas/efectos de los fármacos , Animales , Cardiomegalia/fisiopatología , Azúcares de la Dieta/efectos adversos , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Fructosa/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/patologíaRESUMEN
Cardiac diastolic dysfunction (CDD) is the most common form of cardiovascular disorders, especially in elderly people. Cardiac troponin I (cTnI) plays a critical role in the regulation of cardiac function, especially diastolic function. Our previous studies showed that cTnI-low expression induced by histone acetylation modification might be one of the causes that result in diastolic dysfunction in ageing hearts. This study was designed to investigate whether epigallocatechin-3-gallate (EGCG) would modify histone acetylation events to regulate cTnI expression and then improve cardiac functions in ageing mice. Our study shows that EGCG improved cardiac diastolic function of aged mice after 8-week treatment. Low expression of cTnI in the ageing hearts was reversed through EGCG treatment. EGCG inhibited the expression of histone deacetylase 1 (HDAC1) and HDAC3, and the binding levels of HDAC1 in the proximal promoter of cTnI. Acetylated lysine 9 on histone H3 (AcH3K9) levels of cTnI's promoter were increased through EGCG treatment. Additionally, EGCG resulted in an ascent of the binding levels of transcription factors GATA4 and Mef2c with cTnI's promoter. Together, our data indicate that EGCG may improve cardiac diastolic function of ageing mice through up-regulating cTnI by histone acetylation modification. These findings provide new insights into histone acetylation mechanisms of EGCG treatment that may contribute to the prevention of CDD in ageing populations.
Asunto(s)
Envejecimiento , Catequina/análogos & derivados , Corazón/efectos de los fármacos , Histonas/metabolismo , Troponina I/metabolismo , Acetilación/efectos de los fármacos , Animales , Antioxidantes/farmacología , Catequina/farmacología , Diástole , Factor de Transcripción GATA4/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/fisiopatología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Troponina I/genéticaRESUMEN
BACKGROUND: Prenatal alcohol exposure may cause cardiac development defects, however, the underlying mechanisms are not yet clear. In the present study we have investigated the roles of histone modification by curcumin on alcohol induced fetal cardiac abnormalities during the development. METHODS AND RESULTS: Q-PCR and Western blot results showed that alcohol exposure increased gene and active forms of caspase-3 and caspase-8, while decreased gene and protein of bcl-2. ChIP assay results showed that, alcohol exposure increased the acetylation of histone H3K9 near the promoter region of caspase-3 and caspase-8, and decreased the acetylation of histone H3K9 near the promoter region of bcl-2. TUNEL assay data revealed that alcohol exposure increased the apoptosis levels in the embryonic hearts. In vitro experiments demonstrated that curcumin treatment could reverse the up-regulation of active forms of caspase-3 and caspase-8, and down-regulation of bcl-2 induced by alcohol treatment. In addition, curcumin also corrected the high level of histone H3K9 acetylation induced by alcohol. Moreover, the high apoptosis level induced by alcohol was reversed after curcumin treatment in cardiac cells. CONCLUSIONS: These findings indicate that histone modification may play an important role in mediating alcohol induced fetal cardiac apoptosis, possibly through the up-regulation of H3K9 acetylation near the promoter regions of apoptotic genes. Curcumin treatment may correct alcohol-mediated fetal cardiac apoptosis, suggesting that curcumin may play a protective role against alcohol abuse caused cardiac damage during pregnancy.
Asunto(s)
Apoptosis/efectos de los fármacos , Curcumina/farmacología , Trastornos del Espectro Alcohólico Fetal , Cardiopatías , Histonas/metabolismo , Miocardio/metabolismo , Acetilación/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Femenino , Trastornos del Espectro Alcohólico Fetal/tratamiento farmacológico , Trastornos del Espectro Alcohólico Fetal/metabolismo , Trastornos del Espectro Alcohólico Fetal/patología , Feto/embriología , Feto/patología , Cardiopatías/tratamiento farmacológico , Cardiopatías/embriología , Cardiopatías/patología , Ratones , Miocardio/patología , EmbarazoRESUMEN
BACKGROUND: Bone marrow derived stem cells (BMSCs) have the potential to differentiate into cardiomyocytes, but the rate of differentiation is low and the mechanism of differentiation is unclear completely. Here, we aimed to investigate the role of miR1-2 in differentiation of mouse BMSCs into cardiomyocyte-like cells and reveal the involved signaling pathways in the procedure. METHODS: Mouse BMSCs were treated with miR1-2 and 5-azacytine (5-aza). The expression of cardiac cell markers: NKx2.5, cTnI and GATA4 in BMSCs were examined by qPCR. The apoptosis rate was detected by flow cytometry and the activity of the Wnt/ß-catenin signaling pathway was evaluated by measuring the upstream protein of this signaling pathway. RESULTS: After over-expression of miR1-2 in mouse BMSCs, the apoptosis rate was significantly lower than the 5-aza group, while the expressions of cardiac-specific genes: such as Nkx2.5, cTnI and GATA4 were significantly increased compared to the control group and the 5-aza group. Meanwhile, over-expression of miR1-2 in mouse BMSCs enhanced the expression of wnt11, JNK, ß-catenin and TCF in the Wnt/ß-catenin signaling pathway. Use of LGK-974, an inhibitor of Wnt/ß-catenin signaling pathway, significantly reduced the expression of cardiac-specific genes and partially blocked the role of the miR1-2. CONCLUSION: Over-expression of miR1-2 in mouse BMSCs can induce them toward promoted cardiomyocyte differentiation via the activation of the Wnt/ß-catenin signaling pathway. Compared to 5-aza, miR1-2 can induce differentiation of BMSCs into cardiomyocytes more effectively with a less cytotoxicity.