Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 613(7943): 280-286, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631649

RESUMEN

Macroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors1-3 that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane4,5, in which two cyclobis(paraquat-p-phenylene)6 (CBPQT4+) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop. The constitution of the loop ensures that both rings undergo highly (85%) unidirectional movement under the guidance of a flashing energy ratchet7,8, whereas the interactions between the two rings give rise to a two-dimensional potential energy surface (PES) similar to that shown by FOF1 ATP synthase9. The unidirectionality is powered by an oscillating10 voltage11,12 or external modulation of the redox potential13. Initially, we focused our attention on the homologous [2]catenane, only to find that the kinetic asymmetry was insufficient to support unidirectional movement of the sole ring. Accordingly, we incorporated a second CBPQT4+ ring to provide further symmetry breaking by interactions between the two mobile rings. This demonstration of electrically driven continual circumrotatory motion of two rings around a loop in a [3]catenane is free from the production of waste products and represents an important step towards surface-bound14 electric molecular motors.

2.
Nature ; 603(7900): 265-270, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35264758

RESUMEN

Molecular recognition1-4 and supramolecular assembly5-8 cover a broad spectrum9-11 of non-covalently orchestrated phenomena between molecules. Catalysis12 of such processes, however, unlike that for the formation of covalent bonds, is limited to approaches13-16 that rely on sophisticated catalyst design. Here we establish a simple and versatile strategy to facilitate molecular recognition by extending electron catalysis17, which is widely applied18-21 in synthetic covalent chemistry, into the realm of supramolecular non-covalent chemistry. As a proof of principle, we show that the formation of a trisradical complex22 between a macrocyclic host and a dumbbell-shaped guest-a molecular recognition process that is kinetically forbidden under ambient conditions-can be accelerated substantially on the addition of catalytic amounts of a chemical electron source. It is, therefore, electrochemically possible to control23 the molecular recognition temporally and produce a nearly arbitrary molar ratio between the substrates and complexes ranging between zero and the equilibrium value. Such kinetically stable supramolecular systems24 are difficult to obtain precisely by other means. The use of the electron as a catalyst in molecular recognition will inspire chemists and biologists to explore strategies that can be used to fine-tune non-covalent events, control assembly at different length scales25-27 and ultimately create new forms of complex matter28-30.

3.
J Am Chem Soc ; 142(27): 11835-11846, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32470290

RESUMEN

We report how the nanoconfined environment, introduced by the mechanical bonds within an electrochemically switchable bistable [2]rotaxane, controls the rotation of a fluorescent molecular rotor, namely, an 8-phenyl-substituted boron dipyrromethene (BODIPY). The electrochemical switching of the bistable [2]rotaxane induces changes in the ground-state coconformation and in the corresponding excited-state properties of the BODIPY rotor. In the starting redox state, when no external potential is applied, the cyclobis(paraquat-p-phenylene) (CBPQT4+) ring component encircles the tetrathiafulvalene (TTF) unit on the dumbbell component, leaving the BODIPY rotor unhindered and exhibiting low fluorescence. Upon oxidation of the TTF unit to a TTF2+ dication, the CBPQT4+ ring is forced toward the molecular rotor, leading to an increased energy barrier for the excited state to rotate the rotor into the state with a high nonradiative rate constant, resulting in an overall 3.4-fold fluorescence enhancement. On the other hand, when the solvent polarity is high enough to stabilize the excited charge-transfer state between the BODIPY rotor and the CBPQT4+ ring, movement of the ring toward the BODIPY rotor produces an unexpectedly strong fluorescence signal decrease as the result of photoinduced electron transfer from the BODIPY rotor to the CBPQT4+ ring. The nanoconfinement effect introduced by mechanical bonding can effectively lead to modulation of the physicochemical properties as observed in this bistable [2]rotaxane. On account of the straightforward synthetic strategy and the facile modulation of switchable electrochromic behavior, our approach could pave the way for the development of new stimuli-responsive materials based on mechanically interlocked molecules for future electro-optical applications, such as sensors, molecular memories, and molecular logic gates.


Asunto(s)
Compuestos de Boro/química , Técnicas Electroquímicas , Colorantes Fluorescentes/química , Rotaxanos/química , Estructura Molecular , Oxidación-Reducción
4.
J Am Chem Soc ; 142(15): 7190-7197, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32223154

RESUMEN

Two new highly charged [2]catenanes-namely, mHe[2]C·6PF6 and mHo[2]C·6PF6-were synthesized by exploiting radical host-guest templation between derivatives containing BIPY•+ radical cations and the meta analogue of cyclobis(paraquat-p-phenylene). In contrast to related [2]catenanes that have been isolated as air-stable monoradicals, both mHe[2]C·6PF6 and mHo[2]C·6PF6 exist as air-stable singlet bisradicals, as evidenced by both X-ray crystallography in the solid state and EPR spectroscopy in solution. Electrochemical studies indicate that the first two reduction peaks of these two [2]catenanes are shifted significantly to more positive potentials, a feature which is responsible for their extraordinary stability in air. The mixed-valence nature of the mono- and bisradical states endows them with unique NIR absorption properties, e.g., NIR absorption bands for the mono- and bisradical states observed at ∼1800 and ∼1450 nm, respectively. These [2]catenanes are potentially useful in applications that include NIR photothermal conversion, UV-vis-NIR multiple-state electrochromic materials, and multiple-state memory devices. Our findings highlight the principle of "mechanical-bond-induced stabilization" as an efficient strategy for designing persistent organic radicals.

5.
J Am Chem Soc ; 140(30): 9387-9391, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29949368

RESUMEN

Herein, we report an unprecedented mixed-valence crystal superstructure that consists of a 2:1 host-guest complex [MV⊂(CBPQT)2]2/3+ [MV = methyl viologen, CBPQT = cyclobis(paraquat- p-phenylene)]. One electron is distributed statistically between three [MV⊂(CBPQT)2]•+ composed of a total of 15 viologen units. The mixed-valence state is validated by single-crystal X-ray crystallography, which supports an empirical formula of [MV⊂(CBPQT)2]3·(PF6)2 for the body-centered cubic superstructure. Electron paramagnetic resonance provides further evidence of electron delocalization. Quantum chemistry calculations confirm the mixed-valence state in the crystal superstructure. Our findings demonstrate that precise tuning of the redox states in host-guest systems can lead to a promising supramolecular strategy for achieving long-range electron delocalization in solid-state devices.

6.
J Am Chem Soc ; 140(1): 328-338, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29171955

RESUMEN

We report measurements of adsorption isotherms and the determination of the isosteric heats of adsorption of several small gases (H2, D2, Ne, N2, CO, CH4, C2H6, Ar, Kr, and Xe) on the metal-organic framework (MOF) NU-1000, which is one of the most thermally stable MOFs. It has transition-metal nodes of formula Zr6(µ3-OH)4(µ3-O)4(OH)4(OH2)4 that resemble hydrated ZrO2 clusters and can serve as catalysts or catalyst supports. The linkers in this MOF are pyrenes linked to the nodes via the carboxylate groups of benzoates. The broad range of adsorbates studied here allows us to compare trends both with adsorption on other surfaces and with density functional calculations also presented here. The experimental isotherms indicate similar filling of the MOF surface by the different gases, starting with strong adsorption sites near the Zr atoms, a result corroborated by the density functional calculations. This adsorption is followed by the filling of other adsorption sites on the nodes and organic framework. Capillary condensation occurs in wide pores after completion of a monolayer. The total amount adsorbed for all the gases is the equivalent of two complete monolayers. The experimental isosteric heats of adsorption are nearly proportional to the atom-atom (or molecule-molecule) Lennard-Jones well-depth parameters of the adsorbates but ∼13-fold larger. The density functional calculations show a similar trend but with much more scatter and heats that are usually greater (by 30%, on average).

7.
J Am Chem Soc ; 139(36): 12704-12709, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28806074

RESUMEN

Radical templation centered around a heterotrisradical tricationic inclusion complex DB•+⊂DAPQT2(•+), assembled from an equimolar mixture of a disubstituted 4,4'-bipyridinium radical cation (DB•+) and an asymmetric cyclophane bisradical dication (DAPQT2(•+)), affords a symmetric [2]catenane (SC·7PF6) and an asymmetric [2]catenane (AC·7PF6) on reaction of the 1:1 complex with diazapyrene and bipyridine, respectively. Both these highly charged [2]catenanes have been isolated as air-stable monoradicals and characterized by EPR spectroscopy. X-ray crystallography suggests that the unpaired electrons are delocalized in each case across two inner 4,4'-bipyridinium (BIPY2+) units forming a mixed-valence (BIPY2)•3+ state inside both [2]catenanes, an observation which is in good agreement with spin-density calculations using density functional theory. Electrochemical studies indicate that by replacing the BIPY2+ units in homo[2]catenane HC•7+-composed of two mechanically interlocked cyclobis(paraquat-p-phenylene) rings-with "zero", one, and two more highly conjugated diazapyrenium dication (DAP2+) units, respectively, a consecutive series of five, six, and seven redox states can be accessed in the resulting SC·7PF6 (0, 4+, 6+, 7+, and 8+), HC·7PF6 (0, 2+, 4+, 6+, 7+, and 8+), and AC·7PF6 (0, 1+, 2+, 4+, 6+, 7+, and 8+), respectively. These unique [2]catenanes present a promising prototype for the fabrication of high-density data memories.

8.
J Am Chem Soc ; 138(32): 10214-25, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27398609

RESUMEN

Template-directed protocols provide a routine approach to the synthesis of mechanically interlocked molecules (MIMs), in which the mechanical bonds are stabilized by a wide variety of weak interactions. In this Article, we describe a strategy for the preparation of neutral [2]catenanes with sliding interlocked electron-rich rings, starting from two degenerate donor-acceptor [2]catenanes, consisting of a tetracationic cyclobis(paraquat-p-phenylene) cyclophane (CBPQT(4+)) and crown ethers containing either (i) hydroquinone (HQ) or (ii) 1,5-dioxynaphthalene (DNP) recognition units and carrying out four-electron reductions of the cyclophane components to their neutral forms. The donor-acceptor interactions between the CBPQT(4+) ring and both HQ and DNP units present in the crown ethers that stabilize the [2]catenanes are weakened upon reduction of the cyclophane components to their radical cationic states and are all but absent in their fully reduced states. Characterization in solution performed by UV-vis, EPR, and NMR spectroscopic probes reveals that changes in the redox properties of the [2]catenanes result in a substantial decrease of the energy barriers for the circumrotation and pirouetting motions of the interlocked rings, which glide freely through one another in the neutral states. The solid-state structures of the fully reduced catenanes reveal profound changes in the relative dispositions of the interlocked rings, with the glycol chains of the crown ethers residing in the cavities of the neutral CBPQT(0) rings. Quantum mechanical investigations of the energy levels associated with the four different oxidation states of the catenanes support this interpretation. Catenanes and rotaxanes with sliding rings are expected to display unique properties.

9.
J Am Chem Soc ; 138(41): 13513-13516, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27696836

RESUMEN

The application of atomic layer deposition (ALD) to metal-organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. Complementary density functional calculations indicate that this startling regioselectivity is driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.

10.
Chemistry ; 22(8): 2736-45, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26784535

RESUMEN

The promiscuous encapsulation of π-electron-rich guests by the π-electron-deficient host, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), involves the formation of 1:1 inclusion complexes. One of the most intensely investigated charge-transfer (CT) bands, assumed to result from inclusion of a guest molecule inside the cavity of CBPQT(4+), is an emerald-green band associated with the complexation of tetrathiafulvalene (TTF) and its derivatives. This interpretation was called into question recently in this journal based on theoretical gas-phase calculations that reinterpreted this CT band in terms of an intermolecular side-on interaction of TTF with one of the bipyridinium (BIPY(2+)) units of CBPQT(4+), rather than the encapsulation of TTF inside the cavity of CBPQT(4+). We carried out DFT calculations, including solvation, that reveal conclusively that the CT band emerging upon mixing TTF with CBPQT(4+) arises from the formation of a 1:1 inclusion complex. In support of this conclusion, we have performed additional experiments on a [2]rotaxane in which a TTF unit, located in the middle of its short dumbbell, is prevented sterically from interacting with either one of the two BIPY(2+) units of a CBPQT(4+) ring residing on a separate [2]rotaxane in a side-on fashion. This [2]rotaxane has similar UV/Vis and (1)H NMR spectroscopic properties with those of 1:1 inclusion complexes of TTF and its derivatives with CBPQT(4+). The [2]rotaxane exists as an equimolar mixture of cis- and trans-isomers associated with the disubstituted TTF unit in its dumbbell component. Solid-state structures were obtained for both isomers, validating the conclusion that the TTF unit, which gives rise to the CT band, resides inside CBPQT(4+).

11.
Proc Natl Acad Sci U S A ; 110(14): 5321-5, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23503849

RESUMEN

A number of exotic structures have been formed through high-pressure chemistry, but applications have been hindered by difficulties in recovering the high-pressure phase to ambient conditions (i.e., one atmosphere and 300 K). Here we use dispersion-corrected density functional theory [PBE-ulg (Perdew-Burke-Ernzerhof flavor of DFT with the universal low gradient correction for long range London dispersion)] to predict that above 60 gigapascal (GPa) the most stable form of N2O (the laughing gas in its molecular form) is a one-dimensional polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03∼0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions, both polymers relax below 14 GPa to the same stable nonplanar trans-polymer. The predicted phonon spectrum and dissociation kinetics validates the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a type of conducting nonlinear optical polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions (very high pressure or temperature).


Asunto(s)
Óxido Nitroso/química , Polimerizacion , Presión , Cinética , Modelos Químicos , Estructura Molecular , Fonones
12.
J Am Chem Soc ; 137(34): 11057-68, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26237091

RESUMEN

The modulation of noncovalent bonding interactions by redox processes is a central theme in the fundamental understanding of biological systems as well as being ripe for exploitation in supramolecular science. In the context of host-guest systems, we demonstrate in this article how the formation of inclusion complexes can be controlled by manipulating the redox potential of a cyclophane. The four-electron reduction of cyclobis(paraquat-p-phenylene) to its neutral form results in altering its binding properties while heralding a significant change in its stereoelectronic behavior. Quantum mechanics calculations provide the energetics for the formation of the inclusion complexes between the cyclophane in its various redox states with a variety of guest molecules, ranging from electron-poor to electron-rich. The electron-donating properties displayed by the cyclophane were investigated by probing the interaction of this host with electron-poor guests, and the formation of inclusion complexes was confirmed by single-crystal X-ray diffraction analysis. The dramatic change in the binding mode depending on the redox state of the cyclophane leads to (i) aromatic donor-acceptor interactions in its fully oxidized form and (ii) van der Waals interactions when the cyclophane is fully reduced. These findings lay the foundation for the potential use of this class of cyclophane in various arenas, all the way from molecular electronics to catalysis, by virtue of its electronic properties. The extension of the concept presented herein into the realm of mechanically interlocked molecules will lead to the investigation of novel structures with redox control being expressed over the relative geometries of their components.


Asunto(s)
Éteres Cíclicos/química , Paraquat/química , Piperidinas/química , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Paraquat/análogos & derivados , Teoría Cuántica
13.
J Am Chem Soc ; 137(2): 876-85, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25493585

RESUMEN

We report the synthesis of a series of homologous oligoviologens in which different numbers of 4,4'-bipyridinium (BIPY(2+)) subunits are linked by p-xylylene bridges, as a prelude to investigating how their radical cationic forms self-assemble both in solution and in the solid state. The strong radical-radical interactions between the radical cationic forms of the BIPY(2+) units-namely, BIPY(•+)-in these oligoviologens induce intra- or intermolecular folding of these homologues. UV/Vis/NIR spectroscopic studies and DFT quantum mechanics indicate that the folding of the shorter oligoviologens is dominated by intermolecular radical-radical interactions. In addition to intermolecular interactions, strong intramolecular radical-radical interactions, which give rise to an NIR absorption band at 900 nm, tend to play a crucial role in governing the folding of the longer oligoviologens. The solid-state superstructure of the oligoviologen with three BIPY(2+) units reveals that two intertwining chains fold together to form a dimer, stabilized by intermolecular radical-radical interactions. These dimers continue to stack in an infinite column through intermolecular radical-radical interactions between them. This research features an artificial biomimetic system which sustains delicate secondary and tertiary structures, reminiscent of those present in nucleic acids and proteins.


Asunto(s)
Conformación Molecular , Polímeros/química , Viológenos/química , Diseño de Fármacos , Radicales Libres/química , Modelos Moleculares
14.
J Am Chem Soc ; 136(12): 4761-8, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24597998

RESUMEN

The mechanism of oxidation by O2 of (dpms)Pt(II)Me(OH2) (1) and (dpms)Pt(II)Me(OH)(-) (2) [dpms = di(2-pyridyl)methanesulfonate] in water in the pH range of 4-14 at 21 °C was explored using kinetic and isotopic labeling experiments. At pH ≤ 8, the reaction leads to a C1-symmetric monomethyl Pt(IV) complex (dpms)Pt(IV)Me(OH)2 (5) with high selectivity ≥97%; the reaction rate is first-order in [Pt(II)Me] and fastest at pH 8.0. This behavior was accounted for by assuming that (i) the O2 activation at the Pt(II) center to form a Pt(IV) hydroperoxo species 4 is the reaction rate-limiting step and (ii) the anionic complex 2 is more reactive toward O2 than neutral complex 1 (pKa = 8.15 ± 0.02). At pH ≥ 10, the oxidation is inhibited by OH(-) ions; the reaction order in [Pt(II)Me] changes to 2, consistent with a change of the rate-limiting step, which now involves oxidation of complex 2 by Pt(IV) hydroperoxide 4. At pH ≥ 12, formation of a C1-symmetric dimethyl complex 6, (dpms)Pt(IV)Me2(OH), along with [(dpms)Pt(II)(OH)2](-) (7) becomes the dominant reaction pathway (50-70% selectivity). This change in the product distribution is explained by the formation of a Cs-symmetric intermediate (dpms)Pt(IV)Me(OH)2 (8), a good methylating agent. The secondary deuterium kinetic isotope effect in the reaction leading to complex 6 is negligible; kH/kD = 0.98 ± 0.02. This observation and experiments with a radical scavenger TEMPO do not support a homolytic mechanism. A SN2 mechanism was proposed for the formation of complex 6 that involves complex 2 as a nucleophile and intermediate 8 as an electrophile.

15.
J Am Chem Soc ; 136(6): 2335-41, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24450361

RESUMEN

The mechanism of the (dpms)Pt(II)Me(OH(n))((2-n)-) oxidation in water to form (dpms)Pt(IV)Me(OH)2 and (dpms)Pt(IV)Me2(OH) complexes was analyzed using DFT calculations. At pH < 10, (dpms)Pt(II)Me(OH(n))((2-n)-) reacts with O2 to form a methyl Pt(IV)-OOH species with the methyl group trans to the pyridine nitrogen, which then reacts with (dpms)Pt(II)Me(OH(n))((2-n)-) to form 2 equiv of (dpms)Pt(IV)Me(OH)2, the major oxidation product. Both the O2 activation and the O-O bond cleavage are pH dependent. At higher pH, O-O cleavage is inhibited whereas the Pt-to-Pt methyl transfer is not slowed down, so making the latter reaction predominant at pH > 12. The pH-independent Pt-to-Pt methyl transfer involves the isomeric methyl Pt(IV)-OOH species with the methyl group trans to the sulfonate. This methyl Pt(IV)-OOH complex is more stable and more reactive in the Pt-to-Pt methyl-transfer reaction as compared to its isomer with the methyl group trans to the pyridine nitrogen. A similar structure-reactivity relationship is also observed for the S(N)2 functionalization to form methanol by two isomeric (dpms)Pt(IV)Me(OH)2 complexes, one featuring the methyl ligand trans to the sulfonate group and another with the methyl trans to the pyridine nitrogen. The barrier to functionalize the former isomer with the CH3 group trans to the sulfonate group is 2-9 kcal/mol lower. The possibility of the involvement of Pt(III) species in the reactions studied was found to correspond to high-barrier reactions and is hence not viable. It is concluded that the dpms ligand facilitates Pt(II) oxidation both enthalpically and entropically.

16.
J Am Chem Soc ; 136(42): 14702-5, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25254970

RESUMEN

A challenge in contemporary chemistry is the realization of artificial molecular machines that can perform work in solution on their environments. Here, we report on the design and production of a supramolecular flashing energy ratchet capable of processing chemical fuel generated by redox changes to drive a ring in one direction relative to a dumbbell toward an energetically uphill state. The kinetics of the reaction pathway juxtapose a low energy [2]pseudorotaxane that forms under equilibrium conditions with a high energy, metastable [2]pseudorotaxane which resides away from equilibrium.


Asunto(s)
Rotaxanos/química , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción , Compuestos de Piridinio/química , Termodinámica
17.
J Am Chem Soc ; 136(31): 11011-26, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25010890

RESUMEN

While mechanical bonding stabilizes tetrathiafulvalene (TTF) radical dimers, the question arises: what role does topology play in catenanes containing TTF units? Here, we report how topology, together with mechanical bonding, in isomeric [3]- and doubly interlocked [2]catenanes controls the formation of TTF radical dimers within their structural frameworks, including a ring-in-ring complex (formed between an organoplatinum square and a {2+2} macrocyclic polyether containing two 1,5-dioxynaphthalene (DNP) and two TTF units) that is topologically isomeric with the doubly interlocked [2]catenane. The separate TTF units in the two {1+1} macrocycles (each containing also one DNP unit) of the isomeric [3]catenane exhibit slightly different redox properties compared with those in the {2+2} macrocycle present in the [2]catenane, while comparison with its topological isomer reveals substantially different redox behavior. Although the stabilities of the mixed-valence (TTF2)(•+) dimers are similar in the two catenanes, the radical cationic (TTF(•+))2 dimer in the [2]catenane occurs only fleetingly compared with its prominent existence in the [3]catenane, while both dimers are absent altogether in the ring-in-ring complex. The electrochemical behavior of these three radically configurable isomers demonstrates that a fundamental relationship exists between topology and redox properties.


Asunto(s)
Dimerización , Compuestos Heterocíclicos/química , Fenómenos Mecánicos , Electroquímica , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
18.
J Am Chem Soc ; 136(30): 10569-72, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25010450

RESUMEN

An octacationic homo[2]catenane comprised of two mechanically interlocked cyclobis(paraquat-p-phenylene) rings has been obtained from the oxidation of the septacationic monoradical with nitrosonium hexafluoroantimonate. The nanoconfinement of normally repulsive bipyridinium units results in the enforced π-overlap of eight positively charged pyridinium rings in a volume of <1.25 nm(3). In the solid state, the torsional angles around the C-C bonds between the four pairs of pyridinium rings range between 16 and 30°, while the π-π stacking distances between the bipyridinium units are extended for the inside pair and contracted for the pairs on the outside--a consequence of Coulombic repulsion between the inner bipyridinium subunits. In solution, irradiation of the [2]catenane at 275 nm results in electron transfer from one of the paraphenylene rings to the inner bipyridinium dimer, leading to the generation of a temporary mixed-valence state within the rigid and robust homo[2]catenane.

19.
Angew Chem Int Ed Engl ; 53(51): 14216-20, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25384922

RESUMEN

Nanocomposites of tantalum-based pyrochlore nanoparticles and indium hydroxide were prepared by a hydrothermal process for UV-driven photocatalytic reactions including overall water splitting, hydrogen production from photoreforming of methanol, and CO2 reduction with water to produce CO. The best catalyst was more than 20 times more active than sodium tantalate in overall water splitting and 3 times more active than Degussa P25 TiO2 in CO2 reduction. Moreover, the catalyst was very stable while generating stoichiometric products of H2 (or CO) and O2 throughout long-term photocatalytic reactions. After the removal of In(OH)3, the pyrochlore nanoparticles remained highly active for H2 production from pure water and aqueous methanol solution. Both experimental studies and density functional theory calculations suggest that the pyrochlore nanoparticles catalyzed the water reduction to produce H2, whereas In(OH)3 was the major active component for water oxidation to produce O2.

20.
J Am Chem Soc ; 135(34): 12736-46, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23865381

RESUMEN

Incorporation of two biphenylene-bridged 4,4'-bipyridinium extended viologen units into a para-phenylene-based cyclophane results in a synthetic receptor that is ~2 nm long and adopts a box-like geometry. This cyclophane, Ex(2)Box(4+), possesses the ability to form binary and ternary complexes with a myriad of guest molecules ranging from long π-electron-rich polycyclic aromatic hydrocarbons, such as tetracene, tetraphene, and chrysene, to π-electron-poor 2,6-dinitrotoluene, 1,2,4-trichlorobenzene, and both the 9,10- and 1,4-anthraquinone molecules. Moreover, Ex(2)Box(4+) is capable of forming one-to-one complexes with polyether macrocycles that consist of two π-electron-rich dioxynaphthalene units, namely, 1,5-dinaphtho[38]crown-10. This type of broad molecular recognition is possible because the electronic constitution of Ex(2)Box(4+) is such that the pyridinium rings located at the "ends" of the cyclophane are electron-poor and prefer to enter into donor-acceptor interactions with π-electron-rich guests, while the "middle" of the cyclophane, consisting of the biphenylene spacer, is more electron-rich and can interact with π-electron-poor guests. In some cases, these different modes of binding can act in concert to generate one-to-one complexes which possess high stability constants in organic media. The binding affinity of Ex(2)Box(4+) was investigated in the solid state by way of single-crystal X-ray diffraction and in solution by using UV-vis and NMR spectroscopy for 12 inclusion complexes consisting of the tetracationic cyclophane and the corresponding guests of different sizes, shapes, and electronic compositions. Additionally, density functional theory was carried out to elucidate the relative energetic differences between the different modes of binding of Ex(2)Box(4+) with anthracene, 9,10-anthraquinone, and 1,4-anthraquinone in order to understand the degree with which each mode of binding contributes to the overall encapsulation of each guest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA