Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7968): 184-192, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37286600

RESUMEN

Transcriptional heterogeneity due to plasticity of the epigenetic state of chromatin contributes to tumour evolution, metastasis and drug resistance1-3. However, the mechanisms that cause this epigenetic variation are incompletely understood. Here we identify micronuclei and chromosome bridges, aberrations in the nucleus common in cancer4,5, as sources of heritable transcriptional suppression. Using a combination of approaches, including long-term live-cell imaging and same-cell single-cell RNA sequencing (Look-Seq2), we identified reductions in gene expression in chromosomes from micronuclei. With heterogeneous penetrance, these changes in gene expression can be heritable even after the chromosome from the micronucleus has been re-incorporated into a normal daughter cell nucleus. Concomitantly, micronuclear chromosomes acquire aberrant epigenetic chromatin marks. These defects may persist as variably reduced chromatin accessibility and reduced gene expression after clonal expansion from single cells. Persistent transcriptional repression is strongly associated with, and may be explained by, markedly long-lived DNA damage. Epigenetic alterations in transcription may therefore be inherently coupled to chromosomal instability and aberrations in nuclear architecture.


Asunto(s)
Inestabilidad Cromosómica , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Micronúcleos con Defecto Cromosómico , Neoplasias , Transcripción Genética , Humanos , Cromatina/genética , Cromatina/metabolismo , Cromosomas/genética , Células Clonales/metabolismo , Daño del ADN/genética , Neoplasias/genética , Neoplasias/patología , Análisis de Expresión Génica de una Sola Célula
2.
Mol Ther ; 32(8): 2778-2797, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38822524

RESUMEN

Dysregulated T cell activation underpins the immunopathology of rheumatoid arthritis (RA), yet the machineries that orchestrate T cell effector program remain incompletely understood. Herein, we leveraged bulk and single-cell RNA sequencing data from RA patients and validated protein disulfide isomerase family A member 3 (PDIA3) as a potential therapeutic target. PDIA3 is remarkably upregulated in pathogenic CD4 T cells derived from RA patients and positively correlates with C-reactive protein level and disease activity score 28. Pharmacological inhibition or genetic ablation of PDIA3 alleviates RA-associated articular pathology and autoimmune responses. Mechanistically, T cell receptor signaling triggers intracellular calcium flux to activate NFAT1, a process that is further potentiated by Wnt5a under RA settings. Activated NFAT1 then directly binds to the Pdia3 promoter to enhance the expression of PDIA3, which complexes with STAT1 or PKM2 to facilitate their nuclear import for transcribing T helper 1 (Th1) and Th17 lineage-related genes, respectively. This non-canonical regulatory mechanism likely occurs under pathological conditions, as PDIA3 could only be highly induced following aberrant external stimuli. Together, our data support that targeting PDIA3 is a vital strategy to mitigate autoimmune diseases, such as RA, in clinical settings.


Asunto(s)
Artritis Reumatoide , Proteína Disulfuro Isomerasas , Factor de Transcripción STAT1 , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , Humanos , Artritis Reumatoide/metabolismo , Ratones , Animales , Factor de Transcripción STAT1/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transporte Activo de Núcleo Celular , Proteínas Portadoras/metabolismo , Transducción de Señal , Proteínas de Unión a Hormona Tiroide , Factores de Transcripción NFATC/metabolismo , Activación de Linfocitos , Hormonas Tiroideas/metabolismo , Regulación de la Expresión Génica , Células Th17/metabolismo , Células Th17/inmunología , Células TH1/inmunología , Células TH1/metabolismo , Modelos Animales de Enfermedad , Piruvato Quinasa
3.
J Cell Mol Med ; 28(5): e18083, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38393307

RESUMEN

The connection between head and neck squamous cell carcinoma (HNSC) and M2 tumour-associated macrophages is not yet fully understood. We gathered gene expression profiles and clinical data from HNSC patients in the TCGA database. Using Consensus Clustering, we categorized these patients into M2 macrophage-related clusters. We developed a M2 macrophage-related signature (MRS) through statistical analyses. Additionally, we assessed gene expression in HNSC cells using single-cell sequencing data (GSE139324). We identified three distinct M2 macrophage-related clusters in HNSC, each with different prognostic outcomes and immune characteristics. Patients with different MRS profiles exhibited variations in immune infiltration, genetic mutations and prognosis. FCGR2A may play a role in creating an immunosuppressive tumour microenvironment and could potentially serve as a therapeutic target for HNSC. Our study demonstrated that M2 macrophage-related genes significantly impact the development and progression of HNSC. The M2 macrophage-related model offered a more comprehensive assessment of HNSC patient prognosis, genetic mutations and immune features. FCGR2A was implicated in immunosuppressive microenvironments and may hold promise for the development of novel immunotherapeutic strategies for HNSC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Macrófagos , RNA-Seq , Análisis de la Célula Individual , Carcinoma de Células Escamosas de Cabeza y Cuello , Microambiente Tumoral , Humanos , Análisis de la Célula Individual/métodos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , RNA-Seq/métodos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Receptores de IgG/genética , Receptores de IgG/metabolismo , Perfilación de la Expresión Génica , Mutación , Transcriptoma/genética , Masculino , Femenino , Análisis de Expresión Génica de una Sola Célula
4.
Mol Med ; 30(1): 23, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317106

RESUMEN

BACKGROUND: Fluvoxamine is one of the selective serotonin reuptake inhibitors (SSRIs) that are regarded as the first-line drugs to manage mental disorders. It has been also recognized with the potential to treat inflammatory diseases and viral infection. However, the effect of fluvoxamine on autoimmune diseases, particularly type 1 diabetes (T1D) and the related cellular and molecular mechanisms, are yet to be addressed. METHOD: Herein in this report, we treated NOD mice with fluvoxamine for 2 weeks starting from 10-week of age to dissect the impact of fluvoxamine on the prevention of type 1 diabetes. We compared the differences of immune cells between 12-week-old control and fluvoxamine-treated mice by flow cytometry analysis. To study the mechanism involved, we extensively examined the characteristics of CD4+ T cells with fluvoxamine stimulation using RNA-seq analysis, real-time PCR, Western blot, and seahorse assay. Furthermore, we investigated the relevance of our data to human autoimmune diabetes. RESULT: Fluvoxamine not only delayed T1D onset, but also decreased T1D incidence. Moreover, fluvoxamine-treated NOD mice showed significantly attenuated insulitis coupled with well-preserved ß cell function, and decreased Th1 and Th17 cells in the peripheral blood, pancreatic lymph nodes (PLNs), and spleen. Mechanistic studies revealed that fluvoxamine downregulated glycolytic process by inhibiting phosphatidylinositol 3-kinase (PI3K)-AKT signaling, by which it restrained effector T (Teff) cell differentiation and production of proinflammatory cytokines. CONCLUSION: Collectively, our study supports that fluvoxamine could be a viable therapeutic drug against autoimmunity in T1D setting.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Ratones , Humanos , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Ratones Endogámicos NOD , Fluvoxamina/farmacología , Fluvoxamina/uso terapéutico , Células Th17 , Fosfatidilinositol 3-Quinasas , Células TH1
5.
Am J Public Health ; 114(8): 814-823, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38870435

RESUMEN

Objectives. To assess the exposure of Chinese adolescents to proalcohol advertising and explore its association with alcohol consumption. Methods. A nationally and regionally representative school-based survey was conducted in mainland China in 2021 among students in grades 7 through 12, aged 13 to 18 years. We assessed adolescent exposure to proalcohol advertising and its association with alcohol consumption. Results. A total of 57 336 students participated in the survey, and the exposure percentage of proalcohol advertising was 66.8%, with no difference between boys and girls or between urban and rural areas. The top 3 exposure channels were television (51.8%), the Internet (43.6%), and outdoor billboards (42.0%). The exposure was higher among students who had consumed alcohol in the past 30 days (80.1% vs 65.1%; adjusted odds ratio [AOR] = 1.29) and in the past 12 months (77.3% vs 61.7%; AOR = 1.30). However, no significant correlation was observed between advertising exposure and drunkenness. Conclusions. Approximately two thirds of Chinese adolescents have been exposed to proalcohol advertising in the past 30 days, with television, the Internet, and outdoor billboards being the most prevalent channels. Exposure to proalcohol advertising exhibits a positive correlation with drinking. (Am J Public Health. 2024;114(8):814-823. https://doi.org/10.2105/AJPH.2024.307680).


Asunto(s)
Publicidad , Consumo de Bebidas Alcohólicas , Humanos , Adolescente , Masculino , Femenino , China/epidemiología , Publicidad/estadística & datos numéricos , Consumo de Bebidas Alcohólicas/epidemiología , Consumo de Alcohol en Menores/estadística & datos numéricos , Encuestas y Cuestionarios , Bebidas Alcohólicas/estadística & datos numéricos , Televisión/estadística & datos numéricos , Internet , Conducta del Adolescente/psicología , Pueblos del Este de Asia
6.
Cell Biol Int ; 48(8): 1169-1184, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38818762

RESUMEN

It was imperative to identify latent biomarkers pertinent to malignancies, given the pivotal role targeted molecular therapies play in tumor treatment investigations. This study aimed to assess the validity of HAUS1 as an indicator for survival prognosis and immune responses in prostate adenocarcinoma (PRAD) via single-cell and bulk RNA-sequencing. Related data on HAUS1 expression in PRAD were obtained from online databases, followed by comprehensive analyses to delineate its associations with survival prognosis, implicated pathways, and immune responses. Besides, the expression pattern of HAUS1 in PRAD was also verified in vitro, by using qRT-PCR, Western blot analysis, and immunohistochemistry. We found HAUS1 was downregulated in PRAD compared with normal tissues, as verified in vitro by qRT-PCR, Western blot, and immunohistochemistry (p < 0.05). Single-cell RNA-sequencing analysis indicated that HAUS1 had relatively higher expressions in B cells, Mono/Macro cells, and Endothelial cells compared with other cell types. Cox regression analysis revealed HAUS1 could serve as an independent indicator for the overall survival prognosis of PRAD (p < 0.05). Spearman correlation analyses revealed HAUS1 was closely related to the tumor microenvironment, immune cell infiltration levels, immune checkpoints, and immune cell pathways (p < 0.05). Furthermore, HAUS1 expression was found to be closely related to the immunotherapeutic response of patients receiving clinical intervention (p < 0.05). Collectively, our findings underscored the significant role of HAUS1 in PRAD prognosis and immune response, thereby presenting a novel and promising avenue for investigating the clinical utility of immunotherapy in PRAD.


Asunto(s)
Adenocarcinoma , Mitosis , Neoplasias de la Próstata , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Masculino , Adenocarcinoma/genética , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Mitosis/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Análisis de la Célula Individual/métodos , Microambiente Tumoral/inmunología
7.
Nature ; 561(7724): 551-555, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30232450

RESUMEN

Defects in the architecture or integrity of the nuclear envelope are associated with a variety of human diseases1. Micronuclei, one common nuclear aberration, are an origin for chromothripsis2, a catastrophic mutational process that is commonly observed in cancer3-5. Chromothripsis occurs after micronuclei spontaneously lose nuclear envelope integrity, which generates chromosome fragmentation6. Disruption of the nuclear envelope exposes DNA to the cytoplasm and initiates innate immune proinflammatory signalling7. Despite its importance, the basis of the fragility of the micronucleus nuclear envelope  is not known. Here we show that micronuclei undergo defective nuclear envelope assembly. Only 'core' nuclear envelope proteins8,9 assemble efficiently on lagging chromosomes, whereas 'non-core' nuclear envelope proteins8,9, including nuclear pore complexes (NPCs), do not. Consequently, micronuclei fail to properly import key proteins that are necessary for the integrity of the nuclear envelope and genome. We show that spindle microtubules block assembly of NPCs and other non-core nuclear envelope proteins on lagging chromosomes, causing an irreversible defect in nuclear envelope assembly. Accordingly, experimental manipulations that position missegregated chromosomes away from the spindle correct defective nuclear envelope assembly, prevent spontaneous nuclear envelope disruption, and suppress DNA damage in micronuclei. Thus, during mitotic exit in metazoan cells, chromosome segregation and nuclear envelope assembly are only loosely coordinated by the timing of mitotic spindle disassembly. The absence of precise checkpoint controls may explain why errors during mitotic exit are frequent and often trigger catastrophic genome rearrangements4,5.


Asunto(s)
Cromotripsis , Micronúcleos con Defecto Cromosómico , Mitosis , Membrana Nuclear/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Segregación Cromosómica , Cromosomas Humanos/metabolismo , ADN/metabolismo , Daño del ADN , Inestabilidad Genómica , Humanos , Microtúbulos/metabolismo , Poro Nuclear/metabolismo , Huso Acromático/metabolismo
8.
Gynecol Endocrinol ; 40(1): 2312895, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38444321

RESUMEN

OBJECTIVE: To investigate the differences in the metabolic indicators and sex hormones between obese and non-obese patients with polycystic ovary syndrome (PCOS), and their impacts on endometrial receptivity (ER). METHODS: We selected 255 individuals with PCOS, and categorized them into the obese groups, including the OP group (obese patients with PCOS) and the ON group (obese patients without PCOS), and selected 64 individuals who were categorized in the non-obese groups, namely, the control groups, which comprise the NP group (non-obese patients with PCOS) and the NN group(non-obese patients without PCOS). The one-way analysis of variance (ANOVA) and Mann-Whitney U tests were used to compare the metabolic indicators, and sex hormone-associated and ER-associated indicators between the groups. The correlation between the aforementioned clinical markers and ER was analyzed using the Pearson's correlation coefficient. RESULTS: (1) In comparison with the NP group, the OP group exhibited higher levels (p < .01) of free androgen index (FAI), anti-müllerian hormone (AMH), fasting insulin (FINS), insulin level within 60 min, 120 min, and 180 min-60minINS, 120minINS, and 180minINS, respectively, fasting blood glucose (FBG), blood glucose level within two hours (2hGlu), homeostatic model assessment for insulin resistance (HOMA-IR), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), waist-to-hip ratio (WHR), waist circumference, hip circumference, the ratio of the maximum blood flow velocity of the uterine artery during systole to the blood flow velocity of the uterine artery at the end of diastole (uterine artery S/D), and blood flow resistance index (RI) of the uterine artery. In comparison with the NP group, the OP group exhibited lower levels (p < .01) of sex hormone binding globulin (SHBG), dehydroepiandrosterone (DHEA), high molecular weight adiponectin (HMWA), and high-density lipoprotein cholesterol (HDL-C). (2) In the PCOS group, RI was significantly positively correlated with FAI, FINS, 120minINS, HOMA-IR, and WHR (p < .01), and significantly negatively correlated with SHBG, HDL-C, and HMWA (p < .01); uterine artery S/D was significantly positively correlated with FAI, FINS, 2hGlu, HOMA-IR, LDL-C, and WHR (p < .01), significantly positively correlated with 120minINS and FBG (p < .05), and significantly negatively correlated with SHBG and HMWA (p < .01). CONCLUSION: (1) The OP group exhibited obvious metabolic disorders and poor ER, which was manifested as low levels of SHBG and HMWA, and high levels of FAI, HOMA-IR, WHR, uterine artery S/D, and RI. (2) In patients with PCOS, there was a substantial correlation between ER-associated indicators RI and uterine artery S/D and FAI, FINS, 120minINS, HOMA-IR, WHR, SHBG, and HMWA.


Asunto(s)
Glucemia , Síndrome del Ovario Poliquístico , Femenino , Humanos , LDL-Colesterol , Síndrome del Ovario Poliquístico/complicaciones , Adiponectina , Insulina , HDL-Colesterol
9.
Alzheimers Dement ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291737

RESUMEN

INTRODUCTION: MicroRNAs (miRNAs) play important roles in gene expression regulation and Alzheimer's disease (AD) pathogenesis. METHODS: We investigated the association between baseline plasma miRNAs and central AD biomarkers from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 803): amyloid, tau, and neurodegeneration (A/T/N). Differentially expressed miRNAs and their targets were identified, followed by pathway enrichment analysis. Machine learning approaches were applied to investigate the role of miRNAs as blood biomarkers. RESULTS: We identified nine, two, and eight miRNAs significantly associated with A/T/N positivity, respectively. We identified 271 genes targeted by amyloid-related miRNAs with estrogen signaling receptor-mediated signaling among the enriched pathways. Additionally, 220 genes targeted by neurodegeneration-related miRNAs showed enrichment in pathways including the insulin growth factor 1 pathway. The classification performance of demographic information for A/T/N positivity was increased up to 9% with the inclusion of miRNAs. DISCUSSION: Plasma miRNAs were associated with central A/T/N biomarkers, highlighting their potential as blood biomarkers. HIGHLIGHTS: We performed association analysis of microRNAs (miRNAs) with amyloid/tau/neurodegeneration (A/T/N) biomarker positivity. We identified dysregulated miRNAs for A/T/N biomarker positivity. We identified Alzheimer's disease biomarker-specific/common pathways related to miRNAs. miRNAs improved the classification for A/T/N positivity by up to 9%. Our study highlights the potential of miRNAs as blood biomarkers.

10.
Alzheimers Dement ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291752

RESUMEN

INTRODUCTION: MicroRNAs are short non-coding RNAs that control proteostasis at the systems level and are emerging as potential prognostic and diagnostic biomarkers for Alzheimer's disease (AD). METHODS: We performed small RNA sequencing on plasma samples from 847 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. RESULTS: We identified microRNA signatures that correlate with AD diagnoses and help predict the conversion from mild cognitive impairment (MCI) to AD. DISCUSSION: Our data demonstrate that plasma microRNA signatures can be used to not only diagnose MCI, but also, critically, predict the conversion from MCI to AD. Moreover, combined with neuropsychological testing, plasma microRNAome evaluation helps predict MCI to AD conversion. These findings are of considerable public interest because they provide a path toward reducing indiscriminate utilization of costly and invasive testing by defining the at-risk segment of the aging population. HIGHLIGHTS: We provide the first analysis of the plasma microRNAome for the ADNI study. The levels of several microRNAs can be used as biomarkers for the prediction of conversion from MCI to AD. Adding the evaluation of plasma microRNA levels to neuropsychological testing in a clinical setting increases the accuracy of MCI to AD conversion prediction.

11.
Odontology ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961043

RESUMEN

Periodontitis (PD) is a multifactorial inflammatory disease associated with periodontopathic bacteria. Lysine-specific demethylase 1 (LSD1), a type of histone demethylase, has been implicated in the modulation of the inflammatory response process in oral diseases by binding to miRNA targets. This study investigates the molecular mechanisms by which miRNA binds to LSD1 and its subsequent effect on osteogenic differentiation. First, human periodontal ligament stem cells (hPDLSCs) were isolated, cultured, and characterized. These cells were then subjected to lipopolysaccharide (LPS) treatment to induce inflammation, after which osteogenic differentiation was initiated. qPCR and western blot were employed to monitor changes in LSD1 expression. Subsequently, LSD1 was silenced in hPDLSCs to evaluate its impact on osteogenic differentiation. Through bioinformatics and dual luciferase reporter assay, miR-708-3p was predicted and confirmed as a target miRNA of LSD1. Subsequently, miR-708-3p expression was assessed, and its role in hPDLSCs in PD was evaluated through overexpression. Using chromatin immunoprecipitation (ChIP) and western blot assay, we explored the potential regulation of osterix (OSX) transcription by miR-708-3p and LSD1 via di-methylated H3K4 (H3K4me2). Finally, we investigated the role of OSX in hPDLSCs. Following LPS treatment of hPDLSCs, the expression of LSD1 increased, but this trend was reversed upon the induction of osteogenic differentiation. Silencing LSD1 strengthened the osteogenic differentiation of hPDLSCs. miR-708-3p was found to directly bind to and negatively regulate LSD1, leading to the repression of OSX transcription through demethylation of H3K4me2. Moreover, overexpression of miR-708-3p was found to promote hPDLSCs osteogenic differentiation in inflammatory microenvironment. However, the protective effect was partially attenuated by reduced expression of OSX. Our findings indicate that miR-708-3p targetedly regulates LSD1 to enhance OSX transcription via H3K4me2 methylation, ultimately promoting hPDLSCs osteogenic differentiation.

12.
J Environ Manage ; 357: 120749, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38552517

RESUMEN

The traditional solidification/stabilization (S/S) technology, Ordinary Portland Cement (OPC), has been widely criticized due to its poor resistance to chloride and significant carbon emissions. Herein, a S/S strategy based on magnesium potassium phosphate cement (MKPC) was developed for the medical waste incineration fly ash (MFA) disposal, which harmonized the chlorine stabilization rate and potential carbon emissions. The in-situ XRD results indicated that the Cl- was efficiently immobilized in the MKPC system with coexisting Ca2+ by the formation of stable Ca5(PO4)3Cl through direct precipitation or intermediate transformation (the Cl- immobilization rate was up to 77.29%). Additionally, the MFA-based MKPC also demonstrated a compressive strength of up to 39.6 MPa, along with an immobilization rate exceeding 90% for heavy metals. Notably, despite the deterioration of the aforementioned S/S performances with increasing MFA incorporation, the potential carbon emissions associated with the entire S/S process were significantly reduced. According to the Life Cycle Assessment, the potential carbon emissions decreased to 8.35 × 102 kg CO2-eq when the MFA reached the blending equilibrium point (17.68 wt.%), while the Cl- immobilization rate still remained above 65%, achieving an acceptable equilibrium. This work proposes a low-carbon preparation strategy for MKPC that realizes chlorine stabilization, which is instructive for the design of S/S materials.


Asunto(s)
Compuestos de Magnesio , Residuos Sanitarios , Metales Pesados , Fosfatos , Compuestos de Potasio , Eliminación de Residuos , Ceniza del Carbón , Magnesio , Calcio , Potasio , Cloro , Carbono , Cloruros , Incineración/métodos , Metales Pesados/análisis , Residuos Sólidos , Material Particulado , Eliminación de Residuos/métodos
13.
Inflammopharmacology ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305407

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder frequently accompanied by neuroinflammation and oxidative stress. The medicine and food homology (MFH) has shown potential for treating neuroinflammation and oxidative stress. This study aimed to provide a safe and efficient therapy for AD based on MFH. In this study, we develop a MFH formula consisting of egg yolk oil, perilla seed oil, raphani seed oil, cinnamon oil, and noni puree (EPRCN). To evaluate the ameliorative effects of EPRCN on AD-related symptoms, a mouse model of AD was constructed using intraperitoneal injection of scopolamine in ICR mice. Experimental results demonstrated that EPRCN supplement restored behavioral deficits and suppressed neuroinflammation and oxidative stress in the hippocampus of scopolamine-induced mice. An in vitro study was then performed using induction of Aß(25-35) in glial (BV-2 and SW-1783) and neuron (SH-SY5Y) cell lines to examine the improvement mechanism of EPRCN on cognitive deficits. Multi-omics and in vitro studies demonstrated that these changes were driven by the anandamide (AEA)-Trpv1-Nrf2 pathway, which was inhibited by AM404 (an AEA inhibitor), AMG9810 (a Trpv1 inhibitor), and BT (an Nrf2 inhibitor). Consequently, EPRCN is an effective therapy on preventing cognitive deficits in mouse models of AD. In contrast to donepezil, EPRCN exhibits a novel modes action for ameliorating neuroinflammation. The mechanism of EPRCN on preventing cognitive deficits is mediated by improving neuroinflammation and oxidative stress via activating the AEA-Trpv1-Nrf2 pathway.

14.
Molecules ; 29(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39202992

RESUMEN

Transition metal oxides (TMOs) are important anode materials in sodium-ion batteries (SIBs) due to their high theoretical capacities, abundant resources, and cost-effectiveness. However, issues such as the low conductivity and large volume variation of TMO bulk materials during the cycling process result in poor electrochemical performance. Nanosizing and compositing with carbon materials are two effective strategies to overcome these issues. In this study, spherical MnFe2O4@xC nanocomposites composed of MnFe2O4 inner cores and tunable carbon shell thicknesses were successfully prepared and utilized as anode materials for SIBs. It was found that the property of the carbon shell plays a crucial role in tuning the electrochemical performance of MnFe2O4@xC nanocomposites and an appropriate carbon shell thickness (content) leads to the optimal battery performance. Thus, compared to MnFe2O4@1C and MnFe2O4@8C, MnFe2O4@4C nanocomposite exhibits optimal electrochemical performance by releasing a reversible specific capacity of around 308 mAh·g-1 at 0.1 A·g-1 with 93% capacity retention after 100 cycles, 250 mAh·g-1 at 1.0 A g-1 with 73% capacity retention after 300 cycles in a half cell, and around 111 mAh·g-1 at 1.0 C when coupled with a Na3V2(PO4)3 (NVP) cathode in a full SIB cell.

15.
J Sci Food Agric ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056229

RESUMEN

BACKGROUND: The preparation of malic acid starch ester (MSE) is mostly carried out using a high temperature method, but there are problems such as high energy consumption, long preparation time, and uneven heating. Microwave technology can be used to overcome these limitations. The semi-crystalline structure of starch granules hinders the modifier's access to the matrix, thus limiting the esterification reaction. Physical techniques can act on the interior of the starch to create a number of active sites, thereby facilitating the reaction of the starch with esterification reagents. Therefore, this study investigated the effect of starch pretreatment by microwave, heat-moisture, and ultrasonic techniques on the degree of substitution (DS), structure, and physicochemical properties of MSE synthesized by the microwave method. RESULTS: The DS of MSE was increased after pretreatments. The modified starch obtained by different pretreatment methods did not show new characteristic peaks, while the MSE synthesized showed new absorption peaks near 1735 cm-1. The granular structure and morphology of the modified starch obtained by microwave and heat-moisture pretreatment were gelatinized and aggregated, while some of the starch particles of the modified starch obtained by ultrasonic pretreatment appeared pore-sized. The relative crystallinity and gelatinization enthalpy of the MSE were reduced, but the crystallization pattern remained as A-type. CONCLUSION: Overall, the results suggest that various pretreatment methods can enhance the DS of MSE by disrupting the structure of starch. The findings of this study provide theoretical support for improving the DS of esterified starch. © 2024 Society of Chemical Industry.

16.
Angew Chem Int Ed Engl ; : e202414128, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39243205

RESUMEN

Electron-withdrawing molecules (EWMs) have exhibited remarkable efficacy in boosting the performance of perovskite solar cells (PSCs). However, the underneath mechanisms governing their positive attributes remain inadequately understood. Herein, we conducted a comprehensive study on EWMs by comparing 2,2'-(2,5-cyclohexadiene-1,4-diylidene) bismalononitrile (TCNQ) and (2,3,5,6-tetrafluoro-2,5-cyclohexadiene-1,4-diylidene) dimalononitrile (F4TCNQ) employed at the perovskite/hole transport layer (HTL) interfaces. Our findings reveal that EWMs simultaneously enhance chemical passivation, interface dipole effect, and chemically binding of the perovskite to the HTL. Notably, F4TCNQ, with its superior electron-withdrawing properties, demonstrates a more pronounced impact. Consequently, PCSs modified with F4TCNQ achieved an impressive power conversion efficiency (PCE) of 25.21%, while demonstrating excellent long-term stability. Moreover, the PCE of a larger-area perovskite module (14.0 cm2) based on F4TCNQ reached 21.41%. This work illuminates the multifaceted mechanisms of EWMs at the interfaces in PSCs, delivering pivotal insights that pave the way for the sophisticated design and strategic application of EWMs, thereby propelling the advancement of perovskite photovoltaic technology.

17.
Angew Chem Int Ed Engl ; 63(40): e202410454, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38994649

RESUMEN

Host-guest complexation offers a promising approach for mitigating surface defects in perovskite solar cells (PSCs). Crown ethers are the most widely used macrocyclic hosts for complexing perovskite surfaces, yet their supramolecular interactions and functional implications require further understanding. Here we show that the dipole moment of crown ethers serves as an indicator of supramolecular interactions with both perovskites and precursor salts. A larger dipole moment, achieved through the substitution of heteroatoms, correlates with enhanced coordination with lead cations. Perovskite films incorporating aza-crown ethers as additives exhibited improved morphology, reduced defect densities, and better energy-level alignment compared to those using native crown ethers. We report power-conversion efficiencies (PCEs) exceeding 25 % for PSCs, which show enhanced long-term stability, and a record PCE of 21.5 % for host-guest complexation-based perovskite solar modules with an active area of 14.0 cm2.

18.
J Nanobiotechnology ; 21(1): 418, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951928

RESUMEN

Elastin-like polypeptides (ELPs) are thermally responsive biopolymers derived from natural elastin. These peptides have a low critical solution temperature phase behavior and can be used to prepare stimuli-responsive biomaterials. Through genetic engineering, biomaterials prepared from ELPs can have unique and customizable properties. By adjusting the amino acid sequence and length of ELPs, nanostructures, such as micelles and nanofibers, can be formed. Correspondingly, ELPs have been used for improving the stability and prolonging drug-release time. Furthermore, ELPs have widespread use in tissue repair due to their biocompatibility and biodegradability. Here, this review summarizes the basic property composition of ELPs and the methods for modulating their phase transition properties, discusses the application of drug delivery system and tissue repair and clarifies the current challenges and future directions of ELPs in applications.


Asunto(s)
Elastina , Péptidos , Elastina/química , Péptidos/química , Sistemas de Liberación de Medicamentos , Secuencia de Aminoácidos , Materiales Biocompatibles
19.
Oral Dis ; 29(3): 1137-1148, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34739163

RESUMEN

OBJECTIVE: Periodontitis is a chronic inflammation of periodontal tissues. This study is expected to assess the effect of LSD1 on the osteogenic differentiation of hPDLSCs in periodontitis. METHODS: hPDLSCs were separated, cultivated, and identified, and then treated by LPS to induce inflammatory microenvironment and subjected to osteogenic differentiation. Subsequently, LSD1 expression was determined, and then silenced to assess its effect on hPDLSCs. Next, the binding relation between LSD1 and miR-590-3p was analyzed. miR-590-3p expression was detected and then overexpressed to evaluate its role in hPDLSCs in periodontitis. Afterward, the relation between LSD1 and OSX was analyzed. H3K4me2 level and OSX transcription were measured, and the role of H3K4me2 was determined. Additionally, the role of OSX in hPDLSCs was verified. RESULTS: LSD1 was poorly expressed after osteogenic differentiation of hPDLSCs while it was rescued upon LPS induction. The osteogenic differentiation of hPDLSC in periodontitis was strengthened upon LSD1 downregulation. Besides, miR-590-3p targeted LSD1 transcription, and LSD1 inhibited OSX transcription via H3K4me2 demethylation. miR-590-3p overexpression improved osteogenic differentiation of hPDLSCs in periodontitis. But this improvement was annulled by OSX inhibition. CONCLUSION: miR-590-3p targeted LSD1 transcription and upregulated H3K4me2 methylation to promote OSX transcription, thereby encouraging osteogenic differentiation of hPDLSCs in periodontitis.


Asunto(s)
MicroARNs , Periodontitis , Humanos , Diferenciación Celular , Células Cultivadas , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Lipopolisacáridos/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Ligamento Periodontal , Periodontitis/genética , Periodontitis/metabolismo , Células Madre
20.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37050426

RESUMEN

The quantitative defect detection of wire rope is crucial to guarantee safety in various application scenes, and sophisticated inspection conditions usually lead to the accurate testing of difficulties and challenges. Thus, a magnetic flux leakage (MFL) signal analysis and convolutional neural networks (CNNs)-based wire rope defect recognition method was proposed to solve this challenge. Typical wire rope defect inspection data obtained from one-dimensional (1D) MFL testing were first analyzed both in time and frequency domains. After the signal denoising through a new combination of Haar wavelet transform and differentiated operation and signal preprocessing by normalization, ten main features were used in the datasets, and then the principles of the proposed MFL and 1D-CNNs-based wire rope defect classifications were presented. Finally, the performance of the novel method was evaluated and compared with six machine learning methods and related algorithms, which demonstrated that the proposed method featured the highest testing accuracy (>98%) and was valid and feasible for the quantitative and accurate detection of broken wire defects. Additionally, the considerable application potential as well as the limitations of the proposed methods, and future work, were discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA