Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.463
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38730554

RESUMEN

MOTIVATION: Enhanced by contemporary computational advances, the prediction of drug-target interactions (DTIs) has become crucial in developing de novo and effective drugs. Existing deep learning approaches to DTI prediction are frequently beleaguered by a tendency to overfit specific molecular representations, which significantly impedes their predictive reliability and utility in novel drug discovery contexts. Furthermore, existing DTI networks often disregard the molecular size variance between macro molecules (targets) and micro molecules (drugs) by treating them at an equivalent scale that undermines the accurate elucidation of their interaction. RESULTS: We propose a novel DTI network with a differential-scale scheme to model the binding site for enhancing DTI prediction, which is named as BindingSiteDTI. It explicitly extracts multiscale substructures from targets with different scales of molecular size and fixed-scale substructures from drugs, facilitating the identification of structurally similar substructural tokens, and models the concealed relationships at the substructural level to construct interaction feature. Experiments conducted on popular benchmarks, including DUD-E, human, and BindingDB, shown that BindingSiteDTI contains significant improvements compared with recent DTI prediction methods. AVAILABILITY AND IMPLEMENTATION: The source code of BindingSiteDTI can be accessed at https://github.com/MagicPF/BindingSiteDTI.


Asunto(s)
Descubrimiento de Drogas , Sitios de Unión , Humanos , Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Biología Computacional/métodos , Aprendizaje Profundo
2.
FASEB J ; 38(13): e23756, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949649

RESUMEN

Asthma is a chronic pulmonary disease with the worldwide prevalence. The structural alterations of airway walls, termed as "airway remodeling", are documented as the core contributor to the airway dysfunction during chronic asthma. Forkhead box transcription factor FOXK2 is a critical regulator of glycolysis, a metabolic reprogramming pathway linked to pulmonary fibrosis. However, the role of FOXK2 in asthma waits further explored. In this study, the chronic asthmatic mice were induced via ovalbumin (OVA) sensitization and repetitive OVA challenge. FOXK2 was upregulated in the lungs of OVA mice and downregulated after adenovirus-mediated FOXK2 silencing. The lung inflammation, peribronchial collagen deposition, and glycolysis in OVA mice were obviously attenuated after FOXK2 knockdown. Besides, the expressions of FOXK2 and SIRT2 in human bronchial epithelial cells (BEAS-2B) were increasingly upregulated upon TGF-ß1 stimulation and downregulated after FOXK2 knockdown. Moreover, the functional loss of FOXK2 remarkably suppressed TGF-ß1-induced epithelial-mesenchymal transition (EMT) and glycolysis in BEAS-2B cells, as manifested by the altered expressions of EMT markers and glycolysis enzymes. The glycolysis inhibitor 2-deoxy-d-glucose (2-DG) inhibited the EMT in TGF-ß1-induced cells, making glycolysis a driver of EMT. The binding of FOXK2 to SIRT2 was validated, and SIRT2 overexpression blocked the FOXK2 knockdown-mediated inhibition of EMT and glycolysis in TGF-ß1-treated cells, which suggests that FOXK2 regulates EMT and glycolysis in TGF-ß1-treated cells in a SIRT2-dependnet manner. Collectively, this study highlights the protective effect of FOXK2 knockdown on airway remodeling during chronic asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Factores de Transcripción Forkhead , Glucólisis , Sirtuina 2 , Asma/metabolismo , Asma/patología , Animales , Sirtuina 2/metabolismo , Sirtuina 2/genética , Ratones , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Humanos , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Transición Epitelial-Mesenquimal , Ratones Endogámicos BALB C , Femenino , Factor de Crecimiento Transformador beta1/metabolismo , Pulmón/metabolismo , Pulmón/patología , Línea Celular
3.
Immunity ; 44(3): 568-581, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921109

RESUMEN

Upon antigen engagement, augmented cytosolic reactive oxygen species (ROS) are needed to achieve optimal T cell receptor (TCR) signaling. However, uncontrolled ROS production is a prominent cause of necrosis, which elicits hyper-inflammation and tissue damage. Hence, it is critical to program activated T cells to achieve ROS equilibrium. Here, we determined that miR-23a is indispensable for effector CD4(+) T cell expansion, particularly by providing early protection from excessive necrosis. Mechanistically, miR-23a targeted PPIF, gatekeeper of the mitochondria permeability transition pore, thereby restricting ROS flux and maintaining mitochondrial integrity. Upon acute Listeria monocytogenes infection, deleting miR-23a in T cells resulted in excessive inflammation, massive liver damage, and a marked mortality increase, which highlights the essential role of miR-23a in maintaining immune homeostasis.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Hígado/patología , MicroARNs/metabolismo , Mitocondrias/metabolismo , Animales , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Homeostasis , Ratones , Ratones Transgénicos , MicroARNs/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal/genética
4.
Nucleic Acids Res ; 51(6): 2740-2758, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36864759

RESUMEN

In CRISPR/Cas9 genome editing, the tight and persistent target binding of Cas9 provides an opportunity for efficient genetic and epigenetic modification on genome. In particular, technologies based on catalytically dead Cas9 (dCas9) have been developed to enable genomic regulation and live imaging in a site-specific manner. While post-cleavage target residence of CRISPR/Cas9 could alter the pathway choice in repair of Cas9-induced DNA double strand breaks (DSBs), it is possible that dCas9 residing adjacent to a break may also determine the repair pathway for this DSB, providing an opportunity to control genome editing. Here, we found that loading dCas9 onto a DSB-adjacent site stimulated homology-directed repair (HDR) of this DSB by locally blocking recruitment of classical non-homologous end-joining (c-NHEJ) factors and suppressing c-NHEJ in mammalian cells. We further repurposed dCas9 proximal binding to increase HDR-mediated CRISPR genome editing by up to 4-fold while avoiding exacerbation of off-target effects. This dCas9-based local inhibitor provided a novel strategy of c-NHEJ inhibition in CRISPR genome editing in place of small molecule c-NHEJ inhibitors, which are often used to increase HDR-mediated genome editing but undesirably exacerbate off-target effects.


Asunto(s)
Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Animales , Reparación del ADN por Unión de Extremidades , Reparación del ADN por Recombinación , Edición Génica/métodos , ADN/genética , Reparación del ADN , Mamíferos/genética
5.
Nano Lett ; 24(1): 140-147, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37982545

RESUMEN

Optical spatial differentiation is a typical operation of optical analog computing and can single out the edge to accelerate the subsequent image processing, but in some cases, overall information about the object needs to be presented synchronously. Here, we propose a multifunctional optical device based on structured chiral photonic crystals for the simultaneous realization of real-time dual-mode imaging. This optical differentiator is realized by self-organized large-birefringence cholesteric liquid crystals, which are photopatterned to encode with a special integrated geometric phase. Two highly spin-selective modes of second-order spatial differentiation and bright-field imaging are exhibited in the reflected and transmitted directions, respectively. Two-dimensional edges of both amplitude and phase objects have been efficiently enhanced in high contrast and the broadband spectrum. This work extends the ingenious building of hierarchical chiral nanostructures, enriches their applications in the emerging frontiers of optical computing, and boasts considerable potential in machine vision and microscopy.

6.
J Infect Dis ; 229(1): 117-121, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-37565805

RESUMEN

Using a prospective, observational cohort study during the post-"dynamic COVID-zero" wave in China, we estimated short-term relative effectiveness against Omicron BA.5 infection of inhaled aerosolized adenovirus type 5-vectored ancestral strain coronavirus disease 2019 (COVID-19) vaccine as a second booster dose approximately 1 year after homologous boosted primary series of inactivated COVID-19 vaccine compared with no second booster. Participants reported nucleic acid or antigen test results weekly until they tested positive or completed predesignated follow-up. After excluding participants infected <14 days after study entry, relative effectiveness among the 6576 participants was 61% in 18- to 59-year-olds and 38% in ≥60-year-olds and was sustained for 12 weeks.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Estudios Prospectivos , Eficacia de las Vacunas , China/epidemiología , Adenoviridae/genética
7.
Br J Cancer ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877108

RESUMEN

BACKGROUND: Targeting DNA damage repair factors, such as DNA-dependent protein kinase catalytic subunit (DNA-PKcs), may offer an opportunity for effective treatment of multiple myeloma (MM). In combination with DNA damage-inducing agents, this strategy has been shown to improve chemotherapies partially via activation of cGAS-STING pathway by an elevated level of cytosolic DNA. However, as cGAS is primarily sequestered by chromatin in the nucleus, it remains unclear how cGAS is released from chromatin and translocated into the cytoplasm upon DNA damage, leading to cGAS-STING activation. METHODS: We examined the role of DNA-PKcs inhibition on cGAS-STING-mediated MM chemosensitivity by performing mass spectrometry and mechanism study. RESULTS: Here, we found DNA-PKcs inhibition potentiated DNA damage-inducing agent doxorubicin-induced anti-MM effect by activating cGAS-STING signaling. The cGAS-STING activation in MM cells caused cell death partly via IRF3-NOXA-BAK axis and induced M1 polarization of macrophages. Moreover, this activation was not caused by defective classical non-homologous end joining (c-NHEJ). Instead, upon DNA damage induced by doxorubicin, inhibition of DNA-PKcs promoted cGAS release from cytoplasmic chromatin fragments and increased the amount of cytosolic cGAS and DNA, activating cGAS-STING. CONCLUSIONS: Inhibition of DNA-PKcs could improve the efficacy of doxorubicin in treatment of MM by de-sequestrating cGAS in damaged chromatin.

8.
Clin Gastroenterol Hepatol ; 22(7): 1497-1507.e5, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522476

RESUMEN

BACKGROUND & AIMS: The considerable disease burden of irritable bowel syndrome (IBS) has coincided with the increase of ultraprocessed food (UPF) consumption over the past few decades. However, epidemiologic evidence for an association is lacking. We aimed to examine the long-term risk of IBS associated with UPF consumption in a large-scale prospective cohort. METHODS: Participants who completed 24-hour dietary recalls during 2009 to 2012 from the UK Biobank, and free of IBS, celiac disease, inflammatory bowel disease, and any cancer at baseline, were included (N = 178,711; 53.1% female). UPF consumption was defined according to the NOVA food classification system, expressed as a percentage of UPF content in the total diet intake (as grams per day). The primary outcome was incident IBS. A Cox proportional hazard model was performed to estimate associated risk. RESULTS: The mean UPF consumption was 21.0% (SD, 11.0%) of the total diet. During a median of 11.3 years of follow-up, 2690 incident IBS cases were identified. An 8% higher risk of IBS (hazard ratio, 1.08; 95% CI, 1.04-1.12) was associated with every 10% increment of UPF consumption. Compared with the lowest quartile of UPF consumption, the highest quartile was associated with a significantly increased risk of incident IBS (hazard ratio, 1.19; 95% CI, 1.07-1.33; Ptrend < .001). Subgroup analyses by age, sex, body mass index, smoking, and alcohol drinking status also showed similar results, except for the never/previous drinking subgroup. Further sensitivity analyses confirmed the positive association with a higher UPF consumption. CONCLUSIONS: Our findings provide evidence that a higher UPF consumption is associated with an increased risk of incident IBS, with a significant dose-response relationship.


Asunto(s)
Síndrome del Colon Irritable , Humanos , Síndrome del Colon Irritable/epidemiología , Femenino , Estudios Prospectivos , Masculino , Persona de Mediana Edad , Adulto , Reino Unido/epidemiología , Anciano , Medición de Riesgo , Incidencia , Manipulación de Alimentos , Comida Rápida/efectos adversos , Comida Rápida/estadística & datos numéricos , Alimentos Procesados
9.
J Gene Med ; 26(6): e3708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837511

RESUMEN

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Asunto(s)
Movimiento Celular , Proliferación Celular , Quimiocina CCL2 , Células Epiteliales , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , Lisofosfolípidos , Humanos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Movimiento Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Progresión de la Enfermedad , Transducción de Señal/efectos de los fármacos , Esófago/metabolismo , Esófago/patología , Esófago/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos
10.
Planta ; 259(5): 104, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551672

RESUMEN

MAIN CONCLUSION: The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.


Asunto(s)
MicroARNs , Rhododendron , Transcriptoma/genética , Rhododendron/genética , Rhododendron/metabolismo , Ecosistema , Respuesta al Choque Térmico/genética , MicroARNs/genética , Perfilación de la Expresión Génica
11.
Bioconjug Chem ; 35(2): 203-213, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38343092

RESUMEN

The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.


Asunto(s)
Hemostáticos , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Cisteína , Ácido Hialurónico , Antibacterianos/farmacología , Vendajes , Maleimidas
12.
Opt Express ; 32(4): 5273-5286, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439259

RESUMEN

We investigate theoretically the photoelectron momentum distributions (PMDs) of the helium atom in the few-cycle nonlinear chirped laser pulse. The numerical results show that the direction of the spider-like interference structure in PMDs exhibits periodic variations with the increase of the chirp parameter. It is illustrated that the direction of the spider-like interference structure is related to the direction of the electron motion by tracking the trajectories of the electrons. We also demonstrate that the carrier-envelope phase can precisely control the opening of the ionization channel. In addition, we investigate the PMDs when a chirp-free second harmonic (SH) laser pulse is added to the chirped laser field, the numerical results show that the interference patterns can change from only spider-like interference structure to both spider-like and ring-like interference structures.

13.
Hum Reprod ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942602

RESUMEN

STUDY QUESTION: Can pregnancy outcomes following fresh elective single embryo transfer (eSET) in gonadotropin-releasing hormone (GnRH) antagonist protocols increase using a gonadotropin (Gn) step-down approach with cessation of GnRH antagonist on the day of hCG administration (hCG day) in patients with normal ovarian response? SUMMARY ANSWER: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on the hCG day is effective in improving live birth rates (LBRs) per fresh eSET cycle. WHAT IS KNOWN ALREADY: Currently, there is no consensus on optimal GnRH antagonist regimens. Studies have shown that fresh GnRH antagonist cycles result in poorer pregnancy outcomes than the long GnRH agonist (GnRHa) protocol. Endometrial receptivity is a key factor that contributes to this phenomenon. STUDY DESIGN, SIZE, DURATION: An open label randomized controlled trial (RCT) was performed between November 2021 and August 2022. There were 546 patients allocated to either the modified GnRH antagonist or the conventional antagonist protocol at a 1:1 ratio. PARTICIPANTS/MATERIALS, SETTING, METHODS: Both IVF and ICSI cycles were included, and the sperm samples used were either fresh or frozen from the partner, or from frozen donor ejaculates. The primary outcome was the LBRs per fresh SET cycle. Secondary outcomes included rates of implantation, clinical and ongoing pregnancy, miscarriage, and ovarian hyperstimulation syndrome (OHSS), as well as clinical outcomes of ovarian stimulation. MAIN RESULTS AND THE ROLE OF CHANCE: Baseline demographic features were not significantly different between the two ovarian stimulation groups. However, in the intention-to-treat (ITT) population, the LBRs in the modified antagonist group were significantly higher than in the conventional group (38.1% [104/273] vs. 27.5% [75/273], relative risk 1.39 [95% CI, 1.09-1.77], P = 0.008). Using a per-protocol (PP) analysis which included all the patients who received an embryo transfer, the LBRs in the modified antagonist group were also significantly higher than in the conventional group (48.6% [103/212] vs. 36.8% [74/201], relative risk 1.32 [95% CI, 1.05-1.66], P = 0.016). The modified antagonist group achieved significantly higher implantation rates, and clinical and ongoing pregnancy rates than the conventional group in both the ITT and PP analyses (P < 0.05). The two groups did not show significant differences between the number of oocytes retrieved or mature oocytes, two-pronuclear zygote (2PN) rates, the number of embryos obtained, blastocyst progression and good-quality embryo rates, early miscarriage rates, or OHSS incidence rates (P > 0.05). LIMITATIONS, REASONS FOR CAUTION: A limitation of our study was that the subjects were not blinded to the treatment allocation in the RCT trial. Only women under 40 years of age who had a good prognosis were included in the analysis. Therefore, use of the modified antagonist protocol in older patients with a low ovarian reserve remains to be investigated. In addition, the sample size for Day 5 elective SET was small, so larger trials will be required to strengthen these findings. WIDER IMPLICATIONS OF THE FINDINGS: The modified GnRH antagonist protocol using the Gn step-down approach and cessation of GnRH antagonist on hCG day improved the LBRs per fresh eSET cycle in normal responders. STUDY FUNDING/COMPETING INTEREST(S): This project was funded by grant 2022YFC2702503 from the National Key Research & Development Program of China and grant 2021140 from the Beijing Health Promotion Association. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER: The RCT was registered in the Chinese Clinical Trial Registry; Study Number: ChiCTR2100053453. TRIAL REGISTRATION DATE: 21 November 2021. DATE OF FIRST PATIENT'S ENROLLMENT: 23 November 2021.

14.
Opt Lett ; 49(10): 2625-2628, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748121

RESUMEN

We present an encoding scheme of a single logical qubit with single-sided quantum dot (QD)-cavity systems, which is immune to the collective decoherence. By adjusting the Purcell factor to satisfy the balanced reflection condition, the detrimental effects of unbalanced reflection between the coupled and uncoupled QD-cavity systems can be effectively suppressed. Furthermore, the fidelity of each step can be increased to unity regardless of the strong coupling regime and the weak coupling regime of cavity quantum electrodynamics (QED) with the assistance of waveform correctors. The scheme requires QD-cavity systems and simple linear optical elements, which can be implemented with the currently experimental techniques.

15.
Exp Dermatol ; 33(1): e14948, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950506

RESUMEN

Dermal papilla cells (DPCs) undergo premature ageing in androgenetic alopecia and senescent alopecia. As critical components of hair follicle reconstruction, DPCs are also prone to senescence in vitro, resulting in a diminished hair follicle inductivity capacity. Dermal sheath cup cells (DSCCs), a specific subset of hair follicle mesenchymal stem cells, intimately linked to the function of DPCs. The primary objective of this research is to investigate the anti-ageing effect of exosomes derived from DSCCs (ExoDSCCs ) on DPCs. Exosomes were utilized to treat H2 O2 -induced DPCs or long-generation DPCs(P10). Our findings demonstrate that ExoDSCCs(P3) promote the proliferation, viability and migration of senescent DPCs while inhibiting cell apoptosis. The expression of senescence marker SA-ß-Gal were significantly downregulated in senescent DPCs. When treated with ExoDSCCs(P3) , expression of inducibility related markers alkaline phosphatase and Versican were significantly upregulated. Additionally, ExoDSCCs(P3) activated the Wnt/ß-catenin signalling in vitro. In patch assay, ExoDSCCs(P3) significantly promoted hair follicle reconstruction in senescent DPCs. In summary, our work highlights that ExoDSCCs(P3) may restore the biological functions and improve the hair follicle induction ability of senescent DPCs. Therefore, ExoDSCCs(P3) may represent a new strategy for intervening in the ageing process of DPCs, contributing to the prevention of senile alopecia.


Asunto(s)
Exosomas , Folículo Piloso , Humanos , Folículo Piloso/metabolismo , Dermis/metabolismo , Células Cultivadas , Alopecia/metabolismo , Envejecimiento , Regeneración , Proliferación Celular
16.
Chemistry ; : e202400292, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769938

RESUMEN

Recently, π-π stacked antiaromatic π-systems have received considerable attention because they can exhibit stacked-ring aromaticity due to substantial intermolecular orbital interactions. Here, we report three antiaromatic norcorrole dimers that self-assemble to form supramolecular architectures through chiral self-sorting. A 2,2'-linked norcorrole dimer with 3,5-di-tert-butylphenyl groups forms a π-stacked dimer both in solid and solution states via homochiral self-sorting. Its association constant in solution is (3.6±1.7)×105 M-1 at 20 °C. In the solid state, 3,3'-linked norcorrole dimers with 3,5-di-tert-butylphenyl and phenyl groups afford macrocyclic and helical supramolecular assemblies via heterochiral and homochiral self-sorting, respectively. Notably, the subtle modification in the substituent resulted in a complete change in the structure of the aggregates and the chiral self-sorting mode. The present findings demonstrate that structural manipulation in antiaromatic monomer units leads to the formation of various supramolecular assemblies on the basis of the attractive interactions between antiaromatic π-systems.

17.
Cell Mol Neurobiol ; 44(1): 50, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856921

RESUMEN

In recent years, spatial transcriptomics (ST) research has become a popular field of study and has shown great potential in medicine. However, there are few bibliometric analyses in this field. Thus, in this study, we aimed to find and analyze the frontiers and trends of this medical research field based on the available literature. A computerized search was applied to the WoSCC (Web of Science Core Collection) Database for literature published from 2006 to 2023. Complete records of all literature and cited references were extracted and screened. The bibliometric analysis and visualization were performed using CiteSpace, VOSviewer, Bibliometrix R Package software, and Scimago Graphica. A total of 1467 papers and reviews were included. The analysis revealed that the ST publication and citation results have shown a rapid upward trend over the last 3 years. Nature Communications and Nature were the most productive and most co-cited journals, respectively. In the comprehensive global collaborative network, the United States is the country with the most organizations and publications, followed closely by China and the United Kingdom. The author Joakim Lundeberg published the most cited paper, while Patrik L. Ståhl ranked first among co-cited authors. The hot topics in ST are tissue recognition, cancer, heterogeneity, immunotherapy, differentiation, and models. ST technologies have greatly contributed to in-depth research in medical fields such as oncology and neuroscience, opening up new possibilities for the diagnosis and treatment of diseases. Moreover, artificial intelligence and big data drive additional development in ST fields.


Asunto(s)
Bibliometría , Transcriptoma , Humanos , Transcriptoma/genética , Publicaciones , Animales
18.
Cell Commun Signal ; 22(1): 263, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730482

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) is the predominant etiological agent of gastritis and disrupts the integrity of the gastric mucosal barrier through various pathogenic mechanisms. After H. pylori invades the gastric mucosa, it interacts with immune cells in the lamina propria. Macrophages are central players in the inflammatory response, and H. pylori stimulates them to secrete a variety of inflammatory factors, leading to the chronic damage of the gastric mucosa. Therefore, the study aims to explore the mechanism of gastric mucosal injury caused by inflammatory factors secreted by macrophages, which may provide a new mechanism for the development of H. pylori-related gastritis. METHODS: The expression and secretion of CCL3 from H. pylori infected macrophages were detected by RT-qPCR, Western blot and ELISA. The effect of H. pylori-infected macrophage culture medium and CCL3 on gastric epithelial cells tight junctions were analyzed by Western blot, immunofluorescence and transepithelial electrical resistance. EdU and apoptotic flow cytometry assays were used to detect cell proliferation and apoptosis levels. Dual-luciferase reporter assays and chromatin immunoprecipitation assays were used to study CCL3 transcription factors. Finally, gastric mucosal tissue inflammation and CCL3 expression were analyzed by hematoxylin and eosin staining and immunohistochemistry. RESULTS: After H. pylori infection, CCL3 expressed and secreted from macrophages were increased. H. pylori-infected macrophage culture medium and CCL3 disrupted gastric epithelial cells tight junctions, while CCL3 neutralizing antibody and receptor inhibitor of CCL3 improved the disruption of tight junctions between cells. In addition, H. pylori-infected macrophage culture medium and CCL3 recombinant proteins stimulated P38 phosphorylation, and P38 phosphorylation inhibitor improved the disruption of tight junctions between cells. Besides, it was identified that STAT1 was a transcription factor of CCL3 and H. pylori stimulated macrophage to secret CCL3 through the JAK1-STAT1 pathway. Finally, after mice were injected with murine CCL3 recombinant protein, the gastric mucosal injury and inflammation were aggravated, and the phosphorylation level of P38 was increased. CONCLUSIONS: In summary, our findings demonstrate that H. pylori infection stimulates macrophages to secrete CCL3 via the JAK1-STAT1 pathway. Subsequently, CCL3 damages gastric epithelial tight junctions through the phosphorylation of P38. This may be a novel mechanism of gastric mucosal injury in H. pylori-associated gastritis.


Asunto(s)
Quimiocina CCL3 , Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Macrófagos , Helicobacter pylori/fisiología , Quimiocina CCL3/metabolismo , Quimiocina CCL3/genética , Animales , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Mucosa Gástrica/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Homeostasis , Ratones Endogámicos C57BL , Humanos , Apoptosis , Proliferación Celular , Masculino , Células RAW 264.7
19.
Cell Commun Signal ; 22(1): 187, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515158

RESUMEN

BACKGROUND: Pyroptosis of the renal tubular epithelial cells (RTECs) and interstitial inflammation are central pathological characteristics of acute kidney injury (AKI). Pyroptosis acts as a pro-inflammatory form of programmed cell death and is mainly dependent on activation of the NLRP3 inflammasome. Previous studies revealed that acetyl-CoA synthetase 2 (ACSS2) promotes inflammation during metabolic stress suggesting that ACSS2 might regulate pyroptosis and inflammatory responses of RTECs in AKI. METHODS AND RESULTS: The expression of ACSS2 was found to be significantly increased in the renal epithelial cells of mice with lipopolysaccharide (LPS)-induced AKI. Pharmacological and genetic strategies demonstrated that ACSS2 regulated NLRP3-mediated caspase-1 activation and pyroptosis through the stimulation of the KLF5/NF-κB pathway in RTECs. The deletion of ACSS2 attenuated renal tubular pathological injury and inflammatory cell infiltration in an LPS-induced mouse model, and ACSS2-deficient mice displayed impaired NLRP3 activation-mediated pyroptosis and decreased IL-1ß production in response to the LPS challenge. In HK-2 cells, ACSS2 deficiency suppressed NLRP3-mediated caspase-1 activation and pyroptosis through the downregulation of the KLF5/NF-κB pathway. The KLF5 inhibitor ML264 suppressed NF-κB activity and NLRP3-mediated caspase-1 activation, thus protecting HK-2 cells from LPS-induced pyroptosis. CONCLUSION: Our results suggested that ACSS2 regulates activation of the NLRP3 inflammasome and pyroptosis by inducing the KLF5/NF-κB pathway in RTECs. These results identified ACSS2 as a potential therapeutic target in AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Animales , Ratones , Acetilcoenzima A/metabolismo , Lesión Renal Aguda/metabolismo , Caspasa 1/metabolismo , Células Epiteliales/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Ligasas/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Sepsis/complicaciones , Sepsis/metabolismo
20.
Neuroendocrinology ; : 1-16, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710164

RESUMEN

INTRODUCTION: Well-calibrated models for personalized prognostication of patients with gastrointestinal neuroendocrine neoplasms (GINENs) are limited. This study aimed to develop and validate a machine-learning model to predict the survival of patients with GINENs. METHODS: Oblique random survival forest (ORSF) model, Cox proportional hazard risk model, Cox model with least absolute shrinkage and selection operator penalization, CoxBoost, Survival Gradient Boosting Machine, Extreme Gradient Boosting survival regression, DeepHit, DeepSurv, DNNSurv, logistic-hazard model, and PC-hazard model were compared. We further tuned hyperparameters and selected variables for the best-performing ORSF. Then, the final ORSF model was validated. RESULTS: A total of 43,444 patients with GINENs were included. The median (interquartile range) survival time was 53 (19-102) months. The ORSF model performed best, in which age, histology, M stage, tumor size, primary tumor site, sex, tumor number, surgery, lymph nodes removed, N stage, race, and grade were ranked as important variables. However, chemotherapy and radiotherapy were not necessary for the ORSF model. The ORSF model had an overall C index of 0.86 (95% confidence interval, 0.85-0.87). The area under the receiver operation curves at 1, 3, 5, and 10 years were 0.91, 0.89, 0.87, and 0.80, respectively. The decision curve analysis showed superior clinical usefulness of the ORSF model than the American Joint Committee on Cancer Stage. A nomogram and an online tool were given. CONCLUSION: The machine learning ORSF model could precisely predict the survival of patients with GINENs, with the ability to identify patients at high risk for death and probably guide clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA