Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(10): 3036-3043, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415595

RESUMEN

Zinc-iodine batteries (ZIBs) are promising candidates for ecofriendly, safe, and low-cost energy storage systems, but polyiodide shuttling and the complex cathode fabrication procedures have severely hindered their broader commercial usage. Herein, a protocol is developed using phospholipid-like oleylamine molecules for scalable production of Langmuir-Blodgett films, which allows the facile preparation of ZIB cathodes in less than 1 min. The resulting inhomogeneous cathode allows for the continuous conversion of iodine. Moreover, the amine group of the oleylamine molecule at the cathode is capable of producing [OA*I+]I3- charge-transfer complexes with iodine, which facilitates the rapid migration of iodine and results in a highly reversible iodine conversion process. Consequently, the as-prepared ZIBs can deliver over 2000 cycles at 0.5 mA cm-2 with a capacity retention of 75.3%. This work presents a novel, straightforward, and efficient method for the rapid construction of ZIBs.

2.
Small ; 20(6): e2305596, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775944

RESUMEN

The ever-growing demands for efficient energy storage accelerate the development of high-rate lithium-metal battery (LMB) with desirable energy density, power density, and cycling stability. Nevertheless, the practical application of LMB is critically impeded by internal temperature rise and lithium dendrite growth, especially at high charge/discharge rates. It is highly desired but remains challenging to develop high-performance thermotolerant separators that can provide favorable channels to enable fast Li+ transport for high-rate operation and simultaneously homogenize the lithium deposition for dendrite inhibition. Polyimide-based separators with superior thermal properties are promising candidate alternatives to the commercial polyolefin-based separators, but previous strategies of designing either nanoporous or microporous channels in polyimide-based separators often meet a dilemma. Here, a facile and scalable approach is reported to develop a polyimide fiber/aerogel (denoted as PIFA) separator with the microporous polyimide fiber membrane sandwiched between two nanoporous polyimide aerogel layers, which can enable LMBs with remarkable capacity retention of 97.2% after 1500 cycles at 10 C. The experimental and theoretical studies unravel that the sandwiched structure of PIFA can appreciably enhance the electrolyte adsorption and ionic conductivity; while, the aerogel coating can effectively inhibit dendrite growth to realize durable high-rate LMBs.

3.
Small ; : e2402654, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830339

RESUMEN

Constructing a built-in interfacial electric field (BIEF) is an effective approach to enhance the electrocatalysts performance, but it has been rarely demonstrated for electrochemical carbon dioxide reduction reaction (CO2RR) to date. Herein, for the first time, SnO2/LaOCl nanofibers (NFs) with BIEF is created by electrospinning, exhibiting a high Faradaic efficiency (FE) of 100% C1 product (CO and HCOOH) at -0.9--1.1 V versus reversible hydrogen electrode (RHE) and a maximum FEHCOOH of 90.1% at -1.2 VRHE in H-cell, superior to the commercial SnO2 nanoparticles (NPs) and LaOCl NFs. SnO2/LaOCl NFs also exhibit outstanding stability, maintaining negligible activity degradation even after 10 h of electrolysis. Moreover, their current density and FEHCOOH are almost 400 mA cm-2 at -2.31 V and 83.4% in flow-cell. The satisfactory CO2RR performance of SnO2/LaOCl NFs with BIEF can be ascribed to tight interface of coupling SnO2 NPs and LaOCl NFs, which can induce charge redistribution, rich active sites, enhanced CO2 adsorption, as well as optimized Gibbs free energy of *OCHO. The work reveals that the BIEF will trigger interfacial accumulation and stability enhancement effects in promoting CO2RR activity and stability of SnO2-based materials, providing a novel approach to develop stable and efficient CO2RR electrocatalysts.

4.
Small ; : e2312019, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389179

RESUMEN

The growing interest in so-called interface coupling strategies arises from their potential to enhance the performance of active electrode materials. Nevertheless, designing a robust coupled interface in nanocomposites for stable electrochemical processes remains a challenge. In this study, an epitaxial growth strategy is proposed by synthesizing sulfide rhenium (ReS2 ) on exfoliated black phosphorus (E-BP) nanosheets, creating an abundance of robust interfacial linkages. Through spectroscopic analysis using X-ray photoelectron spectroscopy and X-ray absorption spectroscopy, the authors investigate the interfacial environment. The well-developed coupled interface and structural stability contribute to the impressive performance of the 3D-printed E-BP@ReS2 -based micro-supercapacitor, achieving a specific capacitance of 47.3 mF cm-2 at 0.1 mA cm-2 and demonstrating excellent long-term cyclability (89.2% over 2000 cycles). Furthermore, density functional theory calculations unveil the positive impact of the strongly coupled interface in the E-BP@ReS2 nanocomposite on the adsorption of H+ ions, showcasing a significantly reduced adsorption energy of -2.17 eV. The strong coupling effect facilitates directional charge delocalization at the interface, enhancing the electrochemical performance of electrodes and resulting in the successful construction of advanced micro-supercapacitors.

5.
J Clin Microbiol ; 62(4): e0135423, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38526061

RESUMEN

BK virus (BKV) infection or reactivation in immunocompromised individuals can lead to adverse health consequences including BKV-associated nephropathy (BKVAN) in kidney transplant patients and BKV-associated hemorrhagic cystitis (BKV-HC) in allogeneic hematopoietic stem cell transplant recipients. Monitoring BKV viral load plays an important role in post-transplant patient care. This study evaluates the performance of the Alinity m BKV Investigational Use Only (IUO) assay. The linearity of the Alinity m BKV IUO assay had a correlation coefficient of 1.000 and precision of SD ≤ 0.25 Log IU/mL for all panel members tested (2.0-7.3 Log IU/mL). Detection rate at 50 IU/mL was 100%. Clinical plasma specimens tested comparing Alinity m BKV IUO to ELITech MGB Alert BKV lab-developed test (LDT) on the Abbott m2000 platform using specimen extraction protocols for DNA or total nucleic acid (TNA) resulted in coefficient of correlation of 0.900 and 0.963, respectively, and mean bias of 0.03 and -0.54 Log IU/mL, respectively. Alinity m BKV IUO compared with Altona RealStar BKV and Roche cobas BKV assays demonstrated coefficient of correlation of 0.941 and 0.980, respectively, and mean bias of -0.47 and -0.31 Log IU/mL, respectively. Urine specimens tested on Alintiy m BKV IUO and ELITech BKV LDT using TNA specimen extraction had a coefficient of correlation of 0.917 and mean bias of 0.29 Log IU/mL. The Alinity m BKV IUO assay was performed with high precision across the dynamic range and correlated well with other available BKV assays. IMPORTANCE: BK virus (BKV) in transplant patients can lead to adverse health consequences. Viral load monitoring is important in post-transplant patient care. This study evaluates the Alinity m BKV assay with currently available assays.


Asunto(s)
Virus BK , Trasplante de Riñón , Ácidos Nucleicos , Infecciones por Polyomavirus , Infecciones Tumorales por Virus , Humanos , Virus BK/genética , Trasplante de Riñón/efectos adversos , Infecciones por Polyomavirus/diagnóstico , Carga Viral/métodos , Infecciones Tumorales por Virus/diagnóstico
6.
Chem Rec ; 24(1): e202300212, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37606892

RESUMEN

Aqueous rechargeable multivalent metal-ion batteries (ARMMBs) have attracted considerable attention due to their high capacity, high energy density, and low cost. However, their performance is often limited by low temperature operation, which requires the development of anti-freezing electrolytes. In this review, we summarize the anti-freezing mechanisms and optimization strategies of anti-freezing electrolytes for aqueous batteries (especially for Zn-ion batteries). Besides, we investigate the possible interactions and side reactions between electrolytes and electrodes. We also analyze the problems between electrolytes and electrodes at low temperature, and propose possible solutions. The research progress in the field of low temperature energy storage for aqueous Mg-ion, Ca-ion, and Al-ion batteries, and the challenges faced in their anti-freezing electrolytes are investigated in detail. Last but not least, the outlook on the energy storage applications of ARMMBs is provided to guide the future research.

7.
Macromol Rapid Commun ; : e2400379, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940242

RESUMEN

Creating bionic intelligent robotic systems that emulate human-like skin perception presents a considerable scientific challenge. This study introduces a multifunctional bionic electronic skin (e-skin) made from polyacrylic acid ionogel (PAIG), designed to detect human motion signals and transmit them to robotic systems for recognition and classification. The PAIG was synthesized using a suspension of liquid metal and graphene oxide nanosheets as initiators and cross-linkers. The resulting PAIGs demonstrate excellent mechanical properties, resistance to freezing and drying, and self-healing capabilities. Functionally, the PAIG effectively captures human motion signals through electromechanical sensing. Furthermore, we developed a bionic intelligent sorting robot system by integrating the PAIG-based e-skin with a robotic manipulator. This system leverages its ability to detect frictional electrical signals, enabling precise identification and sorting of materials. The innovations presented in this study hold significant potential for applications in artificial intelligence, rehabilitation training, and intelligent classification systems. This article is protected by copyright. All rights reserved.

8.
Angew Chem Int Ed Engl ; 63(1): e202316097, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37985423

RESUMEN

Electrocatalytic nitrogen oxidation reaction (NOR) offers an efficient and sustainable approach for conversion of widespread nitrogen (N2 ) into high-value-added nitrate (NO3 - ) under mild conditions, representing a promising alternative to the traditional approach that involves harsh Haber-Bosch and Ostwald oxidation processes. Unfortunately, due to the weak absorption/activation of N2 and the competitive oxygen evolution reaction, the kinetics of NOR process is extremely sluggish accompanied with low Faradaic efficiencies and NO3 - yield rates. In this work, an oxygen-vacancy-enriched perovskite oxide with nonstoichiometric ratio of strontium and ruthenium (denoted as Sr0.9 RuO3 ) was synthesized and explored as NOR electrocatalyst, which can exhibit a high Faradaic efficiency (38.6 %) with a high NO3 - yield rate (17.9 µmol mg-1 h-1 ). The experimental results show that the amount of oxygen vacancies in Sr0.9 RuO3 is greatly higher than that of SrRuO3 , following the same trend as their NOR performance. Theoretical simulations unravel that the presence of oxygen vacancies in the Sr0.9 RuO3 can render a decreased thermodynamic barrier toward the oxidation of *N2 to *N2 OH at the rate-determining step, leading to its enhanced NOR performance.

9.
Angew Chem Int Ed Engl ; 63(21): e202401055, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38391043

RESUMEN

Lithium-sulfur (Li-S) battery with a sulfurized polyacrylonitrile cathode is a promising alternative to Li-ion systems. However, the sluggish charge transfer of cathode and accumulation of inactive Li on anode remain persistent challenges. An advanced electrolyte additive with function towards both cathode and anode holds great promise to address these issues. Herein, we present a new strategy to boost sulfur activity and rejuvenate dead Li simultaneously. In the polar electrolyte containing I2-LiNO3 additives, I3 -/IO3 - are triggered significantly by the reaction between NO3 - and I- ions. The I3 -/IO3 - are reactive to insulated Li2S product of cathode and inactive Li on anode, thus accelerating the conversion reaction of sulfur and recovering Li sources back to battery cycling. The in situ/ex situ spectroscopic and morphologic monitoring reveal the crucial role of iodine in promoting Li2S dissociation and inhibiting dendritic Li growth. With the modified electrolyte, the symmetric Li||Li cells deliver a lifespan of 4000 h with an overpotential less than 12 mV at 0.5 mA cm-2. For Li-S cells, 100 % capacity retention up to thousands of cycles and enhanced rate capability are available. This work demonstrates a feasible strategy on electrolyte engineering for practical applications of Li-S batteries.

10.
Angew Chem Int Ed Engl ; : e202404676, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880900

RESUMEN

Copper (Cu)-based catalysts have established their unique capability for yielding wide value-added products from CO2. Herein, we demonstrate that the pathways of the electrocatalytic CO2 reduction reaction (CO2RR) can be rationally altered toward C1 or C2+ products by simply optimizing the coordination of Cu with O-containing organic species (squarate (C4O4) and cyclohexanhexanone (C6O6)). It is revealed that the strength of Cu-O bonds can significantly affect the morphologies and electronic structures of derived Cu catalysts, resulting in the distinct behaviors during CO2RR. Specifically, the C6O6-Cu catalysts made up from organized nanodomains shows a dominant C1 pathway with a total Faradaic efficiency (FE) of 63.7% at -1.0 V (versus reversible hydrogen electrode, RHE). In comparison, the C4O4-Cu with an about perfect crystalline structure results in uniformly dispersed Cu-atoms, showing a notable FE of 65.8% for C2+ products with enhanced capability of C-C coupling. The latter system also shows stable operation over at least 10 h with a high current density of 205.1 mA cm-2 at -1.0 VRHE, i.e. is already at the boarder of practical relevance. This study sheds light on the rational design of Cu-based catalysts for directing the CO2RR reaction pathway.

11.
J Am Chem Soc ; 145(39): 21387-21396, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37728869

RESUMEN

The electrocatalytic nitrate (NO3-) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3-δ (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3-δ (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3-δ (LF0.9Cu0.1) submicrofibers with a stronger Fe-O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 ± 15 µg h-1 mg-1cat. and a Faradaic efficiency of 48 ± 2% than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3- enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton-electron coupling step (*NO3 + H+ + e- → *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts.

12.
Anal Chem ; 95(21): 8145-8149, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37191442

RESUMEN

Although polycrystalline covalent organic frameworks (PCOFs) have already shown great potential as stationary phases for chromatography, irregular shape and size distribution of PCOFs make regulation of particle size of PCOFs for high separation performance impossible, which is accessible by the application of single-crystalline COFs (SCOFs). Herein, we showed preparation of three-dimensional SCOF (SCOF-303) bonded capillaries (SCOF-303-capillary) with different particle sizes (about 0.4-1.6 µm) and further investigated gas chromatographic separation ability of these SCOF-303-capillaries for isomers of xylene, dichlorobenzene, and pinene. It was found resolution and column efficiency of SCOF-303-capillaries for isomers decreased with the increase in particle size, mainly resulting from the weaker size-exclusion effect and higher mass transfer resistance of the larger particle size of flexible SCOF-303. The obtained SCOF-303-capillary (particle size of ∼0.4 µm) offered baseline separation of xylene isomers with the high resolution of 2.26-3.52, great efficiency of 7879 plates m-1 for p-xylene, better than PCOF-303-capillary, and commercial DB-5 and HP-FFAP capillary columns as well as many reported capillaries. This work not only shows the great potential of SCOFs for gas chromatography but also provides the theoretical direction for the design of the efficient COF based stationary phase by adjusting the particle sizes.

13.
Small ; 19(5): e2205625, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36449575

RESUMEN

Electrochemical nitrate reduction to ammonia (NRA) provides an efficient, sustainable approach to convert the nitrate pollutants into value-added products, which is regarded as a promising alternative to the industrial Haber-Bosch process. Recent studies have shown that oxygen vacancies of oxide catalysts can adjust the adsorption energies of intermediates and affect their catalytic performance. Compared with other metal oxides, perovskite oxides can allow their metal cations to exist in abnormal or mixed valence states, thereby resulting in enriched oxygen vacancies in their crystal structures. Here, the catalytic activities of perovskite oxides toward NRA catalysis with respect to the amount of oxygen vacancies are explored, where four perovskite oxides with different crystal structures (including cubic LaCrO3 , orthorhombic LaMnO3 and LaFeO3 , hexagonal LaCoO3 ) are chosen and investigated. By combining X-ray photoelectron spectroscopy, electron paramagnetic resonance spectroscopy and electrochemical measurements, it is found that the amount of oxygen vacancies in these perovskite oxides surprisingly follow the same order as their activities toward NRA catalysis (LaCrO3  < LaMnO3  < LaFeO3  < LaCoO3 ). Further theoretical studies reveal that the existence of oxygen vacancies in LaCoO3 perovskite can decrease the energy barriers for reduction of *HNO3 to *NO2 , leading to its superior NRA performance.

14.
Small ; 19(16): e2206740, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36670093

RESUMEN

All-solid-state sodium metal batteries paired with solid polymer electrolytes (SPEs) are considered a promising candidate for high energy-density, low-cost, and high-safety energy storage systems. However, the low ionic conductivity and inferior interfacial stability with Na metal anode of SPEs severely hinder their practical applications. Herein, an anion-trapping 3D fiber network enhanced polymer electrolyte (ATFPE) is developed by infusing poly(ethylene oxide) matrix into an electrostatic spun fiber framework loading with an orderly arranged metal-organic framework (MOF). The 3D continuous channel provides a fast Na+ transport path leading to high ionic conductivity, and simultaneously the rich coordinated unsaturated cation sites exposed on MOF can effectively trap anions, thus regulating Na+ concentration distribution for constructing stable electrolyte/Na anode interface. Based on such advantages, the ATFPE exhibits high ionic conductivity and considerable Na+ transference number, as well as enhanced interfacial stability. Consequently, Na/Na symmetric cells using this ATFPE possess cyclability over 600 h at 0.1 mA cm-2 without discernable Na dendrites. Cooperated with Na3 V2 (PO4 )3 cathode, the all-solid-state sodium metal batteries (ASSMBs) demonstrate significantly improved rate and cycle performances, delivering a high discharge capacity of 117.5 mAh g-1 under 0.1 C and rendering high capacity retention of 78.2% after 1000 cycles even at 1 C.

15.
Small ; 19(14): e2206572, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36592428

RESUMEN

On-skin electronics based on impermeable elastomers and stacking structures often suffer from inferior sweat-repelling capabilities and severe mechanical mismatch between sub-layers employed, which significantly impedes their lengthy wearing comfort and functionality. Herein, inspired by the transpiration system of vascular plants and the water diode phenomenon, a hierarchical nonwoven electronic textile (E-textile) with multi-branching microfibers and robust interlayer adhesion is rationally developed. The layer-by-layer electro-airflow spinning method and selective oxygen plasma treatment are utilized to yield a porosity-hydrophilicity dual-gradient. The resulting E-textile shows unidirectional, nonreversible, and anti-gravity water transporting performance even upon large-scale stretching (250%), excellent mechanical matching between sub-layers, as well as a reversible color-switching ability to visualize body temperature. More importantly, the conducting and skin-conformal E-textile demonstrates accurate and stable detecting capability for biomechanical and bioelectrical signals when applied as an on-skin bioelectrode, including different human activities, electrocardiography, electromyogram, and electrodermal activity signals. Further, the E-textile can be efficiently implemented in human-machine interfaces to build a gesture-controlled dustbin and a smart acousto-optic alarm. Hence, this hierarchically-designed E-textile with integrated functionalities offers a practical and innovative method for designing comfortable and daily applicable on-skin electronics.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Sudor , Temperatura Corporal , Temperatura , Porosidad , Textiles , Electrónica , Interacciones Hidrofóbicas e Hidrofílicas
16.
Mol Cell Biochem ; 478(3): 651-663, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36001204

RESUMEN

Acute kidney injury (AKI) is one of frequent complications of sepsis with high mortality. Mitochondria is the center of energy metabolism participating in the pathogenesis of sepsis-associated AKI, and SIRT1/PGC1-α signaling pathway plays a crucial role in the modulation of energy metabolism. Erythropoietin (EPO) exerts protective functions on chronic kidney disease. We aimed to assess the effects of EPO on cell damage and energy metabolism in a cell model of septic AKI. Renal tubular epithelial cells HK-2 were treated with LPS and human recombinant erythropoietin (rhEPO). Cell viability was detected by CCK-8 and mitochondrial membrane potential was determined using JC-1 fluorescent probe. Then the content of ATP, ADP and NADPH, as well as lactic acid, were measured for the assessment of energy metabolism. Oxidative stress was evaluated by detecting the levels of ROS, MDA, SOD and GSH. Pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1ß, were measured with ELISA. Moreover, qRT-PCR and western blot were performed to detect mRNA and protein expressions. shSIRT1 was used to knockdown SIRT1, while EX527 and SR-18292 were applied to inhibit SIRT1 and PGC1-α, respectively, to investigate the regulatory mechanism of rhEPO on inflammatory injury and energy metabolism. In LPS-exposed HK-2 cells, rhEPO attenuated cell damage, inflammation and abnormal energy metabolism, as indicated by the elevated cell viability, the inhibited oxidative stress, cell apoptosis and inflammation, as well as the increased mitochondrial membrane potential and energy metabolism. However, these protective effects induced by rhEPO were reversed after SIRT1 or PGC1-α inhibition. EPO activated SIRT1/PGC1-α pathway to alleviate LPS-induced abnormal energy metabolism and cell damage in HK-2 cells. Our study suggested that rhEPO played a renoprotective role through SIRT1/PGC1-α pathway, which supported its therapeutic potential in septic AKI.


Asunto(s)
Lesión Renal Aguda , Eritropoyetina , Sepsis , Humanos , Riñón/metabolismo , Lipopolisacáridos/farmacología , Sirtuina 1/metabolismo , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Eritropoyetina/uso terapéutico , Lesión Renal Aguda/patología , Apoptosis , Metabolismo Energético , Sepsis/metabolismo , Inflamación/metabolismo
17.
Macromol Rapid Commun ; 44(6): e2200858, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36661258

RESUMEN

Polymer melt strength (MS) is strongly correlated with its molecular structure, while their relationship is not very clear yet. In this work, designable long-chain branched polylactide (LCB-PLA) is prepared in situ by using a tailor-made (methyl methacrylate)-co-(glycidyl methacrylate) copolymer (MG) with accurate number of reactive sites. A new concept of branching density (φ) in the LCB-PLA system is defined to quantitively study their relationship. Importantly, a critical point of φc  = 5.5 mol/104  mol C is revealed for the first time, below which the zero-shear viscosity (η0 ) corresponding to MS increases slowly with a slope of Δη0 /Δφ = 1400, while it increases sharply above this critical point due to entanglement of neighboring LCB-PLA chains. Consequently, the MS of PLA increased by >100 times by optimizing the LCB structures while maintaining processibility. Therefore, this work provides a deeper understanding and feasible route in quantitative design of polymers with high(er) melt strength for some specialty applications.


Asunto(s)
Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Estructura Molecular
18.
Macromol Rapid Commun ; 44(3): e2200653, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36200638

RESUMEN

In this study, the optical properties of poly(maleic anhydride-alt-vinyl acetate) (PMV) synthesized by different polymerization methods are studied systematically. Compared to self-stabilized precipitation polymerization (pPMV), solution polymerization produces PMV solids (sPMV) with an extraordinarily high quantum yield (QY) of 20.65%. Additionally, redissolving pPMV in good solvents (rPMV) will also help to increase QY. The rising QY of sPMV and rPMV supports the idea that good solvents will reduce the rigidity of polymer chains and promote cluster formation, which is confirmed by lower glass transition temperature (Tg ) and small angle X-ray scatterer (SAXS). The study also finds that PMV exhibits application potentials in white light-emitting diodes (WLEDs) and light conversion film.


Asunto(s)
Anhídridos Maleicos , Solventes , Dispersión del Ángulo Pequeño , Difracción de Rayos X
19.
Nano Lett ; 22(11): 4560-4568, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583326

RESUMEN

Polyimide aerogels with mechanical robustness, great compressibility, excellent antifatigue properties, and intriguing functionality have captured enormous attention in diverse applications. Here, enlightened by the xylem parenchyma of dicotyledonous stems, a radially architectured polyimide/MXene composite aerogel (RPIMX) with reversible compressibility is developed by combining the interfacial enhancing strategy and radial ice-templating method. The strong interaction between MXene flakes and polymer can glue the MXene to form continuous lamellae, the ice crystals grow preferentially along the radial temperature gradient can effectively constrain the lamellae to create a biomimetic radial lamellar architecture. As a result, the nature-inspired RPIMX composite aerogel with centrosymmetric lamellar structure and oriented channels manifests excellent mechanical strength, electrical conductivity, and water transporting capability along the longitudinal direction, endowing itself with intriguing applications for accurate human motion monitoring and efficient photothermal evaporation. These exciting properties make the biomimetic RPIMX aerogels promising candidates for flexible piezoresistive sensors and photothermal evaporators.


Asunto(s)
Hielo , Vapor , Conductividad Eléctrica , Humanos , Luz Solar , Xilema
20.
Nano Lett ; 22(18): 7597-7605, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36083829

RESUMEN

Stretchable electronics have attracted surging attention for next-generation smart wearables, yet traditional flexible devices fabricated on hermetical elastic substrates cannot satisfy lengthy wearing comfort and signal stability due to their poor moisture and air permeability. Herein, perspiration-wicking and luminescent on-skin electrodes are fabricated on superelastic nonwoven textiles with a Janus configuration. Through the electrospin-assisted face-to-face assembly of all-SEBS microfibers with differentiated diameters and composition, porosity and wettability asymmetry are constructed across the textile, endowing it with antigravity water transport capability for continuous sweat release. Also, the phosphor particles evenly encapsulated in the elastic fibers empower the Janus textile with stable light-emitting capability under extreme stretching in a dark environment. Additionally, the precise printing of highly conductive liquid metal (LM) circuits onto the matrix not only equips the electronic textile with broad detectability for various biophysical and electrophysiological signals but also enables successful implementation of human-machine interface (HMIs) to control a mechanical claw.


Asunto(s)
Sudor , Textiles , Acción Capilar , Electrónica , Humanos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA