Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nano Lett ; 24(7): 2149-2156, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329715

RESUMEN

The integration time and signal-to-noise ratio are inextricably linked when performing scanning probe microscopy based on raster scanning. This often yields a large lower bound on the measurement time, for example, in nano-optical imaging experiments performed using a scanning near-field optical microscope (SNOM). Here, we utilize sparse scanning augmented with Gaussian process regression to bypass the time constraint. We apply this approach to image charge-transfer polaritons in graphene residing on ruthenium trichloride (α-RuCl3) and obtain key features such as polariton damping and dispersion. Critically, nano-optical SNOM imaging data obtained via sparse sampling are in good agreement with those extracted from traditional raster scans but require 11 times fewer sampled points. As a result, Gaussian process-aided sparse spiral scans offer a major decrease in scanning time.

2.
Opt Express ; 30(6): 9000-9007, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299339

RESUMEN

We present numerical simulations of scattering-type scanning near-field optical microscopy (s-SNOM) of 1D plasmonic graphene junctions. A comprehensive analysis of simulated s-SNOM spectra is performed for three types of junctions. We find conditions when the conventional interpretation of the plasmon reflection coefficients from s-SNOM measurements does not apply. Our approach can be used for other conducting 2D materials to provide a comprehensive understanding of the s-SNOM techniques for probing the local transport properties of 2D materials.

3.
Opt Express ; 30(18): 31550-31566, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242235

RESUMEN

Turbid media, made of wavelength-scale inhomogeneous particles, can give rise to many significant imaging and spectroscopy challenges. The random variation of the refractive index within such media distorts the spherical wavefronts, resulting in smeared and speckly images. The scattering-induced artifacts can obscure the characteristic spectral fingerprints of the chemicals in a sample. This in turn prevents accurate chemical imaging and characterization of the materials cloaked with a diffusive medium. In this work, we present a novel computational technique for creating spatially- and spectrally-resolved chemical maps through a diffusive cloak using terahertz time-domain spectroscopy. We use the maximal overlap discrete wavelet transform to obtain a multiresolution spectral decomposition of THz extinction coefficients. We define a new spectroscopic concept dubbed the "bimodality coefficient spectrum" using the skewness and kurtosis of the spectral images. We demonstrate that broadband wavelet-based reconstruction of the bimodality coefficient spectrum can resolve the signature resonant frequencies through the scattering layers. Additionally, we show that our approach can achieve spectral images with diffraction-limited resolution. This technique can be used for stand-off characterization of materials and spectral imaging in nondestructive testing and biological applications.

4.
Opt Express ; 30(7): 11228-11242, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473071

RESUMEN

The modeling of the near-field interaction in the scattering-type scanning near-field optical microscope (s-SNOM) is rapidly advancing, although an accurate yet versatile modeling framework that can be easily adapted to various complex situations is still lacking. In this work, we propose a time-efficient numerical scheme in the quasi-electrostatic limit to capture the tip-sample interaction in the near field. This method considers an extended tip geometry, which is a significant advantage compared to the previously reported method based on the point-dipole approximation. Using this formalism, we investigate, among others, nontrivial questions such as uniaxial and biaxial anisotropy in the near-field interaction, the relationship between various experimental parameters (e.g. tip radius, tapping amplitude, etc.), and the tip-dependent spatial resolution. The demonstrated method further sheds light on the understanding of the contrast mechanism in s-SNOM imaging and spectroscopy, while also representing a valuable platform for future quantitative analysis of the experimental observations.

5.
Nano Lett ; 21(21): 9052-9060, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34724612

RESUMEN

We investigate transient nanotextured heterogeneity in vanadium dioxide (VO2) thin films during a light-induced insulator-to-metal transition (IMT). Time-resolved scanning near-field optical microscopy (Tr-SNOM) is used to study VO2 across a wide parameter space of infrared frequencies, picosecond time scales, and elevated steady-state temperatures with nanoscale spatial resolution. Room temperature, steady-state, phonon enhanced nano-optical contrast reveals preexisting "hidden" disorder. The observed contrast is associated with inequivalent twin domain structures. Upon thermal or optical initiation of the IMT, coexisting metallic and insulating regions are observed. Correlations between the transient and steady-state nano-optical textures reveal that heterogeneous nucleation is partially anchored to twin domain interfaces and grain boundaries. Ultrafast nanoscopic dynamics enable quantification of the growth rate and bound the nucleation rate. Finally, we deterministically anchor photoinduced nucleation to predefined nanoscopic regions by locally enhancing the electric field of pump radiation using nanoantennas and monitor the on-demand emergent metallicity in space and time.

6.
Opt Express ; 29(24): 39648-39668, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809324

RESUMEN

The scattering-type scanning near-field optical microscope (s-SNOM) has emerged as a powerful tool for resolving nanoscale inhomogeneities in laterally heterogeneous samples. However, most analytical models used to predict the scattering near-field signals are assuming homogenous landscapes (bulk materials), resulting in inconsistencies when applied to samples with more complex configurations. In this work, we combine the point-dipole model (PDM) to the finite-element method (FEM) to account for the lateral and vertical heterogeneities while keeping the computation time manageable. Full images, spectra, or hyperspectral line profiles can be simulated by calculating the self-consistent dipole radiation demodulated at higher harmonics of the tip oscillation, mimicking real experimental procedures. Using this formalism, we clarify several important yet puzzling experimental observations in near-field images on samples with rich typography and complex material compositions, heterostructures of two-dimensional material flakes, and plasmonic antennas. The developed method serves as a basis for future investigations of nano-systems with nontrivial topography.

7.
Opt Express ; 29(10): 15190-15198, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985223

RESUMEN

THz scattering-type scanning near-field microscopy (s-SNOM) has become a powerful technique for measuring carrier dynamics in nanoscale materials and structures. Changes in a material's local THz reflection or transmission can be correlated to changes in electrical conductivity. Here, we perform tip-based THz nano-imaging of subwavelength gold nanostructures and demonstrate image contrast unrelated to any spatially varying material properties. We show that the specific physical configuration of the gold structures can have a strong influence on local excitations which can obscure the sample's true dielectric response, even in cases where the relevant structures are far outside of the spatial region probed by the AFM tip.

8.
J Synchrotron Radiat ; 26(Pt 5): 1790-1796, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31490171

RESUMEN

A multimodal imaging instrument has been developed that integrates scanning near-field optical microscopy with nanofocused synchrotron X-ray diffraction imaging. The instrument allows for the simultaneous nanoscale characterization of electronic/near-field optical properties of materials together with their crystallographic structure, facilitating the investigation of local structure-property relationships. The design, implementation and operating procedures of this instrument are reported. The scientific capabilities are demonstrated in a proof-of-principle study of the insulator-metal phase transition in samarium sulfide (SmS) single crystals induced by applying mechanical pressure via a scanning tip. The multimodal imaging of an in situ tip-written region shows that the near-field optical reflectivity can be correlated with the heterogeneously transformed structure of the near-surface region of the crystal.

9.
Opt Express ; 27(10): 13611-13623, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163822

RESUMEN

In this letter, we report optical pump terahertz (THz) near-field probe (n-OPTP) and optical pump THz near-field emission (n-OPTE) experiments of graphene/InAs heterostructures. Near-field imaging contrasts between graphene and InAs using these newly developed techniques as well as spectrally integrated THz nano-imaging (THz s-SNOM) are systematically studied. We demonstrate that in the near-field regime (λ/6000), a single layer of graphene is transparent to near-IR (800 nm) optical excitation and completely "screens" the photo-induced far-infrared (THz) dynamics in its substrate (InAs). Our work reveals unique frequency-selective ultrafast dynamics probed at the near field. It also provides strong evidence that n-OPTE nanoscopy yields contrast that distinguishes single-layer graphene from its substrate.

10.
Nature ; 487(7407): 345-8, 2012 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-22801506

RESUMEN

Electron-electron interactions can render an otherwise conducting material insulating, with the insulator-metal phase transition in correlated-electron materials being the canonical macroscopic manifestation of the competition between charge-carrier itinerancy and localization. The transition can arise from underlying microscopic interactions among the charge, lattice, orbital and spin degrees of freedom, the complexity of which leads to multiple phase-transition pathways. For example, in many transition metal oxides, the insulator-metal transition has been achieved with external stimuli, including temperature, light, electric field, mechanical strain or magnetic field. Vanadium dioxide is particularly intriguing because both the lattice and on-site Coulomb repulsion contribute to the insulator-to-metal transition at 340 K (ref. 8). Thus, although the precise microscopic origin of the phase transition remains elusive, vanadium dioxide serves as a testbed for correlated-electron phase-transition dynamics. Here we report the observation of an insulator-metal transition in vanadium dioxide induced by a terahertz electric field. This is achieved using metamaterial-enhanced picosecond, high-field terahertz pulses to reduce the Coulomb-induced potential barrier for carrier transport. A nonlinear metamaterial response is observed through the phase transition, demonstrating that high-field terahertz pulses provide alternative pathways to induce collective electronic and structural rearrangements. The metamaterial resonators play a dual role, providing sub-wavelength field enhancement that locally drives the nonlinear response, and global sensitivity to the local changes, thereby enabling macroscopic observation of the dynamics. This methodology provides a powerful platform to investigate low-energy dynamics in condensed matter and, further, demonstrates that integration of metamaterials with complex matter is a viable pathway to realize functional nonlinear electromagnetic composites.

11.
Nano Lett ; 17(9): 5285-5290, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28805397

RESUMEN

We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.

12.
Rep Prog Phys ; 80(1): 014501, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27811387

RESUMEN

Electronic, magnetic, and structural phase inhomogeneities are ubiquitous in strongly correlated quantum materials. The characteristic length scales of the phase inhomogeneities can range from atomic to mesoscopic, depending on their microscopic origins as well as various sample dependent factors. Therefore, progress with the understanding of correlated phenomena critically depends on the experimental techniques suitable to provide appropriate spatial resolution. This requirement is difficult to meet for some of the most informative methods in condensed matter physics, including infrared and optical spectroscopy. Yet, recent developments in near-field optics and imaging enabled a detailed characterization of the electromagnetic response with a spatial resolution down to 10 nm. Thus it is now feasible to exploit at the nanoscale well-established capabilities of optical methods for characterization of electronic processes and lattice dynamics in diverse classes of correlated quantum systems. This review offers a concise description of the state-of-the-art near-field techniques applied to prototypical correlated quantum materials. We also discuss complementary microscopic and spectroscopic methods which reveal important mesoscopic dynamics of quantum materials at different energy scales.

13.
Nat Mater ; 15(9): 956-60, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27400387

RESUMEN

A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

14.
Nano Lett ; 16(2): 1050-5, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26690855

RESUMEN

Active, widely tunable optical materials have enabled rapid advances in photonics and optoelectronics, especially in the emerging field of meta-devices. Here, we demonstrate that spatially selective defect engineering on the nanometer scale can transform phase-transition materials into optical metasurfaces. Using ion irradiation through nanometer-scale masks, we selectively defect-engineered the insulator-metal transition of vanadium dioxide, a prototypical correlated phase-transition material whose optical properties change dramatically depending on its state. Using this robust technique, we demonstrated several optical metasurfaces, including tunable absorbers with artificially induced phase coexistence and tunable polarizers based on thermally triggered dichroism. Spatially selective nanoscale defect engineering represents a new paradigm for active photonic structures and devices.

15.
Nano Lett ; 14(8): 4529-34, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25046340

RESUMEN

We report on time-resolved mid-infrared (mid-IR) near-field spectroscopy of the narrow bandgap semiconductor InAs. The dominant effect we observed pertains to the dynamics of photoexcited carriers and associated surface plasmons. A novel combination of pump-probe techniques and near-field nanospectroscopy accesses high momentum plasmons and demonstrates efficient, subpicosecond photomodulation of the surface plasmon dispersion with subsequent tens of picoseconds decay under ambient conditions. The photoinduced change of the probe intensity due to plasmons in InAs is found to exceed that of other mid-IR or near-IR media by 1-2 orders of magnitude. Remarkably, the required control pulse fluence is as low as 60 µJ/cm(2), much smaller than fluences of ∼ 1-10 mJ/cm(2) previously utilized in ultrafast control of near-IR plasmonics. These low excitation densities are easily attained with a standard 1.56 µm fiber laser. Thus, InAs--a common semiconductor with favorable plasmonic properties such as a low effective mass--has the potential to become an important building block of optically controlled plasmonic devices operating at infrared frequencies.

16.
Nano Lett ; 14(2): 894-900, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24479682

RESUMEN

Pump-probe spectroscopy is central for exploring ultrafast dynamics of fundamental excitations, collective modes, and energy transfer processes. Typically carried out using conventional diffraction-limited optics, pump-probe experiments inherently average over local chemical, compositional, and electronic inhomogeneities. Here, we circumvent this deficiency and introduce pump-probe infrared spectroscopy with ∼ 20 nm spatial resolution, far below the diffraction limit, which is accomplished using a scattering scanning near-field optical microscope (s-SNOM). This technique allows us to investigate exfoliated graphene single-layers on SiO2 at technologically significant mid-infrared (MIR) frequencies where the local optical conductivity becomes experimentally accessible through the excitation of surface plasmons via the s-SNOM tip. Optical pumping at near-infrared (NIR) frequencies prompts distinct changes in the plasmonic behavior on 200 fs time scales. The origin of the pump-induced, enhanced plasmonic response is identified as an increase in the effective electron temperature up to several thousand Kelvin, as deduced directly from the Drude weight associated with the plasmonic resonances.

17.
Adv Mater ; : e2401349, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657644

RESUMEN

Phonon polaritons, the hybrid quasiparticles resulting from the coupling of photons and lattice vibrations, have gained significant attention in the field of layered van der Waals heterostructures. Particular interest has been paid to hetero-bicrystals composed of molybdenum oxide (MoO3) and hexagonal boron nitride (hBN), which feature polariton dispersion tailorable via avoided polariton mode crossings. In this work, we systematically study the polariton eigenmodes in MoO3-hBN hetero-bicrystals self-assembled on ultrasmooth gold using synchrotron infrared nanospectroscopy. We experimentally demonstrate that the spectral gap in bicrystal dispersion and corresponding regimes of negative refraction can be tuned by material layer thickness, and we quantitatively match these results with a simple analytic model. We also investigate polaritonic cavity modes and polariton propagation along "forbidden" directions in our microscale bicrystals, which arise from the finite in-plane dimension of the synthesized MoO3 micro-ribbons. Our findings shed light on the unique dispersion properties of polaritons in van der Waals heterostructures and pave the way for applications leveraging deeply sub-wavelength mid-infrared light matter interactions. This article is protected by copyright. All rights reserved.

18.
Phys Rev Lett ; 110(21): 217404, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23745933

RESUMEN

We demonstrate nonlinear metamaterial split ring resonators (SRRs) on GaAs at terahertz frequencies. For SRRs on doped GaAs films, incident terahertz radiation with peak fields of ~20-160 kV/cm drives intervalley scattering. This reduces the carrier mobility and enhances the SRR LC response due to a conductivity decrease in the doped thin film. Above ~160 kV/cm, electric field enhancement within the SRR gaps leads to efficient impact ionization, increasing the carrier density and the conductivity which, in turn, suppresses the SRR resonance. We demonstrate an increase of up to 10 orders of magnitude in the carrier density in the SRR gaps on semi-insulating GaAs. Furthermore, we show that the effective permittivity can be swept from negative to positive values with an increasing terahertz field strength in the impact ionization regime, enabling new possibilities for nonlinear metamaterials.

19.
Adv Mater ; 35(34): e2109171, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36333118

RESUMEN

The ability to perform nanometer-scale optical imaging and spectroscopy is key to deciphering the low-energy effects in quantum materials, as well as vibrational fingerprints in planetary and extraterrestrial particles, catalytic substances, and aqueous biological samples. These tasks can be accomplished by the scattering-type scanning near-field optical microscopy (s-SNOM) technique that has recently spread to many research fields and enabled notable discoveries. Herein, it is shown that the s-SNOM, together with scanning probe research in general, can benefit in many ways from artificial-intelligence (AI) and machine-learning (ML) algorithms. Augmented with AI- and ML-enhanced data acquisition and analysis, scanning probe optical nanoscopy is poised to become more efficient, accurate, and intelligent.

20.
ACS Photonics ; 10(12): 4329-4339, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145170

RESUMEN

While near-field infrared nanospectroscopy provides a powerful tool for nanoscale material characterization, broadband nanospectroscopy of elementary material excitations in the single-digit terahertz (THz) range remains relatively unexplored. Here, we study liquid-Helium-cooled photoconductive Hg1-XCdXTe (MCT) for use as a fast detector in near-field nanospectroscopy. Compared to the common T = 77 K operation, liquid-Helium cooling reduces the MCT detection threshold to ∼22 meV, improves the noise performance, and yields a response bandwidth exceeding 10 MHz. These improved detector properties have a profound impact on the near-field technique, enabling unprecedented broadband nanospectroscopy across a range of 5 to >50 THz (175 to >1750 cm-1, or <6 to 57 µm), i.e., covering what is commonly known as the "THz gap". Our approach has been implemented as a user program at the National Synchrotron Light Source II, Upton, USA, where we showcase ultrabroadband synchrotron nanospectroscopy of phonons in ZnSe (∼7.8 THz) and BaF2 (∼6.7 THz), as well as hyperbolic phonon polaritons in GeS (6-8 THz).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA