Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 16(12): 6010-6016, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38404219

RESUMEN

The efficient and stable production of hydrogen (H2) through Pt-containing photocatalysts remains a great challenge. Herein, we develop an effective strategy to selectively and uniformly anchor Pt NPs (∼1.2 nm) on a covalent triazine-based framework photocatalyst via in situ derived bridging ligands. Compared to Pt/CTF-1, the obtained Pt/AT-CTF-1 exhibits a considerable photocatalytic H2 evolution rate of 562.9 µmol g-1 h-1 under visible light irradiation. Additionally, the strong interaction between the Pt NPs and in situ derived bridging ligands provides remarkable stability to Pt/AT-CTF-1. Experimental investigations and photo/chemical characterization reveal the synergy of the in situ derived bridging ligands in Pt/AT-CTF-1, which can selectively anchor the Pt NPs with homogeneous sizes and efficiently improve the transmission of charge carriers. This work provides a new perspective toward stabilizing ultrasmall nanoclusters and facilitating electron transfer in photocatalytic H2 evolution materials.

2.
Adv Healthc Mater ; 13(17): e2304136, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38551143

RESUMEN

Oncolytic virus therapy is currently regarded as a promising approach in cancer immunotherapy. It has greater therapeutic advantages for colorectal cancer that is prone to distant metastasis. However, the therapeutic efficacy and clinical application of viral agents alone for colorectal cancer remain suboptimal. In this study, an engineered oncolytic vaccinia virus (OVV-Luc) that expresses the firefly luciferase gene is developed and loaded Chlorin e6 (Ce6) onto the virus surface through covalent coupling, resulting in OVV-Luc@Ce6 (OV@C). The OV@C infiltrates tumor tissue and induces endogenous luminescence through substrate catalysis, resulting in the production of reactive oxygen species. This unique system eliminates the need for an external light source, making it suitable for photodynamic therapy (PDT) in deep tissues. Moreover, this synergistic effect between PDT and viral immunotherapy enhances dendritic cell maturation, macrophage polarization, and reversal of the immunosuppressive microenvironment. This synergistic effect has the potential to convert a "cold" into a "hot" tumor, it offers valuable insights for clinical translation and application.


Asunto(s)
Neoplasias Colorrectales , Inmunoterapia , Viroterapia Oncolítica , Virus Oncolíticos , Fotoquimioterapia , Virus Vaccinia , Virus Vaccinia/genética , Virus Vaccinia/fisiología , Fotoquimioterapia/métodos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Animales , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Humanos , Inmunoterapia/métodos , Ratones , Clorofilidas , Línea Celular Tumoral , Porfirinas/química , Porfirinas/farmacología , Ratones Endogámicos BALB C , Terapia Combinada/métodos , Especies Reactivas de Oxígeno/metabolismo , Femenino
3.
Braz. arch. biol. technol ; 51(6): 1097-1101, Nov.-Dec. 2008. ilus, tab
Artículo en Inglés | LILACS | ID: lil-504030

RESUMEN

The aim of this work was to study the genetic diversity among flue-cured tobacco cultivars. RAPD and AFLP analyses were used to assess the genetic similarity among selected accessions of flue-cured tobacco. Seventy eight RAPD and 154 AFLP polymorphic bands were obtained and used to assess the genetic diversity among 28 tobacco accessions. The cultivar relationships were estimated through the cluster analysis (UPGMA) based on RAPD data and AFLP data. The accessions were grouped into three major clusters and these shared common ancestry clustered together.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA