Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 44(D1): D1045-53, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26481362

RESUMEN

BindingDB, www.bindingdb.org, is a publicly accessible database of experimental protein-small molecule interaction data. Its collection of over a million data entries derives primarily from scientific articles and, increasingly, US patents. BindingDB provides many ways to browse and search for data of interest, including an advanced search tool, which can cross searches of multiple query types, including text, chemical structure, protein sequence and numerical affinities. The PDB and PubMed provide links to data in BindingDB, and vice versa; and BindingDB provides links to pathway information, the ZINC catalog of available compounds, and other resources. The BindingDB website offers specialized tools that take advantage of its large data collection, including ones to generate hypotheses for the protein targets bound by a bioactive compound, and for the compounds bound by a new protein of known sequence; and virtual compound screening by maximal chemical similarity, binary kernel discrimination, and support vector machine methods. Specialized data sets are also available, such as binding data for hundreds of congeneric series of ligands, drawn from BindingDB and organized for use in validating drug design methods. BindingDB offers several forms of programmatic access, and comes with extensive background material and documentation. Here, we provide the first update of BindingDB since 2007, focusing on new and unique features and highlighting directions of importance to the field as a whole.


Asunto(s)
Bases de Datos Farmacéuticas , Diseño de Fármacos , Proteínas/efectos de los fármacos , Internet , Ligandos , Patentes como Asunto , Preparaciones Farmacéuticas/química , Unión Proteica , Pliegue de Proteína , Proteínas/química , Programas Informáticos , Biología de Sistemas
2.
Nucleic Acids Res ; 35(Database issue): D198-201, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17145705

RESUMEN

BindingDB (http://www.bindingdb.org) is a publicly accessible database currently containing approximately 20,000 experimentally determined binding affinities of protein-ligand complexes, for 110 protein targets including isoforms and mutational variants, and approximately 11,000 small molecule ligands. The data are extracted from the scientific literature, data collection focusing on proteins that are drug-targets or candidate drug-targets and for which structural data are present in the Protein Data Bank. The BindingDB website supports a range of query types, including searches by chemical structure, substructure and similarity; protein sequence; ligand and protein names; affinity ranges and molecular weight. Data sets generated by BindingDB queries can be downloaded in the form of annotated SDfiles for further analysis, or used as the basis for virtual screening of a compound database uploaded by the user. The data in BindingDB are linked both to structural data in the PDB via PDB IDs and chemical and sequence searches, and to the literature in PubMed via PubMed IDs.


Asunto(s)
Bases de Datos de Proteínas , Diseño de Fármacos , Proteínas/química , Internet , Ligandos , Conformación Proteica , Proteínas/metabolismo , Interfaz Usuario-Computador
3.
J Inorg Biochem ; 100(4): 771-9, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16504298

RESUMEN

Class-I ribonucleotide reductases (RNRs) are aerobic enzymes that catalyze the reduction of ribonucleotides to deoxyribonucleotides providing the required building blocks for DNA replication and repair. These ribonucleotide-to-deoxyribonucleotide reactions occur by a long range radical (or proton-coupled-electron-transfer) propagation mechanism initiated by a fairly stable tyrosine radical ("the pilot light"). When this pilot light goes out, the tyrosine radical is regenerated by a high-oxidation-state enzyme intermediate, called X. The active site of class-I RNR-X has been recognized as a spin coupled Fe(III)Fe(IV) center with S(total)=1/2 ground state. Although several clues have been obtained from Mössbauer, (57)Fe, (1)H, (17)O(2), and H(2)(17)O ENDOR (electron-nuclear double resonance), EXAFS (extended X-ray absorption fine structure), and MCD (magnetic circular dichroism) experiments, the detailed structure of the intermediate X is still unknown. In the past three years, we have been studying the properties of a set of model clusters for RNR-X using broken-symmetry density functional theory (DFT), and have compared them with the available experimental results. Based on the detailed analysis and comparisons, we have proposed a definite form for the active site structure of class-I RNR intermediate X. The puzzle is now set: can you find any flaws in the argument or evidence? Can you add anything further to the current experimental picture? The argument is formulated from seven experimental clues with associated calculations and models.


Asunto(s)
Ribonucleótido Reductasas/química , Sitios de Unión , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Enlace de Hidrógeno , Hierro/química , Oxígeno/química , Conformación Proteica , Ribonucleótido Reductasas/genética , Espectroscopía de Mossbauer , Agua/química
4.
Curr Opin Chem Biol ; 6(2): 259-73, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12039013

RESUMEN

Some of the principal physical features of iron-sulfur clusters in proteins are analyzed, including metal-ligand covalency, spin polarization, spin coupling, valence delocalization, valence interchange and small reorganization energies, with emphasis on recent spectroscopic and theoretical work. The current state of structural, spectroscopic, and computational knowledge for the iron-sulfur clusters in the nitrogenase iron and iron-molybdenum proteins is examined by comparison and contrast to 'simpler' ironclusters. The differing interactions of the nitrogenase iron and iron-molybdenum clusters compared with those of other iron-sulfur clusters with the protein and solvent environment are also explored.


Asunto(s)
Proteínas Hierro-Azufre/química , Modelos Moleculares , Nitrogenasa/química , Electrones , Oxidación-Reducción
5.
J Chem Theory Comput ; 10(9): 3871-3884, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25221444

RESUMEN

With current therapies becoming less efficacious due to increased drug resistance, new inhibitors of both bacterial and malarial targets are desperately needed. The recently discovered methylerythritol phosphate (MEP) pathway for isoprenoid synthesis provides novel targets for the development of such drugs. Particular attention has focused on the IspH protein, the final enzyme in the MEP pathway, which uses its [4Fe-4S] cluster to catalyze the formation of the isoprenoid precursors IPP and DMAPP from HMBPP. IspH catalysis is achieved via a 2e-/2H+ reductive dehydroxylation of HMBPP; the mechanism by which catalysis is achieved, however, is highly controversial. The work presented herein provides the first step in assessing different routes to catalysis by using computational methods. By performing broken-symmetry density functional theory (BS-DFT) calculations that employ both the conductor-like screening solvation model (DFT/COSMO) and a finite-difference Poisson-Boltzmann self-consistent reaction field methodology (DFT/SCRF), we evaluate geometries, energies, and Mössbauer signatures of the different protonation states that may exist in the oxidized state of the IspH catalytic cycle. From DFT/SCRF computations performed on the oxidized state, we find a state where the substrate, HMBPP, coordinates the apical iron in the [4Fe-4S] cluster as an alcohol group (ROH) to be one of two, isoenergetic, lowest-energy states. In this state, the HMBPP pyrophosphate moiety and an adjacent glutamate residue (E126) are both fully deprotonated, making the active site highly anionic. Our findings that this low-energy state also matches the experimental geometry of the active site and that its computed isomer shifts agree with experiment validate the use of the DFT/SCRF method to assess relative energies along the IspH reaction pathway. Additional studies of IspH catalytic intermediates are currently being pursued.

7.
J Phys Chem A ; 111(42): 10849-60, 2007 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-17918807

RESUMEN

Structural modifications of previously reported merocyanine dyes (Toutchkine, A.; Kraynov, V.; Hahn, K. J. Am. Chem. Soc. 2003, 125, 4132-4145) were found to greatly enhance the solvent dependence of their absorbance and fluorescence emission maxima. Density functional theory (DFT) calculations have been performed to understand the differences in optical properties between the new and previously synthesized dyes. Absorption and emission energies were calculated for several new dyes using DFT vertical self-consistent reaction field (VSCRF) methods. Geometries of ground and excited states were optimized with a conductor-like screening model (COSMO) and self-consistent field (SCF) methods. The new dyes have enhanced zwitterionic character in the ground state and much lower polarity in the excited state, as shown by the DFT-VSCRF calculations. Consistently, the position of the absorption bands are strongly blue-shifted in more polar solvent (methanol compared to benzene), as predicted by the DFT spectral calculations. Inclusion of explicit H-bonding solvent molecules within the quantum model further enhances the predicted shifts and is consistent with the observed spectral broadening. Smaller but significant spectral shifts in polar versus nonpolar solvent are predicted and observed for emission bands. The new dyes show large fluorescence quantum yields in polar hydrogen-bonding solvents; qualitatively, the longest bonds along the conjugated chain at the excited S1 state minimum are shorter in the more polar solvent, inhibiting photoisomerization. The loss of photostability of the dyes is a consequence of the reaction with and electron transfer to singlet oxygen, starting oxidative dye cleavage. The calculated vertical ionization potentials of three dyes I-SO, AI-SO(4), and AI-BA(4) in benzene and methanol are consistent with their relative photobleaching rates; the charge distributions along the conjugated chains for the three dyes are similarly predictive of higher reaction rates for AI-SO(4) and AI-BA(4) than for I-SO. Time-dependent DFT calculations were also performed on AI-BA(4); these were less accurate than the VSCRF method in predicting the absorption energy shift from benzene to methanol.


Asunto(s)
Algoritmos , Células/ultraestructura , Colorantes Fluorescentes/química , Solventes/química , Absorción , Benceno/química , Células/citología , Transporte de Electrón , Transferencia de Energía , Enlace de Hidrógeno , Isomerismo , Metanol/química , Modelos Moleculares , Fotoquímica , Teoría Cuántica , Espectrometría de Fluorescencia
8.
Inorg Chem ; 45(21): 8533-42, 2006 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17029364

RESUMEN

The Fe(IV) d-d transition energies for four active-site structural models of class I ribonucleotide reductase (RNR) intermediate X have been calculated using broken-symmetry density functional theory incorporated with the Slater transition state vertical self-consistent reaction field methodology. Our model I (Figure 1), which contains two mu-oxo bridges, one terminal water, and one bidentate carboxylate group, yields the best Fe(IV) d-d transition energies compared with experiment. Our previous study (J. Am. Chem. Soc. 2005, 127, 15778-15790) also shows that most of the other calculated properties of model I in both native and mutant Y122F forms, including geometries, spin states, pKa's, 57Fe, 1H, and 17O hyperfine tensors, and 57Fe Mössbauer isomer shifts and quadrupole splittings, are also the best in agreement with the available experimental data. This model is likely to represent the active-site structure of the intermediate state X of RNR.


Asunto(s)
Ribonucleótido Reductasas/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Ácidos Carboxílicos/análisis , Hierro , Modelos Moleculares , Óxidos/análisis , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleótido Reductasas/química
9.
J Comput Chem ; 27(12): 1292-306, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16786546

RESUMEN

To predict the isomer shifts of Fe complexes in different oxidation and spin states more accurately, we have performed linear regression between the measured isomer shifts (delta(exp)) and DFT (PW91 potential with all-electron triple-zeta plus polarization basis sets) calculated electron densities at Fe nuclei [rho(0)] for the Fe(2+,2.5+) and Fe(2.5+,3+,3.5+,4+) complexes separately. The geometries and electronic structures of all complexes in the training sets are optimized within the conductor like screening (COSMO) solvation model. Based on the linear correlation equation delta(exp) = alpha[rho(0) - 11884.0] + C, the best fitting for 17 Fe(2+,2.5+) complexes (totally 31 Fe sites) yields alpha = -0.405 +/- 0.042 and C = 0.735 +/- 0.047 mm s(-1). The correlation coefficient is r = -0.876 with a standard deviation of SD = 0.075 mm s(-1). In contrast, the linear fitting for 19 Fe(2.5+,3+,3.5+,4+) complexes (totally 30 Fe sites) yields alpha = -0.393 +/- 0.030 and C = 0.435 +/- 0.014 mm s(-1), with the correlation coefficient r = -0.929 and a standard deviation SD = 0.077 mm s(-1). We provide a physical rationale for separating the Fe(2+,2.5+) fit from the Fe(2.5+,3+,3.5+,4+) fit, which also is clearly justified on a statistical empirical basis. Quadrupole splittings have also been calculated for these systems. The correlation between the calculated (DeltaE(Q(cal))) and experimental (DeltaE(Q(exp))) quadrupole splittings based on |DeltaE(Q(exp))| = A |DeltaE(Q(cal))| + B yields slope A, which is almost the ideal value 1.0 (A = 1.002 +/- 0.030) and intercept B almost zero (B = 0.033 +/- 0.068 mm s(-1)). Further calculations on the reduced diferrous and oxidized diferric active sites of class-I ribonucleotide reductase (RNR) and the hydroxylase component of methane monooxygenase (MMOH), and on a mixed-valent [(tpb)Fe3+(mu-O)(mu-CH3CO2)Fe4+(Me3[9]aneN3)]2+ (S = 3/2) complex and its corresponding diferric state have been performed. Calculated results are in very good agreement with the experimental data.


Asunto(s)
Hierro/química , Oxigenasas/metabolismo , Ribonucleótido Reductasas/metabolismo , Electroquímica , Modelos Moleculares , Oxigenasas/química , Conformación Proteica , Ribonucleótido Reductasas/química , Espectroscopía de Mossbauer
10.
J Am Chem Soc ; 127(45): 15778-90, 2005 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-16277521

RESUMEN

Several models for the active site structure of class I ribonucleotide reductase (RNR) intermediate X have been studied in the work described in this paper, using broken-symmetry density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model. The calculated properties, including geometries, spin states, 57Fe, 1H, and 17O hyperfine tensors, Mössbauer isomer shifts, and quadrupole splittings, and the estimation of the Fe(IV) d-d transition energies have been compared with the available experimental values. On the basis of the detailed analysis and comparisons, we propose a definite form for the active site structure of class I RNR intermediate X, which contains an Fe1(III)Fe2(IV) center (where Fe1 is the iron site closer to Tyr122, and the two iron sites are high-spin antiferromagnetically coupled to give a total 1/2 net spin), two mu-oxo bridges, one terminal water which binds to Fe1(III) and also H-bonds to both side chains of Asp84 and Glu238, and one bidentate carboxylate group from the side chain of Glu115.


Asunto(s)
Modelos Moleculares , Ribonucleósido Difosfato Reductasa/química , Ácido Aspártico/química , Sitios de Unión , Espectroscopía de Resonancia por Spin del Electrón , Ácido Glutámico/química , Enlace de Hidrógeno , Hierro/química , Estructura Molecular , Agua/química
11.
J Am Chem Soc ; 127(11): 4104-13, 2005 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-15771548

RESUMEN

This work reports an explanation for the unusual monoexponential fluorescence decay of 5-fluorotryptophan (5FTrp) in single-Trp mutant proteins [Broos, J.; Maddalena, F.; Hesp, B. H. J. Am. Chem. Soc. 2004, 126, 22-23] and substantially clarifies the origin of the ubiquitous nonexponential fluorescence decay of tryptophan in proteins. Our results strongly suggest that the extent of nonexponential fluorescence decay is governed primarily by the efficiency of electron transfer (ET) quenching by a nearby amide group in the peptide bond. Fluoro substitution increases the ionization potential (IP) of indole, thereby suppressing the ET rate, leading to a longer average lifetime and therefore a more homogeneous decay. We report experimental IPs for a number of substituted indoles including 5-fluoroindole, 5-fluoro-3-methylindole, and 6-fluoroindole, along with accurate ab initio calculations of the IPs for these and 20 related molecules. The results predict the IP of 5-fluorotryptophan to be 0.19 eV higher than that of tryptophan. 5-Fluoro substitution does not measurably alter the excitation-induced change in permanent dipole moment nor does it change the fluorescent state from 1La to 1Lb. In combination with electronic structure information this argues that the increased IP and the decreased excitation energy of the 1La state, together 0.3 eV, are solely responsible for the strong reduction of electron transfer quenching. 6-Fluoro substitution is predicted to increase the IP by a mere 0.09 eV. In agreement with our conclusions, the fluorescence decay curves of 6-fluorotryptophan-containing proteins are well fit using only two decay times compared to three required for Trp.


Asunto(s)
Indoles/química , Proteínas/química , Triptófano/análogos & derivados , Triptófano/química , Electroquímica , Polarización de Fluorescencia , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
12.
J Am Chem Soc ; 125(27): 8377-83, 2003 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-12837110

RESUMEN

Broken symmetry density functional and electrostatics calculations have been used to shed light on which of three proposed atoms, C, N, or O, is most likely to be present in the center of the FeMoco, the active site of nitrogenase. At the Mo(4+)4Fe(2+)3Fe(3+) oxidation level, a central N(3-) anion results in (1) calculated Fe-N bond distances that are in very good agreement with the recent high-resolution X-ray data of Einsle et al.; (2) a calculated redox potential of 0.19 eV versus the standard hydrogen electrode (SHE) for FeMoco(oxidized) + e(-) --> FeMoco(resting), in good agreement with the measured value of -0.042 V in Azotobacter vinelandii; and (3) average Mössbauer isomer shift values (IS(av) = 0.48 mm s(-1)) compatible with experiment (IS(av) = 0.40 mm s(-1)). At the more reduced Mo(4+)6Fe(2+)1Fe(3+) level, the calculated geometry around a central N(3-) anion still correlates well with the X-ray data, but the average Mössbauer isomer shift value (IS(av) = 0.54 mm s(-1)) and the redox potential of -2.21 eV show a much poorer agreement with experiment. These calculated structural, spectroscopic, and redox data indicate the most likely iron oxidation state for the resting FeMoco of nitrogenase to be 4Fe(2+)3Fe(3+). At this favored oxidation state, oxygen or carbon coordination leads to (1) Fe-O distances in poor agreement and Fe-C distances in good agreement with experiment and (2) calculated redox potentials of +0.97 eV for O(2-) and -1.31 eV for C(4-). The calculated structural parameters and/or redox data suggest either O(2-) or C(4-) is unlikely as a central anion.


Asunto(s)
Molibdoferredoxina/química , Nitrogenasa/química , Molibdoferredoxina/metabolismo , Nitrogenasa/metabolismo , Oxidación-Reducción , Teoría Cuántica , Electricidad Estática , Termodinámica
13.
Inorg Chem ; 42(17): 5244-51, 2003 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-12924895

RESUMEN

To predict isomer shifts and quadrupole splitting parameters of Fe atoms in the protein active sites of methane monooxygenase and ribonucleotide reductase, a correlation between experimental isomer shifts ranging 0.1-1.5 mm s(-)(1) for Fe atoms in a training set with the corresponding density functional theory (DFT) calculated electron densities at the Fe nuclei in those complexes is established. The geometries of the species in the training set, consisting of synthetic polar monomeric and dimeric iron complexes, are taken from the Cambridge structural database. A comparison of calculated Mössbauer parameters for Fe atoms from complexes in the training set with their corresponding experimental values shows very good agreement (standard deviation of 0.11 mm/s, correlation coefficient of -0.94). However, for the Fe atoms in the active sites of the structurally characterized proteins of methane monooxygenase and ribonucleotide reductase, the calculated Mössbauer parameters deviate more from their experimentally measured values. The high correlation that exists between calculated and observed quadrupole splitting and isomer shift parameters for the synthetic complexes leads us to conclude that the main source of the error arising for the protein active sites is due to the differing degrees of atomic-level resolution for the protein structural data, compared to the synthetic complexes in the training set. Much lower X-ray resolutions associated with the former introduce uncertainty in the accuracy of several bond lengths. This is ultimately reflected in the calculated isomer shifts and quadrupole splitting parameters of the Fe sites in the proteins. For the proteins, the closest correspondence between predicted and observed Mössbauer isomer shifts follows the order MMOH(red), RNR(red), MMOH(ox), and RNR(ox), with average deviations from experiment of 0.17, 0.17, 0.17-0.20, and 0.32 mm/s, but this requires DFT geometry optimization of the iron-oxo dimer complexes.


Asunto(s)
Compuestos de Hierro/química , Oxigenasas/química , Ribonucleótido Reductasas/química , Fenómenos Químicos , Química Física , Cristalografía por Rayos X , Isomerismo
14.
J Am Chem Soc ; 124(20): 5890-4, 2002 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-12010064

RESUMEN

A combined broken-symmetry density functional and electrostatics approach has been used to construct a model for the high-valent diiron intermediate Q of methane monooxygenase. The presence of high-spin or intermediate spin iron centers gives rise to two structurally distinct spin-coupled states of the cluster for which calculated geometries, net spin populations, Heisenberg J values, Mössbauer isomer shifts, and quadrupole splittings are compared and contrasted with the available spectroscopic data.


Asunto(s)
Oxigenasas/química , Sitios de Unión , Hierro/química , Conformación Proteica , Espectroscopía de Mossbauer , Electricidad Estática
15.
Chemphyschem ; 3(2): 167-78, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-12503124

RESUMEN

Using spin-unrestricted density functional theory (the VWN Becke-Perdew potential), including broken-symmetry and spin-projection methods, we have obtained the potential-energy curves as a function of the central torsional angle of stilbene in the ground (S0), the first excited triplet (T1), the first excited singlet (S1), and the doubly excited singlet (S2) states. The thermal trans-->cis isomerization of stilbene passes through a diradical broken-symmetry electronic structure around the twisted conformation (90 degrees central torsional angle) in the ground state. Our calculations support the proposed triplet mechanism for sensitized cis [symbol: see text] trans photoisomerization and the nonadiabatic singlet mechanism proposed by Orlandi and Siebrand. On the T1 potential-energy curve, the rotation of the C=C bond for both trans- and cis-stilbene will lead stilbene to the twisted conformation, from which the twisted stilbene will decay to the ground-state surface that is nearly isoenergetic with the T1 surface and has diradical electronic structure in the twisted region. On the S1 potential-energy curve, the energy increases in the direction from trans- to the twisted stilbene, and crosses with the neutral doubly excited S2 potential-energy curve, which has a minimum at the twisted structure and is lower in energy than the zwitterionic doubly excited state. The twisted stilbene around the energy minimum of the neutral doubly excited S2-state will decay onto the ground-state surface from where the rotation of the C=C bond leads the twisted stilbene to either the trans or cis configuration and the isomerization of stilbene is then completed. Similar studies have also been performed on a stilbene derivative with a substituent group, NHCOCH3.

16.
Inorg Chem ; 42(8): 2751-8, 2003 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-12691585

RESUMEN

Using broken-symmetry density functional theory and spin-projection methods, we have examined the electronic structure and properties of a large mixed-valent Fe(III)-Fe(IV) diiron system that displays two bidentate carboxylates and a single mu-oxo moiety as bridging ligands. Two carboxylates and a single oxygen species have long been implicated as core elements of the elusive intermediate X in ribonucleotide reductase. Spectroscopic studies of X have also identified the presence of an additional terminal or bridging oxygen-based ligand. Introduction of a second oxygen and protonated variants thereof in the core of our structural model is favored as a bridging hydroxide based on the lowest energy structure. Mössbauer measurements indicate clearly that the two iron sites of X are distinct and that there is significant electron delocalization onto the oxygen-based ligands. For several examined spin states of our model cluster, Mössbauer parameters from density functional calculations are neither able to differentiate between the iron sites nor reproduce the strong spin delocalization onto the oxygen-based ligands observed experimentally. The combined comparison of the calculated geometries, spin states, spin densities, and Mössbauer properties for our model clusters with available experimental data for X implies that intermediate X is significantly different from the diiron structural models examined herein.


Asunto(s)
Ácidos Carboxílicos/química , Hierro/química , Ribonucleótido Reductasas/química , Algoritmos , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Escherichia coli/enzimología , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Oxígeno/química , Ribonucleótido Reductasas/metabolismo
17.
Inorg Chem ; 43(2): 613-21, 2004 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-14731023

RESUMEN

Using broken-symmetry density functional theory, we have studied an experimentally proposed model for ribonucleotide reductase (RNR) intermediate X, which contains a single oxo bridge, one terminal H(2)O or OH(-) ligand, a bidentate carboxylate from Glu115, and a mono-oxygen bridge provided by Glu238. For the models proposed here, the terminal H(2)O/OH(-) ligand binds to site Fe1 which is closer to Tyr122. The diiron centers are assigned as high-spin Fe(III)Fe(IV) and antiferromagnetically coupled to give the S(total) = (1)/(2) ground state. Calculations show that the model with a terminal hydroxide in the antiferromagnetic [S(Fe1) = 2, S(Fe2) = (5)/(2)] state (Fe1 = Fe(IV), Fe2 = Fe(III)) is the lowest energy state, and the calculated isomer shift and quadrupole splitting values for this cluster are also the best among the four clusters studied here when compared with the experimental values. However, the DFT-calculated (1)H proton and (17)O hyperfine tensors for this state do not show good agreement with the experiments. The calculated Fe1-Fe2 distances for this and the other three clusters at >2.9 A are much longer than the 2.5 A which was predicted by the EXAFS measurements. The mono-oxygen bridge provided by Glu238 tends to be closer to one of the Fe sites in all clusters studied here, and it does not function as a bridge in helping to produce a short Fe-Fe distance. Overall, the models tested here are not likely to represent the core structure of RNR intermediate X. The model with the terminal OH(-) binding to the Fe1(III) center shows the best calculated (1)H proton and (17)O hyperfine tensors compared with the experimental values. This supports the earlier proposal based on analysis of ENDOR spectra (Willems et al.(16)) that the terminal oxygen group binds to the Fe(III) site in RNR-X.


Asunto(s)
Ácidos Carboxílicos/química , Hierro/química , Ribonucleótido Reductasas/química , Algoritmos , Análisis por Conglomerados , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Teoría Cuántica
18.
J Am Chem Soc ; 126(39): 12677-84, 2004 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-15453802

RESUMEN

The usual rate-determining step in the catalytic mechanism of the low molecular weight tyrosine phosphatases involves the hydrolysis of a phosphocysteine intermediate. To explain this hydrolysis, general base-catalyzed attack of water by the anion of a conserved aspartic acid has sometimes been invoked. However, experimental measurements of solvent deuterium kinetic isotope effects for this enzyme do not reveal a rate-limiting proton transfer accompanying dephosphorylation. Moreover, base activation of water is difficult to reconcile with the known gas-phase proton affinities and solution phase pK(a)'s of aspartic acid and water. Alternatively, hydrolysis could proceed by a direct nucleophilic attack by a water molecule. To understand the hydrolysis mechanism, we have used high-level density functional methods of quantum chemistry combined with continuum electrostatics models of the protein and the solvent. Our calculations do not support a catalytic activation of water by the aspartate. Instead, they indicate that the water oxygen directly attacks the phosphorus, with the aspartate residue acting as a H-bond acceptor. In the transition state, the water protons are still bound to the oxygen. Beyond the transition state, the barrier to proton transfer to the base is greatly diminished; the aspartate can abstract a proton only after the transition state, a result consistent with experimental solvent isotope effects for this enzyme and with established precedents for phosphomonoester hydrolysis.


Asunto(s)
Ácido Aspártico/química , Ácido Aspártico/metabolismo , Cisteína/química , Cisteína/metabolismo , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Bovinos , Hidrólisis , Cinética , Modelos Moleculares , Peso Molecular , Fosforilación , Teoría Cuántica , Termodinámica
19.
J Am Chem Soc ; 124(34): 10225-35, 2002 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12188687

RESUMEN

The first step in the catalytic mechanism of a protein tyrosine phosphatase, the transfer of a phosphate group from the phosphotyrosine substrate to a cysteine side chain of the protein to form a phosphoenzyme intermediate, has been studied by combining density functional calculations of an active-site cluster with continuum electrostatic descriptions of the solvent and the remainder of the protein. This approach provides the high level of quantum chemical methodology needed to adequately model phosphotransfer reactions with a reasonable description of the environment around the active site. Energy barriers and geometries along a reaction pathway are calculated. In the literature, mechanisms assuming both a monoanionic and a dianionic substrate have been proposed; this disagreement is addressed by performing calculations for both possibilities. For the dianionic substrate, a dissociative reaction pathway with early proton transfer to the leaving group and a 9 kcal/mol energy barrier is predicted (the experimental estimate is ca. 14 kcal/mol), while for the monoanionic substrate, an associative pathway with late proton transfer and a 22 kcal/mol energy barrier is predicted. These results, together with a review of experimental evidence, support the dianionic-substrate/dissociative-pathway alternative. The relationship between a dianionic or monoanionic substrate and a dissociative or associative pathway, respectively, can be understood in terms of classical organic chemical reaction pathways.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Catálisis , Modelos Moleculares , Teoría Cuántica , Electricidad Estática , Termodinámica
20.
Inorg Chem ; 41(22): 5744-53, 2002 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-12401079

RESUMEN

The unifying view that molybdenum is the essential component in nitrogenase has changed over the past few years with the discovery of a vanadium-containing nitrogenase and an iron-only nitrogenase. The principal question that has arisen for the alternative nitrogenases concerns the structures of their corresponding cofactors and their metal-ion valence assignments and whether there are significant differences with that of the more widely known molybdenum-iron cofactor (FeMoco). Spin-polarized broken-symmetry (BS) density functional theory (DFT) calculations are used to assess which of the two possible metal-ion valence assignments (4Fe(2+)4Fe(3+) or 6Fe(2+)2Fe(3+)) for the iron-only cofactor (FeFeco) best represents the resting state. For the 6Fe(2+)2Fe(3+) oxidation state, the spin coupling pattern for several spin state alignments compatible with S = 0 were generated and assessed by energy criteria. The most likely BS spin state is composed of a 4Fe cluster with spin S(a) = (7)/(2) antiferromagnetically coupled to a 4Fe' cluster with spin S(b) = (7)/(2). This state has the lowest DFT energy for the isolated FeFeco cluster and displays calculated Mössbauer isomer shifts consistent with experiment. Although the S = 0 resting state of FeFeco has recently been proposed to have metal-ion valencies of 4Fe(2+)4Fe(3+) (derived from experimental Mössbauer isomer shifts), our isomer shift calculations for the 4Fe(2+)4Fe(3+) oxidation state are in poorer agreement with experiment. Using the Mo(4+)6Fe(2+)Fe(3+) oxidation level of the cofactor as a starting point, the structural consequences of replacement of molybdenum (Mo(4+)) with vanadium (V(3+)) or iron (Fe(3+)) in the cofactor have been investigated. The size of the cofactor cluster shows a dependency on the nature of the heterometal and increases in the order FeMoco < FeVco < FeFeco.


Asunto(s)
Metaloproteínas/química , Molibdeno/química , Nitrogenasa/química , Absorciometría de Fotón , Azotobacter vinelandii/enzimología , Cobalto/química , Cristalografía por Rayos X , Hierro/química , Isomerismo , Oxidación-Reducción , Proteínas/química , Vanadio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA