RESUMEN
The failure of apoptotic cell clearance is linked to autoimmune diseases, nonresolving inflammation, and developmental abnormalities; however, pathways that regulate phagocytes for efficient apoptotic cell clearance remain poorly known. Apoptotic cells release find-me signals to recruit phagocytes to initiate their clearance. Here we found that find-me signal sphingosine 1-phosphate (S1P) activated macrophage erythropoietin (EPO) signaling promoted apoptotic cell clearance and immune tolerance. Dying cell-released S1P activated macrophage EPO signaling. Erythropoietin receptor (EPOR)-deficient macrophages exhibited impaired apoptotic cell phagocytosis. EPO enhanced apoptotic cell clearance through peroxisome proliferator activated receptor-γ (PPARγ). Moreover, macrophage-specific Epor(-/-) mice developed lupus-like symptoms, and interference in EPO signaling ameliorated the disease progression in lupus-like mice. Thus, we have identified a pathway that regulates macrophages to clear dying cells, uncovered the priming function of find-me signal S1P, and found a role of the erythropoiesis regulator EPO in apoptotic cell disposal, with implications for harnessing dying cell clearance.
Asunto(s)
Eritropoyetina/metabolismo , Lupus Eritematoso Sistémico/inmunología , Lisofosfolípidos/metabolismo , Macrófagos/fisiología , Receptores de Eritropoyetina/metabolismo , Esfingosina/análogos & derivados , Animales , Apoptosis , Línea Celular , Femenino , Tolerancia Inmunológica/genética , Lisofosfolípidos/genética , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , PPAR gamma/metabolismo , Comunicación Paracrina , Fagocitosis/genética , Receptores de Eritropoyetina/genética , Transducción de Señal , Esfingosina/genética , Esfingosina/metabolismoRESUMEN
In daily life, prehension is typically not the end goal of hand-object interactions but a precursor for manipulation. Nevertheless, functional MRI (fMRI) studies investigating manual manipulation have primarily relied on prehension as the end goal of an action. Here, we used slow event-related fMRI to investigate differences in neural activation patterns between prehension in isolation and prehension for object manipulation. Sixteen (seven males and nine females) participants were instructed either to simply grasp the handle of a rotatable dial (isolated prehension) or to grasp and turn it (prehension for object manipulation). We used representational similarity analysis (RSA) to investigate whether the experimental conditions could be discriminated from each other based on differences in task-related brain activation patterns. We also used temporal multivoxel pattern analysis (tMVPA) to examine the evolution of regional activation patterns over time. Importantly, we were able to differentiate isolated prehension and prehension for manipulation from activation patterns in the early visual cortex, the caudal intraparietal sulcus (cIPS), and the superior parietal lobule (SPL). Our findings indicate that object manipulation extends beyond the putative cortical grasping network (anterior intraparietal sulcus, premotor and motor cortices) to include the superior parietal lobule and early visual cortex.SIGNIFICANCE STATEMENT A simple act such as turning an oven dial requires not only that the CNS encode the initial state (starting dial orientation) of the object but also the appropriate posture to grasp it to achieve the desired end state (final dial orientation) and the motor commands to achieve that state. Using advanced temporal neuroimaging analysis techniques, we reveal how such actions unfold over time and how they differ between object manipulation (turning a dial) versus grasping alone. We find that a combination of brain areas implicated in visual processing and sensorimotor integration can distinguish between the complex and simple tasks during planning, with neural patterns that approximate those during the actual execution of the action.
Asunto(s)
Objetivos , Desempeño Psicomotor , Femenino , Humanos , Masculino , Encéfalo/fisiología , Mapeo Encefálico/métodos , Fuerza de la Mano/fisiología , Imagen por Resonancia Magnética/métodos , Movimiento/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Desempeño Psicomotor/fisiologíaRESUMEN
BACKGROUND: Cryptolaemus montrouzieri (Coccinellidae) is widely utilized as biological control agents in modern agriculture. A comprehensive understanding of its food preference can help guide mass rearing and safety management during field application of pest control. Although some studies have paid attentions to the impacts of prey shift on C. montrouzieri, little is known regarding the role of post-transcriptional regulations in its acclimation to unnatural preys. RESULTS: We performed a genome-wide investigation on alternative splicing dynamics in C. montrouzieri in response to the predation transition from natural prey to unnatural ones. When feeding on undesired diets, 402-764 genes were differentially alternative spliced in C. montrouzieri. It is noteworthy that the majority of these genes (> 87%) were not differentially expressed, and these differentially spliced genes regulated distinct biological processes from differentially expressed genes, such as organ development and morphogenesis, locomotory behavior, and homeostasis processes. These suggested the functionally nonredendant role of alternative splicing in modulating physiological and metabolic responses of C. montrouzieri to the shift to undesired preys. In addition, the individuals feeding on aphids were subject to a lower level of changes in splicing than other alternative diets, which might be because of the similar chemical and microbial compositions. Our study further suggested a putative coupling of alternative splicing and nonsense-mediated decay (AS-NMD), which may play an important role in fine-tuning the protein repertoire of C. montrouzieri, and promoting its acclimation to predation changes. CONCLUSION: These findings highlight the key role of alternative splicing in modulating the acclimation of ladybirds to prey shift and provide new genetic clues for the future application of ladybirds in biocontrol.
Asunto(s)
Empalme Alternativo , Escarabajos , Conducta Predatoria , Animales , Escarabajos/genética , Escarabajos/fisiología , Áfidos/fisiología , Áfidos/genética , Agentes de Control BiológicoRESUMEN
BACKGROUND: To analyze the expression of interleukin-33 (IL-33), growth-stimulated expression gene 2 (ST2), nuclear factor-kappaB (NF-κB) and immune cell infiltration in prostate cancer, this study aims to provide an experimental basis for the clinical prevention and treatment of prostate cancer. METHODS: The expression of IL-33 in PCa tissues was analyzed using TCGA, TIMER and HPA databases. Using the UALCAN database, the systematic exploration of the relationship between IL-33 and various clinicopathological parameters was conducted. The correlation between IL-33 expression and immune cell infiltration was investigated using TIMER, CIBERSORT and GEPIA databases. To verify these analyses, 22 cases of normal prostate (NP), 76 cases of benign prostatic hyperplasia (BPH), and 100 cases of PCa were recruited. Immunohistochemical staining was performed to examine the expression of IL-33, ST2, NF-κB, and the infiltration of immune cells. Correlations between these factors were then determined. RESULTS: The expression of IL-33, ST2 and NF-κB was significantly lower in PCa tissues compared with NP (p < 0.05). IL-33 was not associated with age in PCa but showed associations with race, molecular characteristics, lymph node metastatic status, TP53 mutation and tumor grade. Furthermore, IL-33 was associated with immune cell infiltration. Positive correlations were observed between IL-33 and ST2 expressions, as well as between IL-33 and CD68+ macrophages in BPH and PCa. CONCLUSIONS: IL-33, ST2 and NF-κB are lowly expressed in PCa tissues, their expression decreases with the increasing malignancy of cancer. IL-33, ST2 and NF-κB are factors associated with PCa immune infiltration. IL-33 has an inhibitory effect on prostate cancer through the IL-33/ST2/NF-κB signalling pathway.
RESUMEN
The construction of nanostructured Z-scheme heterostructure is a powerful strategy for realizing high-performance photoelectrochemical (PEC) devices such as self-powered photodetectors and water splitting. Considering the band structure and internal electric field direction, BiVO4 is a promising candidate to construct SnS2 -based heterostructure. Herein, the direct Z-scheme heterostructure of vertically oriented SnS2 nanosheet on BiVO4 nanoflower is rationally fabricated for efficient self-powered PEC photodetectors. The Z-scheme heterostructure is identified by ultraviolet photoelectron spectroscopy, photoluminescence spectroscopy, PEC measurement, and water splitting. The SnS2 /BiVO4 heterostructure shows a superior photodetection performance such as excellent photoresponsivity (10.43 mA W-1 ), fast response time (6 ms), and long-term stability. Additionally, by virtue of efficient Z-scheme charge transfer and unique light-trapping nanostructure, the SnS2 /BiVO4 heterostructure also displays a remarkable photocatalytic hydrogen production rate of 54.3 µmol cm-2 h-1 in Na2 SO3 electrolyte. Furthermore, the synergistic effect between photo-activation and bias voltage further improves the PEC hydrogen production rate of 360 µmol cm-2 h-1 at 0.8 V, which is an order of magnitude above the BiVO4 . The results provide useful inspiration for designing direct Z-scheme heterostructures with special nanostructured morphology to signally promote the performance of PEC devices.
RESUMEN
Local high concentration electrolytes (LHCEs) have been proved to be one of the most promising systems to stabilize both high voltage cathodes and Li metal anode for next-generation batteries. However, the solvation structures and interactions among different species in LHCEs are still convoluted, which bottlenecks the further breakthrough on electrolyte development. Here, it is demonstrated that the hydrogen bonding interaction between diluent and solvent is crucial for the construction of LHCEs and corresponding interphase chemistries. The 2,2,2-trifluoroethyl trifluoromethane sulfonate (TFSF) is selected as diluent with the solvent dimethoxy-ethane (DME) to prepare a non-flammable LHCE for high voltage LMBs. This is first find that the hydrogen bonding interaction between TFSF and DME solvent tailors the electrolyte solvation structures by weakening the coordination of DME molecules to Li+ cations and allows more participation of anions in the first solvation shell, leading to the formation of aggregates (AGGs) clusters which are conducive to generating inorganic solid/cathodic electrolyte interphases (SEI/CEIs). The proposed TFSF based LHCE enables the Li||NCM811 (LiNi0.8Mn0.1O2) batteries to realize >80% capacity retention with a high average Coulombic efficiency of 99.8% for 230 cycles under aggressive conditions (NCM811 cathode: 3.4 mAh cm-2, cut-off voltage: 4.4 V, and 20 µm Li foil).
RESUMEN
Here, a high peak ZT of ≈2.0 is reported in solution-processed polycrystalline Ge and Cd codoped SnSe. Microstructural characterization reveals that CdSe quantum dots are successfully introduced by solution process method. Ultraviolet photoelectron spectroscopy evinces that CdSe quantum dots enhance the density of states in the electronic structure of SnSe, which leads to a large Seebeck coefficient. It is found that Ge and Cd codoping simultaneously optimizes carrier concentration and improves electrical conductivity. The enhanced Seebeck coefficient and optimization of carrier concentration lead to marked increase in power factor. CdSe quantum dots combined with strong lattice strain give rise to strong phonon scattering, leading to an ultralow lattice thermal conductivity. Consequently, high thermoelectric performance is realized in solution-processed polycrystalline SnSe by designing quantum dot structures and introducing lattice strain. This work provides a new route for designing prospective thermoelectric materials by microstructural manipulation in solution chemistry.
RESUMEN
Root growth and development depend on continuous cell division and differentiation in root tips. In these processes, reactive oxygen species (ROS) play a critical role as signaling molecules. However, few ROS signaling regulators have been identified. In this study, we found knockdown of a syntaxin gene, SYNTAXIN OF PLANTS81 in Arabidopsis thaliana (AtSYP81) resulted in a severe reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. Subsequently, we found AtSYP81 was highly expressed in roots and localized on the endoplasmic reticulum (ER). Interestingly, the reduced expression of AtSYP81 conferred a decreased number of peroxisomes in root meristem cells, raising a possibility that AtSYP81 regulates root development through peroxisome-mediated ROS production. Further transcriptome analysis revealed that class III peroxidases, which are responsible for intracellular ROS homeostasis, showed significantly changed expression in the atsyp81 mutants and AtSYP81 overexpression lines, adding evidence of the regulatory role of AtSYP81 in ROS signaling. Accordingly, rescuing the decreased ROS level via applying ROS donors effectively restored the defects in root meristem activity and SCN identity in the atsyp81 mutants. APETALA2 (AP2) transcription factors PLETHORA1 and 2 (PLT1 and PLT2) were then established as the downstream effectors in this pathway, while potential crosstalk between ROS signaling and auxin signaling was also indicated. Taken together, our findings suggest that AtSYP81 regulates root meristem activity and maintains root SCN identity by controlling peroxisome- and peroxidase-mediated ROS homeostasis, thus both broadening and deepening our understanding of the biological roles of SNARE proteins and ROS signaling.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Raíces de Plantas/metabolismo , Proteínas Qa-SNARE/metabolismo , Nicho de Células Madre/genética , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismoRESUMEN
To achieve defect detection in bare polycrystalline silicon solar cells under electroluminescence (EL) conditions, we have proposed ASDD-Net, a deep learning algorithm evaluated offline on EL images. The model integrates strategies such as downsampling adjustment, feature fusion optimization, and detection head improvement. The ASDD-Net utilizes the Space to Depth (SPD) module to effectively extract edge and fine-grained information. The proposed Enhanced Cross-Stage Partial Network Fusion (EC2f) and Hybrid Attention CSP Net (HAC3) modules are placed at different positions to enhance feature extraction capability and improve feature fusion effects, thereby enhancing the model's ability to perceive defects of different sizes and shapes. Furthermore, placing the MobileViT_CA module before the second detection head balances global and local information perception, further enhancing the performance of the detection heads. The experimental results show that the ASDD-Net model achieves a mAP value of 88.81% on the publicly available PVEL-AD dataset, and the detection performance is better than the current SOTA model. The experimental results on the ELPV and NEU-DET datasets verify that the model has some generalization ability. Moreover, the proposed model achieves a processing frame rate of 69 frames per second, meeting the real-time defect detection requirements for solar cell surface defects.
RESUMEN
Surfactant reduces the surface tension of liquids, resulting in improved emulsion stability, and there is great interest in pesticide additives. Ethoxylate is often used as a pesticide emulsifier. However, the degree of ethoxylation and the existence of dioxane byproducts can significantly affect the performance of emulsifiers. Here, a series of polyoxyethylene tallow amines with the addition of different numbers of ethylene oxide (EO) were synthesized and characterized. Their physical and chemical performances were measured. The ability of POEA as a surfactant to reduce water surface tension and the surface adsorption of molecules were assessed based on the static and dynamic surface tensions. The results show that the surfactant molecules preferentially form a saturated adsorption layer in solution, and the mixed-diffusion-kinetics mechanism dominates the adsorption process. With the increase of the EO addition number, the emulsifying property of POEA increases, while the wetting property gradually decreases and the contact angle increases. These results can provide a basis for the selection of pesticide additives. At the same time, the mechanism of removing dioxane by ethoxylate is described, and a simple and low-consumption method is put forward to reduce the dioxane content. It provides a new idea for the removal of dioxane.
RESUMEN
Salt stress substantially leads to flowering delay. The regulation of salt-induced late flowering has been studied at the transcriptional and protein levels; however, the involvement of secondary metabolites has rarely been investigated. Here, we report that FMOGS-OXs (EC 1.14.13.237), the enzymes that catalyze the biosynthesis of glucosinolates (GSLs), promote flowering transition in Arabidopsis thaliana. It has been reported that WRKY75 is a positive regulator, and MAF4 is a negative regulator of flowering transition. The products of FMOGS-OXs, methylsulfinylalkyl GSLs (MS GSLs), facilitate flowering by inducing WRKY75 and repressing the MAS-MAF4 module. We further show that the degradation of MS GSLs is involved in salt-induced late flowering and salt tolerance. Salt stress induces the expression of myrosinase genes, resulting in the degradation of MS GSLs, thereby relieving the promotion of WRKY75 and inhibition of MAF4, leading to delayed flowering. In addition, the degradation products derived from MS GSLs enhance salt tolerance. Previous studies have revealed that FMOGS-OXs exhibit alternative catalytic activity to form trimethylamine N-oxide (TMAO) under salt stress, which activates multiple stress-related genes to promote salt tolerance. Therefore, FMOGS-OXs integrate flowering transition and salt tolerance in various ways. Our study shed light on the functional diversity of GSLs and established a connection between flowering transition, salt resistance, and GSL metabolism.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oxigenasas , Arabidopsis/metabolismo , Tolerancia a la Sal , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , GlucosinolatosRESUMEN
OBJECTIVE: To investigate the effects of systemic lupus erythematosus (SLE) on health-related quality of life (HRQOL), the relationship between disease activity and HRQOL, and potential factors affecting HRQOL in Chinese SLE patients. METHODS: This study recruited 1568 patients and 2610 controls to explore the effects of SLE on HRQOL. The association between disease activity and HRQOL, and the influencing factors of HRQOL were determined in 1568 patients. Then, we prospectively followed 1096 patients to explore the association between reduced disease activity and improved HRQOL, and the influencing factors of improved HRQOL. The Short-Form 36 (SF-36) and SLE disease activity index (SLEDAI) were used to evaluate HRQOL and disease activity. RESULTS: Chinese SLE patients had lower HRQOL than controls in all domains (P < 0.001), especially in role-physical (RP) and role-emotional (RE). Compared with SLE patients from outside China, the HRQOL of Chinese patients appeared to be higher in mental component summary (MCS) but lower in RP and RE. SLEDAI was negatively correlated with HRQOL, which was validated using the results of a follow-up study, where SLEDAI reduction was positively associated with HRQOL improvements (P < 0.05). Furthermore, personality, life nervous and experiences of adverse life events may influence HRQOL and HRQOL improvements. CONCLUSION: SLE significantly affected the HRQOL of Chinese patients, especially in RP and RE. Disease activity was negatively correlated with HRQOL. We also found for the first time some factors affecting HRQOL, which can be regarded as the basis for improving the HRQOL of SLE patients.
Asunto(s)
Lupus Eritematoso Sistémico , Calidad de Vida , Humanos , Calidad de Vida/psicología , Estudios de Seguimiento , Índice de Severidad de la Enfermedad , Encuestas y Cuestionarios , Lupus Eritematoso Sistémico/psicología , ChinaRESUMEN
BACKGROUND: Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been shown to be involved in Parkinson's disease (PD) progression, but its mechanism needs to be further explored. METHODS: Mice were injected with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to induce PD mice models, and BV2 cells were treated with lipopolysaccharides (LPS) to mimic PD cell models. MALAT1 expression and suppressor of cytokine signaling 3 (SOCS3) protein level were examined using quantitative real-time PCR and western blot, respectively. Cell functions were tested by cell counting kit 8 assay and flow cytometry. The interaction between MALAT1 and SOCS3 was confirmed using RNA pull-down and RIP assays. RESULTS: MALAT1 was upregulated in MPTP-induced PD mice and LPS-induced BV2 cells. Silencing of MALAT1 increased viability, while inhibited apoptosis and inflammation in LPS-induced BV2 cells. Besides, MALAT1 enhanced the SOCS3 promoter methylation to decrease its expression by recruiting DNMT1, DNMT3A and DNMT3B. Furthermore, SOCS3 knockdown eliminated sh-MALAT1-mediated the inhibition effect on LPS-induced BV2 cell injury. In vivo, MALAT1 silencing ameliorated neurological impairment and neuroinflammation in MPTP-induced PD mice. CONCLUSION: Our data revealed that MALAT1 worsened PD processes via inhibiting SOCS3 expression by increasing its promoter methylation.
RESUMEN
BACKGROUND: LncRNAs perform a crucial impact on microglia's activation in Parkinson's disease (PD). Here, our purpose was to probe the function and involved mechanism of lncRNA SOX21-AS1 on microglial activation in PD. METHODS: Mice were treated with MPTP, and BV2 cells were treated with LPS/ATP to build PD animal and cell models. Genes' expression was measured using RT-qPCR, immunoblotting, and IHC stain. ELISA was applied for testing inflammatory factors' levels. Cell viability and apoptosis were tested using kits. RIP and RNA pull-down assay were utilized for monitoring the bond of SOX21-AS1 to EZH2, and ChIP was applied for affirming the bond between EZH2 and SOCS3's promoter. RESULTS: The expression of SOX21-AS1 and SOCS3 was abnormal in PD cell and animal models. Inhibition of SOX21-AS1 repressed LPS/ATP-induced activation in BV2 cells and nerve damage caused by activated BV2 cells, alleviating the pathological features of PD mice. Further studies found that SOX21-AS1 epigenetically inhibited SOCS3 by recruiting EZH2 to SOCS3 promoter. SOX21-AS1 overexpression partially offset the repressive impact of SOCS3 enhancement on BV2 cell activation and the protective effect on nerve cells. CONCLUSION: SOX21-AS1 enhances LPS/ATP-induced activation of BV2 cells and nerve damage caused by activated BV2 cells though recruiting EZH2 to SOCS3's promoter, thereby alleviating PD progression. Our research supplies new potential target for curing PD.
Asunto(s)
Microglía , Enfermedad de Parkinson , ARN Largo no Codificante , Proteína 3 Supresora de la Señalización de Citocinas , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Microglía/metabolismo , Microglía/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Modelos Animales de Enfermedad , Masculino , Epigénesis Genética , Ratones Endogámicos C57BL , Línea Celular , Apoptosis/genéticaRESUMEN
To be aware of and to move one's body, the brain must maintain a coherent representation of the body. While the body and the brain are connected by dense ascending and descending sensory and motor pathways, representation of the body is not hardwired. This is demonstrated by the well-known rubber hand illusion in which a visible fake hand is erroneously felt as one's own hand when it is stroked in synchrony with the viewer's unseen actual hand. Thus, body representation in the brain is not mere maps of tactile and proprioceptive inputs, but a construct resulting from the interpretation and integration of inputs across sensory modalities.
Asunto(s)
Mano , Extremidad Superior , Encéfalo , Concienciación , EmocionesRESUMEN
BACKGROUND: For women diagnosed with HR-HPV DNA positivity in community hospitals, the necessity of investigating the potential presence of multiple HR-HPV infections upon referral to tertiary medical institutions remains unclear. METHODS: In our cohort, women tested positive for HR-HPV DNA during examinations in community hospitals, were subsequently referred to tertiary medical facilities, reevaluated HR-HPV genotype and categorized based on cytological and histopathological results. The risk of cytologic/histopathology abnormalities and ⧠high grade squamous intraepithelial lesion(HSIL) or Cervical Intraepithelial Neoplasia (CIN) 2 associated with individual genotypes and related multiple HPV infections are calculated. RESULTS: A total of 1677 women aged between 21 and 77 were finally included in the present study. The cytology group included 1202 women and the histopathological group included 475 women with at least one HR-HPV infection of any genotype. We only observed a higher risk of low grade cytological abnormalities in women with multiple infections than those in corresponding single infections (for all population with an OR of 1.85[1.39-2.46]; p < 0.05). However, this phenomenon was not observed in histopathology abnormalities (CIN1). The risk of developing of ≥ HSIL/CIN2 in women who were infected with multiple HR-HPV also showed a similar profile to those with a single HR-HPV genotype. CONCLUSION: Multiple HR-HPV infections is only associated with a higher associated risk of low grade cytological abnormalities. There is no evidence of clinical benefit to identify the possible presence of multiple HR-HPV infection frequently in a short period of time for women with HR-HPV-DNA positive.
Asunto(s)
Carcinoma in Situ , Carcinoma de Células Escamosas , Infecciones por Papillomavirus , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Cuello del Útero , Infecciones por Papillomavirus/complicaciones , ADNRESUMEN
OBJECTIVES: The objective was to utilize a smartwatch sphygmomanometer to predict new-onset hypertension within a short-term follow-up among individuals with high-normal blood pressure (HNBP). METHODS: This study consisted of 3180 participants in the training set and 1000 participants in the validation set. Participants underwent both ambulatory blood pressure monitoring (ABPM) and home blood pressure monitoring (HBPM) using a smartwatch sphygmomanometer. Multivariable Cox regressions were used to analyze cumulative events. A nomogram was constructed to predict new-onset hypertension. Discrimination and calibration were assessed using the C-index and calibration curve, respectively. RESULTS: Among the 3180 individuals with HNBP in the training set, 693 (21.8%) developed new-onset hypertension within a 6-month period. The nomogram for predicting new-onset hypertension had a C-index of 0.854 (95% CI, 0.843-0.867). The calibration curve demonstrated good agreement between the nomogram's predicted probabilities and actual observations for short-term new-onset hypertension. In the validate dataset, during the 6-month follow-up, the nomogram had a good C-index of 0.917 (95% CI, 0.904-0.930) and a good calibration curve. As the score increased, the risk of new-onset hypertension significantly increased, with an HR of 8.415 (95% CI: 5.153-13.744, p = .000) for the middle-score vs. low-score groups and 86.824 (95% CI: 55.071-136.885, p = .000) for the high-score vs. low-score group. CONCLUSIONS: This study provides evidence for the use of smartwatch sphygmomanometer to monitor blood pressure in individuals at high risk of developing new-onset hypertension in the near future. TRIAL REGISTRATION: ChiCTR2200057354.
Asunto(s)
Monitoreo Ambulatorio de la Presión Arterial , Hipertensión , Humanos , Presión Sanguínea/fisiología , Estudios de Cohortes , Hipertensión/diagnóstico , Hipertensión/etiología , Esfigmomanometros , NomogramasRESUMEN
OBJECTIVES: Service accessibility plays a pivotal role in older adults' mental health. However, accessibility measures used in previous studies are either objective or perceived. This study aimed to integrate both objective and perceived measures of service accessibility to explore the relationship between environmental cognition on service accessibility and mental health in older adults and the pathways. METHODS: We used both questionnaire data collected from 2,317 older adults in Hong Kong and geographical data to explore the direct and indirect effect of environmental cognition (i.e. positive, negative, and matching evaluation) relating to service accessibility on mental health and two pathways (i.e. physical activity and sense of belonging) based on a structural equation model. RESULTS: Physical activity mediated the positive relationship between non-negative perceptions toward access to convenience stores, leisure facilities, clinics, community centers, places of worship and mental health. Sense of community can significantly mediate the positive relationships between non-negative perceptions toward all 10 types of services and mental health. CONCLUSION: This study provides an empirical contribution to environmental cognition theory and person-environment fit theory; its findings have implications for urban planning policy.
The findings from this study provide significant evidence that environmental cognition distortion, especially negative perception, can be significantly associated with lower mental health through physical activity and a sense of community. This suggests that policies focused on changing environmental cognitions could be a promising public health strategy. Environmental cognition theory suggests that improving awareness of setting could help improve the precision of cognitive mapping of environmental reality. This can be very important where it is difficult to change the objective environment due to the deep-rooted and long-standing urban structure.
Asunto(s)
Accesibilidad a los Servicios de Salud , Salud Mental , Humanos , Anciano , Masculino , Femenino , Hong Kong , Anciano de 80 o más Años , Servicios de Salud Mental , Persona de Mediana Edad , Ejercicio Físico/psicología , Encuestas y CuestionariosRESUMEN
BACKGROUND: Enlarged perivascular spaces (EPVSs) are commonly detected via magnetic resonance imaging. It is unclear whether EPVSs are associated with cognitive impairment within one month after an acute ischemic stroke (AIS) (i.e., early AIS with cognitive impairment (EAIS-CI)). This study explored the severity and location of EPVSs and their association with EAIS-CI severity and provides clinicians with early warning indicators before the onset of typical clinical symptoms in the Chinese population. METHODS: The clinical data of 208 patients (176 AIS patients and 32 controls) were prospectively analyzed using the Montreal Cognitive Assessment Beijing version (MoCA-BJ) score as the primary group criterion and the Mini-Mental State Examination (MMSE) score as a supplementary criterion. When EPVS I as the main EPVS type detected by imaging, the basal ganglia (BG) is the area most severely affected. Statistical analysis was conducted on the relevant clinical data. RESULTS: AIS patients were grouped based on MoCA-BJ scores. Age (p < 0.01), education level (p = 0.02), EPVS I as the main EPVS type (p < 0.01), the number of right-sided BG-EPVSs (p = 0.04), white matter hyperintensities (WMHs) (Fazekas scores: p = 0.02), brain atrophy (global cortical atrophy scores: p < 0.01, Koedam posterior atrophy visual scale scores: p = 0.01, medial temporal lobe atrophy scores: p < 0.01) and AIS lesion volume (p = 0.01) were significantly greater in the EAIS-CI group than in the EAIS without cognitive impairment group. The cognitive domains of attention (p = 0.04) and orientation (p < 0.01) were more closely associated with EPVS I as the main EPVS type. However, multivariate regression analysis did not identify EPVS I as the main EPVS type as the main risk factor for EAIS-CI (p = 0.098). Grouping by MMSE scores revealed that EPVS I as the main EPVS type was linked to low education level (p < 0.01) and was significantly associated with EAIS in individuals with cognitive dementia (p < 0.01). CONCLUSIONS: As a result of multiple factors, EAIS-CI is significantly associated with a low education level, BG-EPVS, WMHs, and worsening brain atrophy severity. Imaging markers, such as the severity of BG-EPVS, can assist in the early diagnosis and assessment of EAIS-CI. CLINICAL TRIAL REGISTRATION: The study was registered with the China Clinical Trial Registry (https://www.chictr.org.cn/), registration number: ChiCTR2000038819.
Asunto(s)
Disfunción Cognitiva , Accidente Cerebrovascular Isquémico , Imagen por Resonancia Magnética , Humanos , Masculino , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/complicaciones , Femenino , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Anciano , Persona de Mediana Edad , Estudios Transversales , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/patología , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/patología , Pruebas de Estado Mental y DemenciaRESUMEN
Heat and electricity are two fundamental forms of energy widely utilized in our daily lives. Recently, in the study of complex networks, there is growing evidence that they behave significantly different at the micro-nanoscale. Here, we use a small-world network model to investigate the effects of reconnection probability p and decay exponent α on thermal and electrical transport within the network. Our results demonstrate that the electrical transport efficiency increases by nearly one order of magnitude, while the thermal transport efficiency falls off a cliff by three to four orders of magnitude, breaking the traditional rule that shortcuts enhance energy transport in small-world networks. Furthermore, we elucidate that phonon localization is a crucial factor in the weakening of thermal transport efficiency in small-world networks by characterizing the density of states, phonon participation ratio, and nearest-neighbor spacing distribution. These insights will pave new ways for designing thermoelectric materials with high electrical conductance and low thermal conductance.