Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proteomics ; 23(2): e2200362, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36254857

RESUMEN

Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Enterovirus/metabolismo , Enterovirus Humano A/metabolismo , Proteómica , Infecciones por Enterovirus/metabolismo , Proteínas/metabolismo , Metabolómica , Redes y Vías Metabólicas
2.
J Med Virol ; 95(2): e28497, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36651302

RESUMEN

To evaluate the effect of Nirmatrelvir-ritonavir therapy and coronavirus disease 2019 (COVID-19) vaccination on clinical outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron infection, we retrospectively analyzed the clinical data of 762 adult patients with confirmed Omicron BA2.2 variant infection, of them 488 patients received standard therapy and 274 patients received Nirmatrelvir-ritonavir therapy. Subjects were matched by propensity score matching using R language, the baseline factors were balanced by the nearest-neighbor matching method and were compared, together with the factors including progression to severe/critical disease, viral clearance time, length of hospital stay, and virological rebound of SARS-CoV-2 infection. Nirmatrelvir-ritonavir therapy significantly accelerated viral clearance at Days 14 and  28 during hospitalization, but it had no impact on disease progression, length of hospital stay, or infection rebound. In contrast, COVID-19 vaccination before admission was positively correlated with the viral clearance rate and negatively correlated with disease progression in a dose-dependent way. COVID-19 vaccination reduced the probability of infection rebound. Other factors such as the number of comorbidities, pneumonia on-admission, and high D2 levels were positively correlated with disease progression. Our study strongly recommended booster COVID-19 vaccination for the elderly population, particularly patients with comorbidities to prevent critical disease.


Asunto(s)
COVID-19 , Adulto , Humanos , Anciano , SARS-CoV-2 , Vacunas contra la COVID-19 , Estudios Retrospectivos , Ritonavir , Tratamiento Farmacológico de COVID-19 , Vacunación , Progresión de la Enfermedad
3.
Apoptosis ; 19(1): 210-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24114361

RESUMEN

Bufalin extracts are a part of traditional Chinese medicine, Chansu. In the current study, we investigated the effect of bufalin on the proliferation of the human hepatocellular carcinoma (HCC) cell lines, Huh-7 and HepG-2, and explored the therapeutic potential of the drug. Our results demonstrated that bufalin markedly inhibited cell proliferation and promoted apoptosis in the Huh-7 and HepG-2 cells in vitro. The underlying mechanism of the bufalin-induced apoptosis was the induction of endoplasmic reticulum (ER) stress via the IRE1-JNK pathway. In addition, during the ER stress response, the autophagy pathway, characterized by the conversion of LC3-I to LC3-II, was activated, resulting in increased Beclin-1 protein levels, decreased p62 expression and stimulation of autophagic flux. Our data supported the pro-survival role of bufalin-induced autophagy when the autophagy pathway was blocked with specific chemical inhibitors; the involvement of the IRE1 pathway in the ER stress-induced autophagy was also demonstrated when the expression of IRE1 and CHOP was silenced using siRNA. These data indicate that combining bufalin with a specific autophagy inhibitor could be a promising therapeutic approach for the treatment of HCC.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Bufanólidos/farmacología , Carcinoma Hepatocelular/fisiopatología , Medicamentos Herbarios Chinos/farmacología , Neoplasias Hepáticas/fisiopatología , MAP Quinasa Quinasa 4/metabolismo , Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/enzimología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/enzimología , MAP Quinasa Quinasa 4/genética , Regulación hacia Arriba/efectos de los fármacos
4.
Mol Biol Rep ; 41(5): 2875-83, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24469724

RESUMEN

Transcription factor (TF) and microRNA (miRNA) have been discovered playing crucial roles in cancer development. However, the effect of TFs and miRNAs in pancreatic cancer pathogenesis remains vague. We attempted to reveal the possible mechanism of pancreatic cancer based on transcription level. Using GSE16515 datasets downloaded from gene expression omnibus database, we first identified the differentially expressed genes (DEGs) in pancreatic cancer by the limma package in R. Then the DEGs were mapped into DAVID to conduct the kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. TFs and miRNAs that DEGs significantly enriched were identified by Fisher's test, and then the pancreatic cancer double-factor regulatory network was constructed. In our study, total 1117 DEGs were identified and they significantly enriched in 4 KEGG pathways. A double-factor regulatory network was established, including 29 DEGs, 24 TFs, 25 miRNAs. In the network, LAMC2, BRIP1 and miR155 were identified which may be involved in pancreatic cancer development. In conclusion, the double-factor regulatory network was found to play an important role in pancreatic cancer progression and our results shed new light on the molecular mechanism of pancreatic cancer.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias Pancreáticas/genética , Transcripción Genética , Estudios de Casos y Controles , Análisis por Conglomerados , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pancreáticas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
5.
PLoS Negl Trop Dis ; 18(2): e0011923, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306392

RESUMEN

Dengue virus (DENV) infection causes dengue fever, the most prevalent arthropod-transmitted viral disease worldwide. Viruses are acellular parasites and obligately rely on host cell machinery for reproduction. Previous studies have indicated metabolomic changes in endothelial cell models and sera of animal models and patients with dengue fever. To probe the immunometabolic mechanism of DENV infection, here, we report the metabolomic landscape of a human macrophage cell model of DENV infection and its antibody-dependent enhancement. DENV infection of THP-1-derived macrophages caused 202 metabolic variants, of which amino acids occupied 23.7%, fatty acids 21.78%, carbohydrates 10.4%, organic acids 13.37%, and carnitines 10.4%. These metabolomic changes indicated an overall anabolic signature, which was characterized by the global exhaustion of amino acids, increases of cellular fatty acids, carbohydrates and pentoses, but decreases of acylcarnitine. Significant activation of metabolic pathways of glycolysis, pentose phosphate, amino acid metabolism, and tricarboxylic acid cycle collectively support the overall anabolism to meet metabolic demands of DENV replication and immune activation by viral infection. Totally 88 of 202 metabolic variants were significantly changed by DENV infection, 36 of which met the statistical standard (P<0.05, VIP>1.5) of differentially expressed metabolites, which were the predominantly decreased variants of acylcarnitine and the increased variants of fatty acids and carbohydrates. Remarkably, 11 differentially expressed metabolites were significantly distinct between DENV only infection and antibody-dependent enhancement of viral infection. Our data suggested that the anabolic activation by DENV infection integrates the viral replication and anti-viral immune activation.


Asunto(s)
Carnitina/análogos & derivados , Virus del Dengue , Dengue , Virosis , Animales , Humanos , Virus del Dengue/fisiología , Acrecentamiento Dependiente de Anticuerpo , Replicación Viral , Macrófagos , Carbohidratos , Aminoácidos , Ácidos Grasos
6.
Front Immunol ; 14: 1303058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292486

RESUMEN

Background: Large sample of pregnant women vaccinated with COVID-19 vaccine has not been carried out in China. The objective of this study was to evaluate the safety and effectiveness of COVID-19 inactivated vaccine in pregnant women infected with the SARS-CoV-2 Omicron variant. Methods: A total of 1,024 pregnant women and 120 newborns were enrolled in this study. 707 pregnant women received one to three doses of the inactivated COVID-19 vaccine, and 317 unvaccinated patients served as the control group. A comparison was made between their clinical and laboratory data at different stages of pregnancy. Results: The incidence rate of patients infected with Omicron variant in the first, the second, and the third trimesters of pregnancy was 27.5%, 27.0%, and 45.5% in patients during, respectively. The corresponding length of hospital stay was 8.7 ± 3.3 days, 9.5 ± 3.3 days, and 11 ± 4.3 days, respectively. The hospitalization time of pregnant women who received 3 doses of vaccine was (8.8 ± 3.3) days, which was significantly shorter than that of non-vaccinated women (11.0 ± 3.9) days. (P<0.0001). The positive rate of SARS-CoV-2 IgG in patients in the early stage of pregnancy was 28.8%, while that in patients in the late stage of pregnancy was 10.3%. However, three-doses of vaccination significantly increased the SARS-CoV-2 IgG positive rate to 49.5%. The hospitalization time of SARS-CoV-2 IgG-positive patients was shorter than that of negative patients (9.9 ± 3.5 days), which was 7.4 ± 2.0 days. 12.2% of vaccinated women experienced mild adverse reactions, manifested as fatigue (10.6%) and loss of appetite (1.6%). The vaccination of mother did not affect her choice of future delivery mode and the Apgar score of their newborn. All newborns tested negative for SARS-CoV-2 nucleic acid, as well as for IgG and IgM antibodies. Conclusions: Women in the third trimester of pregnancy are highly susceptible to infection with the Omicron strain. The vaccination of pregnant women with COVID-19 vaccine can accelerate the process of eliminating SARS-CoV-2 virus, and is considered safe for newborns. The recommended vaccination includes three doses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Complicaciones Infecciosas del Embarazo , Femenino , Humanos , Recién Nacido , Embarazo , Anticuerpos Antivirales , China , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Inmunoglobulina G , Complicaciones Infecciosas del Embarazo/prevención & control , SARS-CoV-2 , Vacunación
7.
J Thorac Dis ; 14(10): 3762-3772, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36389319

RESUMEN

Background: State-of-the-art thoracic magnetic resonance imaging (MRI) plays a complementary role in the assessment of pulmonary nodules/masses which potentially indicate to cancer. We aimed to evaluate the sensitivity and specificity of MRI in diagnosis of pulmonary nodules/masses. Methods: Sixty-eight patients with computed tomography (CT)-detected pulmonary nodules/masses underwent 3T MRI (T1-VIBE, T1-starVIBE, T2-fBLADE turbo spin-echo, and T2-SPACE). The detection rate was calculated for each of the different subgroups of pulmonary nodules according to lung imaging reporting and data system (Lung-RADS). The four MRI sequences were compared in terms of detection rate and image quality-signal to noise ratio (SNR), contrast to noise ratio (CNR) and 5-point scoring scale. Agreement of lesion size measurement between CT and MRI was assessed by intraclass correlation coefficient (ICC). The picture-SNR, lesion-SNR and CNR of each sequence were analyzed by Mann-Whitney U test. Results: In total, 232 pulmonary lesions were detected by CT. The CT showed 86 solid nodules (SNs) <6 mm, 15 SNs between 6-8 mm, 35 SNs between 8-15 mm, and 52 SNs between 15-30 mm. The T1-VIBE, T1-starVIBE, T2-fBLADE TSE and T2-SPACE sequences accurately detected 141 SNs (141/188, 75%/83.3%), 150 SNs (150/188, 79.8%/100%), 166 SNs (166/188, 88.3%/66.7%) and 169 SNs (169/188, 89.9%/53.3%), respectively. Four ground glass nodules (GGNs) (4/6) were detected by T2-fBLADE TSE. Twelve part-solid nodules (PSNs) (12/22) were detected by T1-VIBE and 20 PSNs (20/22) by T2-SPACE. A total of 100 lesions (2.2±1.4 cm, 0.8-7.3 cm) were accurately detected and measured by the four MRI sequences with ICC >0.96. The picture-SNR, lesion-SNR and CNR by T1-starVIBE were higher than those by T1-VIBE (P<0.001). The lesion-SNR and CNR by T2-fBLADE TSE were higher than those by T2-SPACE (P=0.006, 0.038). 86% of images by T1-starVIBE, 92% by T2-fBLADE TSE, 90% by T2-SPACE and 93% by T1-VIBE were scored 3 or more. Conclusions: MRI achieves high sensitivity and specificity for different type of pulmonary nodules detection and is an effective alternative to CT as a diagnostic tool for pulmonary nodules.

8.
Front Oncol ; 12: 836087, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35860571

RESUMEN

Background: Chronic inflammation contributes to approximately 20% of cancers; the underlying mechanisms are still elusive. Here, using an animal model of colitis to colon-cancerous transformation, we demonstrated that endoplasmic reticulum (ER) stress couples with metabolic reprogramming to promote a malignant transformation of chronic inflammation. Methods: The animal model for chronic colitis to colon-cancerous transformation was established in C57BL/6N mice by azoxymethane (AOM) and dextran sodium sulfate (DSS) treatments. The differential proteins in control and AOM/DSS-treated colon mucosa were determined using proteomic analysis; the kinetics of metabolic modifications were monitored by mitochondrial oxygen flux, extracellular acidification, and targeted metabolomics; the molecule linker between ER stress and metabolic modifications were identified by coimmunoprecipitation, KEGG pathway analysis, and the subcutaneous tumor model using gene-specific knockdown colon cancer cells. Tissue array analysis were used to evaluate the differential protein in cancer and cancer-adjacent tissues. Results: AOM/DSS treatment induced 38 tumors in 10 mice at the 14th week with the mean tumor size 9.35 ± 3.87 mm2, which was significantly decreased to 5.85 ± 0.95 mm2 by the ER stress inhibitor 4-phenylbutyric acid (4PBA). Seven differential proteins were determined from control (1,067 ± 48) and AOM/DSS-treated mucosa (1,077 ± 59); the level of ER protein PDIA2 (protein disulfide isomerase-associated 2) was increased over 7-fold in response to AOM/DSS treatment. PDIA2 interacted with 420 proteins that were involved in 8 signaling pathways, in particular with 53 proteins in metabolic pathways. PDIA2 translocated from ER to mitochondria and interacted with the components of complexes I and II to inhibit oxophosphorylation but increase glycolysis. Knockdown PDIA2 in colon cancer cells restored the metabolic imbalance and significantly repressed tumor growth in the xenograft animal model. 4PBA therapy inhibited the AOM/DSS-mediated overexpression of PDIA2 and metabolic modifications and suppressed colon cancer growth. In clinic, PDIA2 was overexpressed in colon cancer tissues rather than cancer-adjacent tissues and was related with the late stages and lymph node metastasis of colon cancer. Conclusions: Persistent ER stress reprograms the metabolism to promote the malignant transformation of chronic colitis; PDIA2 serves as a molecule linker between ER stress and metabolic reprogramming. The inhibition of ER stress restores metabolic homeostasis and attenuates the cancerous transformation of chronic inflammation.

9.
J Biol Chem ; 285(2): 1259-71, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19901031

RESUMEN

Sepsis is encoded by a sequel of transcription activation and repression events that initiate, sustain, and resolve severe systemic inflammation. The repression/silencing phase occurs in blood leukocytes of animals and humans following the initiation of systemic inflammation due to developing endotoxin tolerance. We previously reported that NF-kappaB transcription factor RelB and histone H3 lysine methyltransferase G9a directly interact to induce facultative heterochromatin assembly and regulate epigenetic silencing during endotoxin tolerance, which is a major feature of sepsis. The general objective of this study was to assess whether dynamic temporal, structural, and positional changes of nucleosomes influence the sepsis phenotype. We used the THP-1 sepsis cell model to isolate mononucleosomes by rapid cell permeabilization and digestion of chromatin with micrococcal nuclease and then compared tumor necrosis factor alpha (TNFalpha) proximal promoter nucleosome alignment in endotoxin-responsive and -tolerant phenotypes. We found differential and dynamic repositioning of nucleosomes from permissive to repressive locations during the activation and silencing phases of transcription reprogramming and identified the following mechanisms that may participate in the process. 1) Two proximal nucleosomes repositioned to expose the primary NF-kappaB DNA binding site in endotoxin-responsive cells, and this "promoter opening" required the ATP-independent chaperone NAP1 to replace the core histone H2A with the H2A.Z variant. 2) During RelB-dependent endotoxin tolerance, the two nucleosomes repositioned and masked the primary NF-kappaB DNA binding site. 3) Small interfering RNA-mediated inhibition of RelB expression prevented repressive nucleosome repositioning and tolerance induction, but the "open" promoter required endotoxin-induced NF-kappaB p65 promoter binding to initiate transcription, supporting the known requirement of p65 posttranslational modifications for transactivation. 4) Sustaining the permissive promoter state after RelB knockdown required ATP-dependent nucleosome remodeler BAF complex. Moreover, we found that forced expression of RelB in responsive cells induced repressive nucleosome positioning and silenced TNFalpha transcription, demonstrating the plasticity of nucleosome remodeling and its dependence on RelB. Our data suggest that nucleosome repositioning controls both the induction and epigenetic silencing phases of TNFalpha transcription associated with sepsis.


Asunto(s)
Resistencia a Medicamentos/efectos de los fármacos , Endotoxinas/farmacología , Heterocromatina/metabolismo , Leucocitos/metabolismo , Nucleosomas/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Animales , Línea Celular , Silenciador del Gen/efectos de los fármacos , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Modelos Biológicos , Nucleosomas/genética , Elementos de Respuesta , Sepsis/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIB/metabolismo , Transcripción Genética/efectos de los fármacos
10.
Biosci Trends ; 15(2): 93-99, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33776018

RESUMEN

As the COVID-19 epidemic is still ongoing, a more rapid detection of SARS-CoV-2 infection such as viral antigen-detection needs to be evaluated for early diagnosis of COVID-19 disease. Here, we report the dynamic changes of SARS-CoV-2 viral antigens in nasopharyngeal swabs of COVID-19 patients and its association with the viral nucleic acid clearance and clinical outcomes. Eighty-five COVID-19 patients were enrolled for detection of SARS-CoV-2 viral antigens, including 57 anti-SARS-CoV-2 antibody negative cases and 28 antibody positive cases. The viral antigen could be detected in 52.63% (30/57) patients with SARS-CoV-2 antibody negative at the early stage of SARS-CoV-2 infection, especially in the first 5 days after disease onset (p = 0.0018) and disappeared in about 8 days after disease onset. Viral antigens were highly detectable in patients with low Ct value (less than 30) of SARS-CoV-2 nucleic acid RT-PCT assay, suggesting the expression of viral antigen was associated with high viral load. Furthermore, positive antigen detection indicated disease progression, nine cases with positive antigen (9/30, 30.0%), in contrast to two cases (2/27, 7.40%) (p = 0.0444) with negative antigen, which progressed into severe disease. Thus, the viral antigens were persistent in early stages of infection when virus was in highly replicating status, and viral antigen detection promises to rapidly screen positive patients in the early stage of SARS-CoV-2 infection.


Asunto(s)
Antígenos Virales/análisis , Prueba de COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Antígenos Virales/sangre , COVID-19/inmunología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Prueba Serológica para COVID-19 , Prueba de COVID-19/tendencias , China/epidemiología , Progresión de la Enfermedad , Diagnóstico Precoz , Reacciones Falso Negativas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nasofaringe/inmunología , Nasofaringe/virología , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Factores de Tiempo , Carga Viral , Adulto Joven
11.
Front Med (Lausanne) ; 8: 651556, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211983

RESUMEN

Objectives: Both coronavirus disease 2019 (COVID-19) pneumonia and influenza A (H1N1) pneumonia are highly contagious diseases. We aimed to characterize initial computed tomography (CT) and clinical features and to develop a model for differentiating COVID-19 pneumonia from H1N1 pneumonia. Methods: In total, we enrolled 291 patients with COVID-19 pneumonia from January 20 to February 13, 2020, and 97 patients with H1N1 pneumonia from May 24, 2009, to January 29, 2010 from two hospitals. Patients were randomly grouped into a primary cohort and a validation cohort using a seven-to-three ratio, and their clinicoradiologic data on admission were compared. The clinicoradiologic features were optimized by the least absolute shrinkage and selection operator (LASSO) logistic regression analysis to generate a model for differential diagnosis. Receiver operating characteristic (ROC) curves were plotted for assessing the performance of the model in the primary and validation cohorts. Results: The COVID-19 pneumonia mainly presented a peripheral distribution pattern (262/291, 90.0%); in contrast, H1N1 pneumonia most commonly presented a peribronchovascular distribution pattern (52/97, 53.6%). In LASSO logistic regression, peripheral distribution patterns, older age, low-grade fever, and slightly elevated aspartate aminotransferase (AST) were associated with COVID-19 pneumonia, whereas, a peribronchovascular distribution pattern, centrilobular nodule or tree-in-bud sign, consolidation, bronchial wall thickening or bronchiectasis, younger age, hyperpyrexia, and a higher level of AST were associated with H1N1 pneumonia. For the primary and validation cohorts, the LASSO model containing above eight clinicoradiologic features yielded an area under curve (AUC) of 0.963 and 0.943, with sensitivity of 89.7 and 86.2%, specificity of 89.7 and 89.7%, and accuracy of 89.7 and 87.1%, respectively. Conclusions: Combination of distribution pattern and category of pulmonary opacity on chest CT with clinical features facilitates the differentiation of COVID-19 pneumonia from H1N1 pneumonia.

12.
Ann Transl Med ; 9(3): 216, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33708843

RESUMEN

BACKGROUND: The assessment of the severity of coronavirus disease 2019 (COVID-19) by clinical presentation has not met the urgent clinical need so far. We aimed to establish a deep learning (DL) model based on quantitative computed tomography (CT) and initial clinical features to predict the severity of COVID-19. METHODS: One hundred ninety-six hospitalized patients with confirmed COVID-19 were enrolled from January 20 to February 10, 2020 in our centre, and were divided into severe and non-severe groups. The clinico-radiological data on admission were retrospectively collected and compared between the two groups. The optimal clinico-radiological features were determined based on least absolute shrinkage and selection operator (LASSO) logistic regression analysis, and a predictive nomogram model was established by five-fold cross-validation. Receiver operating characteristic (ROC) analyses were conducted, and the areas under the receiver operating characteristic curve (AUCs) of the nomogram model, quantitative CT parameters that were significant in univariate analysis, and pneumonia severity index (PSI) were compared. RESULTS: In comparison with the non-severe group (151 patients), the severe group (45 patients) had a higher PSI (P<0.001). DL-based quantitative CT indicated that the mass of infection (MOICT) and the percentage of infection (POICT) in the whole lung were higher in the severe group (both P<0.001). The nomogram model was based on MOICT and clinical features, including age, cluster of differentiation 4 (CD4)+ T cell count, serum lactate dehydrogenase (LDH), and C-reactive protein (CRP). The AUC values of the model, MOICT, POICT, and PSI scores were 0.900, 0.813, 0.805, and 0.751, respectively. The nomogram model performed significantly better than the other three parameters in predicting severity (P=0.003, P=0.001, and P<0.001, respectively). CONCLUSIONS: Although quantitative CT parameters and the PSI can well predict the severity of COVID-19, the DL-based quantitative CT model is more efficient.

14.
Hepatobiliary Pancreat Dis Int ; 8(5): 510-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19822495

RESUMEN

BACKGROUND: It has been pointed out that only low-dose arsenic trioxide (ATO) presents therapeutic benefits outweighing the toxic side effects. Low-dose ATO can effectively alleviate acute promyelocytic leukemia (APL). However, it is quite challenging in treating solid tumors. The purpose of this study was to investigate the effect of ATO at low concentrations on the metastatic potential of mouse hepatoma H(22) cells and the anti-metastatic mechanism of ATO. METHODS: The metastatic potential of H(22) cells was evaluated by adhesion, migration and invasion assays after exposure to a low dose of ATO in vitro. The mouse lung metastatic model induced by injection of H(22) cells via the tail vein was adopted for the evaluation of metastatic potential. Different proteins in the lysate of H(22) cells exposed to ATO at different concentrations were investigated by surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF-MS). Finally, Western blotting analyses were made to detect the expression pattern of MMP-2 and nm23-M1 proteins. RESULTS: Significant cell death started at ATO concentrations above 2 micromol/L. The growth and adhesion potential of H(22) cells was inhibited in a time- and dose-dependent manner, and the migration and invasion potential of H(22) cells was inhibited in a dose-dependent manner while ATO concentration was below 2 micromol/L. Mice injected with ATO at a dose of 0.5 mg/kg had fewer lung metastases. However, mice injected with ATO at a dose of 2 mg/kg or 4 mg/kg had a high mortality rate and more liver injuries. A total of 15 different protein peaks were identified between the lysate of H(22) cells treated with ATO and controls. Two proteins that peaked at m/z 5302 and 17207 coincided with MMP-2 (fragment) and nm23-M1, respectively. Western blotting analyses demonstrated that MMP-2 and MMP-2 fragments were down-regulated and nm23-M1 was up-regulated in H(22) cells treated with 2 micromol/L ATO for 48 hours. CONCLUSIONS: ATO at a low dose inhibits the metastatic potential of mouse hepatoma H(22) cells in vitro and in vivo, and involves down-regulation of MMP-2 and up-regulation of nm23-M1.


Asunto(s)
Antineoplásicos/farmacología , Arsenicales/farmacología , Carcinoma Hepatocelular/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/patología , Óxidos/farmacología , Animales , Antineoplásicos/efectos adversos , Trióxido de Arsénico , Arsenicales/efectos adversos , Carcinoma Hepatocelular/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Nucleósido Difosfato Quinasas NM23/metabolismo , Óxidos/efectos adversos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
15.
J Leukoc Biol ; 105(2): 215-228, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30633362

RESUMEN

Metabolism directs the severe acute inflammatory reaction of monocytes to guard homeostasis. This occurs by sequentially activating anabolic immune effector mechanisms, switching to immune deactivation mechanisms and then restoring immunometabolic homeostasis. Nuclear sirtuin 1 and mitochondrial pyruvate dehydrogenase kinase metabolically drive this dynamic and are druggable targets that promote immunometabolic resolution in septic mice and increase survival. We used unbiased metabolomics and a validated monocyte culture model of activation, deactivation, and partial resolution of acute inflammation to sequentially track metabolic rewiring. Increases in glycogenolysis, hexosamine, glycolysis, and pentose phosphate pathways were aligned with anabolic activation. Activation transitioned to combined lipid, protein, amino acid, and nucleotide catabolism during deactivation, and partially subsided during early resolution. Lipid metabolic rewiring signatures aligned with deactivation included elevated n-3 and n-6 polyunsaturated fatty acids and increased levels of fatty acid acylcarnitines. Increased methionine to homocysteine cycling increased levels of s-adenosylmethionine rate-limiting transmethylation mediator, and homocysteine and cysteine transsulfuration preceded increases in glutathione. Increased tryptophan catabolism led to elevated kynurenine and de novo biosynthesis of nicotinamide adenine dinucleotide from quinolinic acid. Increased branched-chain amino acid catabolism paralleled increases in succinyl-CoA. A rise in the Krebs cycle cis-aconitate-derived itaconate and succinate with decreased fumarate and acetyl-CoA levels occurred concomitant with deactivation and subsided during early resolution. The data suggest that rewiring of metabolic and mitochondrial bioenergetics by monocytes sequentially activates, deactivates, and resolves acute inflammation.


Asunto(s)
Metabolismo Energético , Inflamación/metabolismo , Inflamación/patología , Monocitos/metabolismo , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Carnitina/análogos & derivados , Carnitina/metabolismo , Humanos , Metabolismo de los Lípidos , Lipopolisacáridos , Metaboloma , Nucleótidos/metabolismo , Análisis de Componente Principal , Células THP-1
16.
Theranostics ; 9(26): 8109-8126, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31754384

RESUMEN

Rationale: Ascorbate is an essential micronutrient known for redox functions at normal physiologic concentrations. In recent decades, pharmacological ascorbate has been found to selectively kill tumour cells. However, the dosing frequency of pharmacologic ascorbate in humans has not yet been defined. Methods: We determined that among five hepatic cell lines, Huh-7 cells were the most sensitive to ascorbate. The effects of high-dose ascorbate on hepatoma were therefore assessed using Huh-7 cells and xenograft tumour mouse model. Results: In Huh-7 cells, ascorbate induced a significant increase in the percentage of cells in the G0/G1 phase, apoptosis and intracellular levels of ROS. High doses of ascorbate (4.0 pmol cell-1), but not low doses of ascorbate (1.0 pmol cell-1), also served as a pro-drug that killed hepatoma cells by altering mitochondrial respiration. Furthermore, in a Huh-7 cell xenograft tumour mouse model, intraperitoneal injection of ascorbate (4.0 g/kg/3 days) but not a lower dose of ascorbate (2.0 g/kg/3 days) significantly inhibited tumour growth. Gene array analysis of HCC tumour tissue from xenograft mice given IP ascorbate (4.0 g/kg/3 days) identified changes in the transcript levels of 192 genes/ncRNAs involved in insulin receptor signalling, metabolism and mitochondrial respiration. Consistent with the array data, gene expression levels of AGER, DGKK, ASB2, TCP10L2, Lnc-ALCAM-3, and Lnc-TGFBR2-1 were increased 2.05-11.35 fold in HCC tumour tissue samples from mice treated with high-dose ascorbate, and IHC staining analysis also verified that AGER/RAGE and DGKK proteins were up-regulated, which implied that AGER/RAGE and DGKK activation might be related to oxidative stress, leading to hepatoma cell death. Conclusions: Our studies identified multiple mechanisms are responsible for the anti-tumour activity of ascorbate and suggest high doses of ascorbate with less frequency will act as a novel therapeutic agent for liver cancer in vivo.


Asunto(s)
Ácido Ascórbico/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
17.
Chin Med J (Engl) ; 121(19): 1920-4, 2008 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-19080125

RESUMEN

BACKGROUND: The pathogenesis of acute pancreatitis is complex and largely unclear. The aim of this study was to explore the relationship between modes of cell death in pancreatic acinar cells, the release of cell contents and the inflammatory response of macrophages. METHODS: Our experiment included four groups: group A (the control group), group B (AR42J cells overstimulated by caerulein), group C (AR42J cells treated with lipopolysaccharide and caerulein), and group D (AR42J cells treated with octreotide and caerulein). Apoptosis and oncosis, and the release of amylase and lactate dehydrogenase (LDH) from AR42J cells were detected. Rat macrophages were stimulated by 1 ml supernatant of culture medium of AR42J cells. Finally, NF-kappaB activation and TNF-alpha and IL-1beta secretion by macrophages were detected. RESULTS: Oncotic cells in group C increased while apoptotic cells decreased (P < 0.05); cells in group D had the inverse reaction. The release of amylase and LDH changed directly with the occurrence of oncosis. The transcription factor NF-kappaB was activated and secretion of TNF-alpha and IL-1beta were significantly higher in group C than in group B (P < 0.05); in group D, these actions were significantly lower than in group B (P < 0.05). This trend was in line with changes in amylase and LDH production. CONCLUSION: There is a close relationship between modes of pancreatic acinar cell death, the release of cell contents and the inflammatory reaction of macrophages.


Asunto(s)
Apoptosis , Activación de Macrófagos , Páncreas/patología , Amilasas/metabolismo , Animales , Interleucina-1beta/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo
18.
JCI Insight ; 3(15)2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089711

RESUMEN

Limited understanding of the mechanisms responsible for life-threatening organ and immune failure hampers scientists' ability to design sepsis treatments. Pyruvate dehydrogenase kinase 1 (PDK1) is persistently expressed in immune-tolerant monocytes of septic mice and humans and deactivates mitochondrial pyruvate dehydrogenase complex (PDC), the gate-keeping enzyme for glucose oxidation. Here, we show that targeting PDK with its prototypic inhibitor dichloroacetate (DCA) reactivates PDC; increases mitochondrial oxidative bioenergetics in isolated hepatocytes and splenocytes; promotes vascular, immune, and organ homeostasis; accelerates bacterial clearance; and increases survival. These results indicate that the PDC/PDK axis is a druggable mitochondrial target for promoting immunometabolic and organ homeostasis during sepsis.


Asunto(s)
Ácido Dicloroacético/farmacología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Complejo Piruvato Deshidrogenasa/metabolismo , Sepsis/tratamiento farmacológico , Animales , Células Cultivadas , Ácido Dicloroacético/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/inmunología , Homeostasis/efectos de los fármacos , Homeostasis/inmunología , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/inmunología , Mitocondrias/metabolismo , Monocitos/citología , Monocitos/inmunología , Monocitos/metabolismo , Cultivo Primario de Células , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Sepsis/inmunología , Sepsis/mortalidad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Resultado del Tratamiento
20.
Int J Occup Environ Health ; 12(3): 193-202, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16967824

RESUMEN

Foundry workers have increased mortality and morbidity risks from numerous causes, including various cancers. A retrospective Chinese iron-steel cohort study was conducted to examine the mortality effects of exposure to foundry work. Standardized mortality ratios (SMRs) and standardized rate ratios (SRRs) were calculated to evaluate mortality risks among male workers with exposure to 15 hazardous factors, adjusting for confounders. During 14 years of follow-up, 13,363 of 121,846 male workers died. SMR analysis showed a healthy-worker effect in comparison with the general population. SRR analysis showed increased risks for all causes, all neoplasms, and others among the exposed workers compared with non-exposed blue-collar workers. Combined exposure to polycyclic aromatic hydrocarbons and two or more dusts increased the risks of lung cancer (SRR = 654; 95% CI: 113-3,780) and other malignancies. Foundry work has adverse health effects, including carcinogenic risks.


Asunto(s)
Carcinógenos Ambientales/efectos adversos , Industria Procesadora y de Extracción , Metalurgia , Enfermedades Profesionales/mortalidad , Hidrocarburos Policíclicos Aromáticos/efectos adversos , China/epidemiología , Estudios de Cohortes , Polvo , Humanos , Hierro , Enfermedades Pulmonares/mortalidad , Masculino , Neoplasias/mortalidad , Estudios Retrospectivos , Riesgo , Acero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA