Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 173(4): 1003-1013.e15, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681457

RESUMEN

The majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data. Multiple subclones were detected in 59% of patients, and specific subclonal architectures associate with adverse clinicopathological features. Early tumor development is characterized by point mutations and deletions followed by later subclonal amplifications and changes in trinucleotide mutational signatures. Specific genes are selectively mutated prior to or following subclonal diversification, including MTOR, NKX3-1, and RB1. Patients with low-risk monoclonal tumors rarely relapse after primary therapy (7%), while those with high-risk polyclonal tumors frequently do (61%). The presence of multiple subclones in an index biopsy may be necessary, but not sufficient, for relapse of localized prostate cancer, suggesting that evolution-aware biomarkers should be studied in prospective studies of low-risk tumors suitable for active surveillance.


Asunto(s)
Neoplasias de la Próstata/patología , Biomarcadores de Tumor/sangre , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Clasificación del Tumor , Recurrencia Local de Neoplasia , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Neoplasias de la Próstata/clasificación , Neoplasias de la Próstata/genética , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Nature ; 597(7874): 119-125, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433969

RESUMEN

Meningiomas are the most common primary intracranial tumour in adults1. Patients with symptoms are generally treated with surgery as there are no effective medical therapies. The World Health Organization histopathological grade of the tumour and the extent of resection at surgery (Simpson grade) are associated with the recurrence of disease; however, they do not accurately reflect the clinical behaviour of all meningiomas2. Molecular classifications of meningioma that reliably reflect tumour behaviour and inform on therapies are required. Here we introduce four consensus molecular groups of meningioma by combining DNA somatic copy-number aberrations, DNA somatic point mutations, DNA methylation and messenger RNA abundance in a unified analysis. These molecular groups more accurately predicted clinical outcomes compared with existing classification schemes. Each molecular group showed distinctive and prototypical biology (immunogenic, benign NF2 wild-type, hypermetabolic and proliferative) that informed therapeutic options. Proteogenomic characterization reinforced the robustness of the newly defined molecular groups and uncovered highly abundant and group-specific protein targets that we validated using immunohistochemistry. Single-cell RNA sequencing revealed inter-individual variations in meningioma as well as variations in intrinsic expression programs in neoplastic cells that mirrored the biology of the molecular groups identified.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Meningioma/clasificación , Meningioma/metabolismo , Proteogenómica , Metilación de ADN , Análisis de Datos , Descubrimiento de Drogas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Meningioma/tratamiento farmacológico , Meningioma/genética , Mutación , RNA-Seq , Reproducibilidad de los Resultados , Análisis de la Célula Individual
3.
J Proteome Res ; 21(9): 2224-2236, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35981243

RESUMEN

Driven by the lack of targeted therapies, triple-negative breast cancers (TNBCs) have the worst overall survival of all breast cancer subtypes. Considering that cell surface proteins are favorable drug targets and are predominantly glycosylated, glycoproteome profiling has significant potential to facilitate the identification of much-needed drug targets for TNBCs. Here, we performed N-glycoproteomics on six TNBCs and five normal control (NC) cell lines using hydrazide-based enrichment. Quantitative proteomics and integrative data mining led to the discovery of Plexin-B3 (PLXNB3), a previously undescribed TNBC-enriched cell surface protein. Furthermore, siRNA knockdown and CRISPR-Cas9 editing of in vitro and in vivo models show that PLXNB3 is required for TNBC cell line growth, invasion, and migration. Altogether, we provide insights into N-glycoproteome remodeling associated with TNBCs and functional evaluation of an extracted target, which indicate the surface protein PLXNB3 as a potential therapeutic target for TNBCs.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Moléculas de Adhesión Celular , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso , Moléculas de Adhesión de Célula Nerviosa , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
4.
bioRxiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38370678

RESUMEN

Background: Intra-tumoural heterogeneity complicates cancer prognosis and impairs treatment success. One of the ways subclonal reconstruction (SRC) quantifies intra-tumoural heterogeneity is by estimating the number of subclones present in bulk DNA sequencing data. SRC algorithms are probabilistic and need to be initialized by a random seed. However, the seeds used in bioinformatics algorithms are rarely reported in the literature. Thus, the impact of the initializing seed on SRC solutions has not been studied. To address this gap, we generated a set of ten random seeds to systematically benchmark the seed sensitivity of three probabilistic SRC algorithms: PyClone-VI, DPClust, and PhyloWGS. Results: We characterized the seed sensitivity of three algorithms across fourteen whole-genome sequences of head and neck squamous cell carcinoma and nine SRC pipelines, each composed of a single nucleotide variant caller, a copy number aberration caller and an SRC algorithm. This led to a total of 1470 subclonal reconstructions, including 1260 single-region and 210 multi-region reconstructions. The number of subclones estimated per patient vary across SRC pipelines, but all three SRC algorithms show substantial seed sensitivity: subclone estimates vary across different seeds for the same set of input using the same SRC algorithm. No seed consistently estimated the mode number of subclones across all patients for any SRC algorithm. Conclusions: These findings highlight the variability in quantifying intra-tumoural heterogeneity introduced by the seed sensitivity of probabilistic SRC algorithms. We recommend that authors, reviewers and editors adopt guidelines to both report and randomize seed choices. It may also be valuable to consider seed-sensitivity in the benchmarking of newly developed SRC algorithms. These findings may be of interest in other areas of bioinformatics where seeded probabilistic algorithms are used and suggest consideration of formal seed reporting standards to enhance reproducibility.

5.
bioRxiv ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38585946

RESUMEN

Gene expression is a multi-step transformation of biological information from its storage form (DNA) into functional forms (protein and some RNAs). Regulatory activities at each step of this transformation multiply a single gene into a myriad of proteoforms. Proteogenomics is the study of how genomic and transcriptomic variation creates this proteoform diversity, and is limited by the challenges of modeling the complexities of gene-expression. We therefore created moPepGen, a graph-based algorithm that comprehensively enumerates proteoforms in linear time. moPepGen works with multiple technologies, in multiple species and on all types of genetic and transcriptomic data. In human cancer proteomes, it detects and quantifies previously unobserved noncanonical peptides arising from germline and somatic genomic variants, noncoding open reading frames, RNA fusions and RNA circularization. By enabling efficient identification and quantitation of previously hidden proteins in both existing and new proteomic data, moPepGen facilitates all proteogenomics applications. It is available at: https://github.com/uclahs-cds/package-moPepGen.

6.
Nat Commun ; 15(1): 5069, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871730

RESUMEN

Urine is a complex biofluid that reflects both overall physiologic state and the state of the genitourinary tissues through which it passes. It contains both secreted proteins and proteins encapsulated in tissue-derived extracellular vesicles (EVs). To understand the population variability and clinical utility of urine, we quantified the secreted and EV proteomes from 190 men, including a subset with prostate cancer. We demonstrate that a simple protocol enriches prostatic proteins in urine. Secreted and EV proteins arise from different subcellular compartments. Urinary EVs are faithful surrogates of tissue proteomes, but secreted proteins in urine or cell line EVs are not. The urinary proteome is longitudinally stable over several years. It can accurately and non-invasively distinguish malignant from benign prostatic lesions and can risk-stratify prostate tumors. This resource quantifies the complexity of the urinary proteome and reveals the synergistic value of secreted and EV proteomes for translational and biomarker studies.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Próstata , Proteoma , Humanos , Neoplasias de la Próstata/orina , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Masculino , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Anciano , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/metabolismo , Proteómica/métodos , Persona de Mediana Edad , Próstata/metabolismo , Próstata/patología , Línea Celular Tumoral
7.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546794

RESUMEN

Urine is a complex biofluid that reflects both overall physiologic state and the state of the genitourinary tissues through which it passes. It contains both secreted proteins and proteins encapsulated in tissue-derived extracellular vesicles (EVs). To understand the population variability and clinical utility of urine, we quantified the secreted and EV proteomes from 190 men, including a subset with prostate cancer. We demonstrate that a simple protocol enriches prostatic proteins in urine. Secreted and EV proteins arise from different subcellular compartments. Urinary EVs are faithful surrogates of tissue proteomes, but secreted proteins in urine or cell line EVs are not. The urinary proteome is longitudinally stable over several years. It can accurately and non-invasively distinguish malignant from benign prostatic lesions, and can risk-stratify prostate tumors. This resource quantifies the complexity of the urinary proteome, and reveals the synergistic value of secreted and EV proteomes for translational and biomarker studies.

8.
J Hematol Oncol ; 15(1): 48, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505417

RESUMEN

Multiparametric magnetic resonance imaging (mpMRI) is an emerging standard for diagnosing and prognosing prostate cancer, but ~ 20% of clinically significant tumors are invisible to mpMRI, as defined by the Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) score of one or two. To understand the biological underpinnings of tumor visibility on mpMRI, we examined the proteomes of forty clinically significant tumors (i.e., International Society of Urological Pathology (ISUP) Grade Group 2)-twenty mpMRI-visible and twenty mpMRI-invisible, with matched histologically normal prostate. Normal prostate tissue was indistinguishable between patients with visible and invisible tumors, and invisible tumors closely resembled the normal prostate. These data indicate that mpMRI-visibility arises when tumor evolution leads to large-magnitude proteomic divergences from histologically normal prostate.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Próstata , Humanos , Masculino , Clasificación del Tumor , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Proteómica
9.
Nat Rev Urol ; 18(12): 707-724, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34453155

RESUMEN

Prostate cancer is the second most frequently diagnosed non-skin cancer in men worldwide. Patient outcomes are remarkably heterogeneous and the best existing clinical prognostic tools such as International Society of Urological Pathology Grade Group, pretreatment serum PSA concentration and T-category, do not accurately predict disease outcome for individual patients. Thus, patients newly diagnosed with prostate cancer are often overtreated or undertreated, reducing quality of life and increasing disease-specific mortality. Biomarkers that can improve the risk stratification of these patients are, therefore, urgently needed. The ideal biomarker in this setting will be non-invasive and affordable, enabling longitudinal evaluation of disease status. Prostatic secretions, urine and blood can be sources of biomarker discovery, validation and clinical implementation, and mass spectrometry can be used to detect and quantify proteins in these fluids. Protein biomarkers currently in use for diagnosis, prognosis and relapse-monitoring of localized prostate cancer in fluids remain centred around PSA and its variants, and opportunities exist for clinically validating novel and complimentary candidate protein biomarkers and deploying them into the clinic.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Detección Precoz del Cáncer/métodos , Espectrometría de Masas , Neoplasias de la Próstata/diagnóstico , Proteómica/métodos , Humanos , Masculino , Pronóstico , Neoplasias de la Próstata/metabolismo , Medición de Riesgo
10.
J Natl Cancer Inst ; 113(6): 742-751, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33429428

RESUMEN

BACKGROUND: Patients with human papillomavirus-related oropharyngeal cancers have excellent outcomes but experience clinically significant toxicities when treated with standard chemoradiotherapy (70 Gy). We hypothesized that functional imaging could identify patients who could be safely deescalated to 30 Gy of radiotherapy. METHODS: In 19 patients, pre- and intratreatment dynamic fluorine-18-labeled fluoromisonidazole positron emission tomography (PET) was used to assess tumor hypoxia. Patients without hypoxia at baseline or intratreatment received 30 Gy; patients with persistent hypoxia received 70 Gy. Neck dissection was performed at 4 months in deescalated patients to assess pathologic response. Magnetic resonance imaging (weekly), circulating plasma cell-free DNA, RNA-sequencing, and whole-genome sequencing (WGS) were performed to identify potential molecular determinants of response. Samples from an independent prospective study were obtained to reproduce molecular findings. All statistical tests were 2-sided. RESULTS: Fifteen of 19 patients had no hypoxia on baseline PET or resolution on intratreatment PET and were deescalated to 30 Gy. Of these 15 patients, 11 had a pathologic complete response. Two-year locoregional control and overall survival were 94.4% (95% confidence interval = 84.4% to 100%) and 94.7% (95% confidence interval = 85.2% to 100%), respectively. No acute grade 3 radiation-related toxicities were observed. Microenvironmental features on serial imaging correlated better with pathologic response than tumor burden metrics or circulating plasma cell-free DNA. A WGS-based DNA repair defect was associated with response (P = .02) and was reproduced in an independent cohort (P = .03). CONCLUSIONS: Deescalation of radiotherapy to 30 Gy on the basis of intratreatment hypoxia imaging was feasible, safe, and associated with minimal toxicity. A DNA repair defect identified by WGS was predictive of response. Intratherapy personalization of chemoradiotherapy may facilitate marked deescalation of radiotherapy.


Asunto(s)
Neoplasias Orofaríngeas , Quimioradioterapia/métodos , Humanos , Neoplasias Orofaríngeas/radioterapia , Tomografía de Emisión de Positrones , Estudios Prospectivos , Dosificación Radioterapéutica , Hipoxia Tumoral
11.
Nat Commun ; 11(1): 6247, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288765

RESUMEN

Whole-genome sequencing can be used to estimate subclonal populations in tumours and this intra-tumoural heterogeneity is linked to clinical outcomes. Many algorithms have been developed for subclonal reconstruction, but their variabilities and consistencies are largely unknown. We evaluate sixteen pipelines for reconstructing the evolutionary histories of 293 localized prostate cancers from single samples, and eighteen pipelines for the reconstruction of 10 tumours with multi-region sampling. We show that predictions of subclonal architecture and timing of somatic mutations vary extensively across pipelines. Pipelines show consistent types of biases, with those incorporating SomaticSniper and Battenberg preferentially predicting homogenous cancer cell populations and those using MuTect tending to predict multiple populations of cancer cells. Subclonal reconstructions using multi-region sampling confirm that single-sample reconstructions systematically underestimate intra-tumoural heterogeneity, predicting on average fewer than half of the cancer cell populations identified by multi-region sequencing. Overall, these biases suggest caution in interpreting specific architectures and subclonal variants.


Asunto(s)
Algoritmos , Heterogeneidad Genética , Mutación , Neoplasias de la Próstata/genética , Secuenciación Completa del Genoma/métodos , Biomarcadores de Tumor/genética , Evolución Clonal , Células Clonales/metabolismo , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Humanos , Masculino , Modelos Genéticos , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/clasificación , Neoplasias de la Próstata/patología
12.
Nat Biotechnol ; 38(1): 97-107, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31919445

RESUMEN

Tumor DNA sequencing data can be interpreted by computational methods that analyze genomic heterogeneity to infer evolutionary dynamics. A growing number of studies have used these approaches to link cancer evolution with clinical progression and response to therapy. Although the inference of tumor phylogenies is rapidly becoming standard practice in cancer genome analyses, standards for evaluating them are lacking. To address this need, we systematically assess methods for reconstructing tumor subclonality. First, we elucidate the main algorithmic problems in subclonal reconstruction and develop quantitative metrics for evaluating them. Then we simulate realistic tumor genomes that harbor all known clonal and subclonal mutation types and processes. Finally, we benchmark 580 tumor reconstructions, varying tumor read depth, tumor type and somatic variant detection. Our analysis provides a baseline for the establishment of gold-standard methods to analyze tumor heterogeneity.


Asunto(s)
Algoritmos , Neoplasias/patología , Células Clonales , Simulación por Computador , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Genoma , Humanos , Mutación/genética , Neoplasias/genética , Polimorfismo de Nucleótido Simple/genética , Estándares de Referencia
13.
Nat Genet ; 51(2): 308-318, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643250

RESUMEN

Many primary-tumor subregions have low levels of molecular oxygen, termed hypoxia. Hypoxic tumors are at elevated risk for local failure and distant metastasis, but the molecular hallmarks of tumor hypoxia remain poorly defined. To fill this gap, we quantified hypoxia in 8,006 tumors across 19 tumor types. In ten tumor types, hypoxia was associated with elevated genomic instability. In all 19 tumor types, hypoxic tumors exhibited characteristic driver-mutation signatures. We observed widespread hypoxia-associated dysregulation of microRNAs (miRNAs) across cancers and functionally validated miR-133a-3p as a hypoxia-modulated miRNA. In localized prostate cancer, hypoxia was associated with elevated rates of chromothripsis, allelic loss of PTEN and shorter telomeres. These associations are particularly enriched in polyclonal tumors, representing a constellation of features resembling tumor nimbosus, an aggressive cellular phenotype. Overall, this work establishes that tumor hypoxia may drive aggressive molecular features across cancers and shape the clinical trajectory of individual tumors.


Asunto(s)
Hipoxia/genética , Neoplasias de la Próstata/genética , Hipoxia Tumoral/genética , Alelos , Línea Celular Tumoral , Cromotripsis , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Inestabilidad Genómica/genética , Humanos , Masculino , MicroARNs/genética , Células PC-3 , Fosfohidrolasa PTEN/genética , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA