Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Microbiol Immunol ; 213(1): 1, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329596

RESUMEN

Circular RNAs (circRNAs) are non-coding RNAs discovered in recent years, which are produced by back-splicing involving the 3' and 5' ends of RNA molecules. There is increasing evidence that circRNAs have important roles in cancer, neurological diseases, cardiovascular and cerebrovascular diseases, and other diseases. In addition, host circRNAs and virus-encoded circRNAs participate in the body's immune response, with antiviral roles. This review summarizes the mechanisms by which host and viral circRNAs interact during the host immune response. Comprehensive investigations have revealed that host circRNAs function as miRNA sponges in a particular manner, primarily by inhibiting viral replication. Viral circRNAs have more diverse functions, which generally involve promoting viral replication. In addition, in contrast to circRNAs from RNA viruses, circRNAs from DNA viruses can influence host cell migration, proliferation, and apoptosis, along with their effects on viral replication. In summary, circRNAs have potential as diagnostic and therapeutic targets, offering a foundation for the diagnosis and treatment of viral diseases.


Asunto(s)
Apoptosis , ARN Circular , Movimiento Celular , Replicación Viral
2.
J Sci Food Agric ; 104(10): 5896-5906, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38477402

RESUMEN

BACKGROUND: The structural changes of starch would have a more crucial impact on oil absorption and quality changes in starch-rich fruits and vegetables during frying process with enhanced heat transfer (such as infrared frying). In the present study, the influence of integrated ultrasonic and ethanol (US + ethanol) pretreatment on oil uptake in infrared fried (IF) ginkgo seeds was evaluated regarding modifications in the physicochemical properties of starch. The pretreatment was performed with ultrasonic (40 kHz, 300 W) and ethanol osmotic (95%, v/v) treatment individually or integrated for 40 min. RESULTS: The mass transfer in the pretreatment was facilitated by combined ultrasound and ethanol. The swelling power, solubility, and gelatinization degree of starch was significantly increased. Low-frequency-NMR curves and images revealed that the bound water fraction in ginkgo seeds was increased and the water distribution was homogenized. The results of Fourier transform-infrared spectrum and differential scanning calorimeter revealed that the crystalline regions of starch were reduced and the thermal enthalpy was decreased after US + ethanol pretreatment. The total, surface and structural oil content in IF ginkgo seeds with US + ethanol pretreatment was reduced by 29.10%, 34.52% and 29.73%, respectively. The US + ethanol pretreatment led to a thinner crust layer with increased porosity and smaller-sized pores in the IF ginkgo seeds as observed by stereo microscopy and scanning electron microscopy. CONCLUSION: The changes in structural and physicochemical properties of starch by combined ultrasound and ethanol affect the crust ratio and pore characteristics in fried high-starch fruits and vegetables, thereby reducing oil absorption. © 2024 Society of Chemical Industry.


Asunto(s)
Etanol , Ginkgo biloba , Semillas , Almidón , Almidón/química , Almidón/metabolismo , Semillas/química , Etanol/química , Ginkgo biloba/química , Culinaria , Solubilidad , Aceites de Plantas/química , Ultrasonido , Calor , Rayos Infrarrojos , Espectroscopía Infrarroja por Transformada de Fourier
3.
J Sci Food Agric ; 104(6): 3206-3215, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38072792

RESUMEN

BACKGROUND: The current study introduces a novel infrared-assisted spouted bed drying technique for the dehydration of green soybeans, which aims to enhance the drying quality and efficiency. The investigation involves an examination of the flow pattern in the spouted bed to obtain relevant data, followed by an optimization of the entire drying process. The drying process of green soybeans was simulated using SolidWorks and ANSYS Fluent software, based on the principles of computational fluid dynamics. RESULTS: The simulation test results showed that the simulation outcomes were consistent with the experimental data. The optimal conditions for the process of green soybean infrared-assisted spouted bed drying were found to be an inlet speed of 8 m/s and a temperature of 50 °C with the wavelength and power settings of the infrared board at 10 µm and 500 W, respectively. CONCLUSION: The simulation method selected in this article, based on gas-solid two-phase flow dynamics, is feasible for green soybean infrared-assisted spouted bed drying process. © 2023 Society of Chemical Industry.


Asunto(s)
Desecación , Glycine max , Desecación/métodos , Temperatura
4.
J Sci Food Agric ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855927

RESUMEN

BACKGROUND: The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS: After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION: The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.

5.
Amino Acids ; 55(11): 1621-1640, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749439

RESUMEN

The investigation was to determine the effect of camel milk fermented with Limosilactobacillus fermentum KGL4 (MTCC 25515) on ACE-inhibiting, anti-inflammatory, and diabetes-preventing properties and also to release the novel peptides with antidiabetic and anti-hypertensive attributes with molecular interaction studies. Growth conditions were optimised on the basis of total peptide production by inoculating the culture in camel milk at different rates (1.5, 2.0, and 2.5%) along with different incubation periods (12, 24, 36, and 48 h). However, after 48 h of fermentation with a 2.5% rate of inoculum, the highest proteolytic activity was obtained. Reverse phase high-pressure liquid chromatography (RP-HPLC) was used to calculate the % Rpa from permeates of 3 kDa and 10 kDa fractions. Molecular weight distributions of fermented and unfermented camel milk protein fractions were compared using SDS-PAGE. Spots obtained from 2D gel electrophoresis were separated on the basis of pH and molecular weight. Spots obtained from 2D gel were digested with trypsin, and the digested samples were subjected to RP-LC/MS for the generation of peptide sequences. The inhibition of tumour necrosis factor alpha, interleukin-6, and interleukin-1 during fermentation was studied using RAW 264.7 macrophages. In the study, fermented camel milk with KGL4 (CMKGL4) inhibited LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine production (TNF-α, IL-6, and IL-1ß) by the murine macrophages. The results showed that the peptide structures (YLEELHRLNK and YLQELYPHSSLKVRPILK) exhibited considerable binding affinity against hPAM and hMGA during molecular interaction studies.


Asunto(s)
Antihipertensivos , Camelus , Ratones , Animales , Antihipertensivos/farmacología , Camelus/metabolismo , Hipoglucemiantes , Línea Celular , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Fermentación
6.
Biologicals ; 83: 101699, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37573790

RESUMEN

Influenza is an acute respiratory infectious disease caused by influenza virus that seriously endangers people's health. Influenza vaccination is the most effective means to prevent influenza virus infection and its serious complications. MDCK cells are considered to be superior to chicken embryos for the production of influenza vaccines, but the tumorigenicity of cells is a concern over the theoretical possibility of the risk of adverse events. The theoretical risks need to be adequately addressed if public confidence in programs of immunization are to be maintained. In this paper, studies of the tumorigenic potential of cell lines, with MDCK cells as an example, published since 2010 are reviewed. The mechanism of tumorigenicity of MDCK cells is discussed with reference to cell heterogeneity and epithelial to mesenchymal transition (EMT). Understanding the mechanism of the acquisition of a tumorigenic phenotype by MDCK cells might assist in estimating potential risks associated with using tumorigenic cell substrates for vaccine production.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Animales , Perros , Embrión de Pollo , Humanos , Células de Riñón Canino Madin Darby , Transición Epitelial-Mesenquimal , Línea Celular , Carcinogénesis
7.
Biologicals ; 83: 101697, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37579524

RESUMEN

MDCK is currently the main cell line used for influenza vaccine production in culture. Previous studies have reported that MDCK cells possess tumorigenic ability in nude mice. Although complete cell lysis can be ensured during vaccine production, host cell DNA released after cell lysis may still pose a risk for tumorigenesis. Greater caution is needed in the production of human vaccines; therefore, the use of gene editing to establish cells incapable of forming tumors may significantly improve the safety of influenza vaccines. Knowledge regarding the genes and molecular mechanisms that affect the tumorigenic ability of MDCK cells is crucial; however, our understanding remains superficial. Through monoclonal cell screening, we previously obtained a cell line, CL23, that possesses significantly reduced cell proliferation, migration, and invasion abilities, and tumor-bearing experiments in nude mice showed the absence of tumorigenic cells. With a view to exploring tumorigenesis-related genes in MDCK cells, DIA proteomics was used to compare the differences in protein expression between wild-type (M60) and non-tumorigenic (CL23) cells. Differentially expressed proteins were verified at the mRNA level by RT-qPCR, and a number of genes involved in cell tumorigenesis were preliminarily screened. Immunoblotting further confirmed that related protein expression was significantly reduced in non-tumorigenic cells. Inhibition of CDC20 expression by RNAi significantly reduced the proliferation and migration of MDCK cells and increased the proliferation of the influenza virus; therefore, CDC20 was preliminarily determined to be an effective target gene for the inhibition of cell tumorigenicity. These results contribute to a more comprehensive understanding of the mechanism underlying cell tumorigenesis and provide a basis for the establishment of target gene screening in genetically engineered non-tumorigenic MDCK cell lines.


Asunto(s)
Vacunas contra la Influenza , Ratones , Animales , Perros , Humanos , Células de Riñón Canino Madin Darby , Ratones Desnudos , Línea Celular , Carcinogénesis/genética , Proteínas Cdc20
8.
Genomics ; 112(2): 1077-1086, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31518640

RESUMEN

Madin-Darby canine kidney(MDCK) cells can be used to prepare cell-based influenza vaccines; however, little is known regarding the effect of lncRNA regulatorson tumorigenicity. In the present study, two cell lines with low tumorigenicity were screened from highly tumorigenic MDCK cell lines using monoclonal cell technology. Accordingly, three groups of lncRNAs were extracted from three cell lines and investigated using strand-specific Ribo-Zero RNA sequencing, detecting 1092 known and 619 novel lncRNAs. Moreover, in pairwise comparisons between the libraries of the nominally tumorigenic clones and the highly tumorigenic parent cell line, a total of 344 transcripts were expressed differentially, which were validated by qPCR using six randomly selected lncRNA genes. Furthermore, 63 target genes were identified in the upstream and downstream 100 kb of lncRNAs and their relative functions were analyzed. It was found that ten GO terms and twelve KEGG terms related to tumor by target genes and functional items. Five lncRNA transcripts and the corresponding differentially expressed target genes were used for co-expression network analysis. In addition, certain classical tumor pathways were also activated by target genes, among which, lncRNA MSTRG.1056.2 directly regulates ERBB3 to activate the PI3K-Akt pathway, contributing to tumorigenesis. Consequently, direct evidence was obtained that lncRNA regulates tumorigenesis, and a variety of target genes regulated by lncRNA were elucidated, which may be significant for non-tumorigenic MDCK cells lines acquisition.


Asunto(s)
Carcinogénesis/genética , ARN Largo no Codificante/genética , Animales , Perros , Células de Riñón Canino Madin Darby , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Transducción de Señal , Transcriptoma
9.
Mol Cell Biochem ; 471(1-2): 51-61, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32500475

RESUMEN

The modulatory roles of numerous circular RNAs (circRNAs) have been exposited in atherosclerosis (AS). Our study paid attention to the function of circRNA_ 0124644 (circ_0124644) in AS development, as well as its functional mechanism. The AS cell model was established by the treatment of oxidized low-density lipoprotein (ox-LDL) to human vascular endothelial cells (HUVECs). Cell proliferation and cycle were severally measured by Cell Counting Kit-8 (CCK-8) and cell cycle detection kit. The examination of apoptosis rate was executed through flow cytometry. Western blot was exploited for detecting the associated proteins. The expression levels of circ_0124644 and microRNA-149-5p (miR-149-5p) and pregnancy-associated plasma protein-A (PAPP-A) were assayed using quantitative real-time polymerase chain reaction. The combination of targets was validated via the dual-luciferase reporter assay, RNA immunoprecipitation (RIP), and RNA pull-down assay. Clonal capacity was analyzed using colony formation assay. Ox-LDL restrained HUVECs proliferation and cycle, but facilitated apoptosis. Circ_0124644 expression was increased, while miR-149-5p was downregulated in ox-LDL-treated HUVECs. Besides, circ_0124644 served as a molecular sponge of miR-149-5p and intensified the ox-LDL-induced HUVECs injury by sponging miR-149-5p. PAPP-A was a target of miR-149-5p and miR-149-5p could mitigate the HUVECs injury caused by ox-LDL through inhibiting PAPP-A. Moreover, PAPP-A was positively regulated by circ_0124644 via the miR-149-5p. In this report, we concluded the promoted role of circ_0124644 in the ox-LDL-induced endothelial injury of HUVECs via the miR-149-5p/PAPP-A axis with an emphasis on its diagnostic and therapeutic values in AS.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/patología , Endotelio Vascular/patología , Lipoproteínas LDL/farmacología , MicroARNs/genética , Proteína Plasmática A Asociada al Embarazo/metabolismo , ARN Circular/genética , Apoptosis/fisiología , Aterosclerosis/genética , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Células Cultivadas , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , MicroARNs/biosíntesis , ARN Circular/biosíntesis
10.
J Basic Microbiol ; 58(5): 414-424, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29534300

RESUMEN

Lyme disease, caused by Borrelia burgdorferi, is a focally endemic tick-transmitted zoonotic infection. In this study, the major factors underlying synonymous codon-related amino acid usage in the B. burgdorferi genome and bias in synonymous codon usage of the translation initiation region of coding sequences were analyzed. Additionally, adaptation of B. burgdorferi to several of its hosts was analyzed in the context of synonymous codon usage. Principal component analysis (PCA) revealed that nucleotide content at the third synonymous position of a codon influenced the synonymous codon usage pattern, but the strand-specific factor did not influence the synonymous codon usage pattern of B. burgdorferi. In terms of the low GC content of B. burgdorferi coding sequences, the effective number of codons (ENC) showed a significant correlation with GC3 content (at the synonymous position). For the amino acid usage pattern for B. burgdorferi, PCA showed that the strand-specific factor did not contribute to this pattern, while the properties (aromaticity and hydrophobicity) of the amino acids themselves showed strong correlations with this pattern. Under-represented codons, which were frequently selected in the translation initiation region, possibly play roles in regulating gene expression in B. burgdorferi. In terms of co-evolution and synonymous codon usage patterns, adaptation of B. burgdorferi to different intermediate hosts was apparent to different degrees, and the degree of adaptation of this spirochete to wild animals was stronger than that of humans or mice.


Asunto(s)
Adaptación Fisiológica/genética , Aminoácidos/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiología , Codón/genética , Mutación Silenciosa/genética , Animales , Composición de Base , Borrelia burgdorferi/patogenicidad , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Interacciones Huésped-Patógeno , Humanos , Enfermedad de Lyme/microbiología , Sistemas de Lectura Abierta , Análisis de Componente Principal , Análisis de Secuencia
11.
J Sci Food Agric ; 96(8): 2815-24, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26337496

RESUMEN

BACKGROUND: Old stalks of Asparagus officinalis, which account for one third of the total length of each spear, are always discarded as waste. To make full use of the resource, a kind of restructured Asparagus officinalis chip was made. The effects of pulse-spouted microwave-assisted vacuum drying (PSMVD), microwave-assisted vacuum drying (MVD) and vacuum drying (VD) on texture, color and other quality parameters of restructured chips were then studied to obtain high-quality dried chips. RESULTS: Results indicated that the drying time was significantly affected by drying methods, and PSMVD had much better drying uniformity than MVD. The expansion ratio and crispness of chips increased with increasing microwave power and vacuum degree. The browning reaction of samples in VD was more serious, which was confirmed by the results of color test and electronic nose. CONCLUSIONS: The PSMVD drying method showed much better drying uniformity than MVD. The dried chips obtained by PSMVD showed optimal quality and were more readily accepted by consumers. © 2015 Society of Chemical Industry.


Asunto(s)
Asparagus/química , Manipulación de Alimentos/métodos , Tallos de la Planta/química , Agua/química , Flavonoides/química , Fenoles/química
12.
Int J Biol Macromol ; 254(Pt 3): 127920, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944739

RESUMEN

This study investigated the effect of κ-carrageenan and l-lysine on the physical, chemical and textural properties of yellow flesh peaches and their suitability for 3D printing. The addition of κ-carrageenan and l-lysine was found to improve the apparent viscosity, elasticity, gel strength, and Young's modulus of the yellow flesh peach with κ-carrageenan and l-lysine gels (PCLG) and increase the minimum piston pressure required for 3D printing, thereby improving the printing performance. Optimum levels of κ-carrageenan and l-lysine (0.1 mmol/mL and 3.42 × 10-2 mmol/mL, respectively) were found to enhance mechanical strength, viscoelasticity and print fidelity. On the other hand, when the addition of κ-carrageenan is 0.1 mmol/mL, the addition of l-lysine causes an increase in the G0 value and a decrease in the η0 value of the PCLG according to Burger's model, indicating a transition from viscosity to elasticity and an increase in maximum extrusion force, while the apparent viscosity does not change significantly. The results of 3D printing showed that when the addition of κ-carrageenan and l-lysine reached 0.1 mmol/mL and 6.84 × 10-2 mmol/mL, respectively, the PCLG could not be smoothly extruded, indicating that elasticity also plays an important role during the extrusion process of the mixed gel.


Asunto(s)
Prunus persica , Carragenina/química , Lisina , Geles/química , Elasticidad , Impresión Tridimensional , Reología
13.
Food Chem ; 448: 139071, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552458

RESUMEN

Hypsizygus marmoreuss is an under-explored source of flavor peptides that can enhance the flavor of NaCl or MSG, allowing products to be reformulated in line with reduction policies. This study utilized advanced techniques, including UPLC-Q-TOF MS/MS and molecular docking, to identify H. marmoreuss peptides. Sensory evaluations revealed 10 peptides with pronounced umami flavors and seven with dominantly salty tastes. VLPVPQK scored highest for umami intensity (5.2), and EGNPAHQK for salty intensity (6.2). Further investigation influenced by 0.35 % MSG or 0.35 % NaCl exposed peptides with elevated umami and salty thresholds. LDSPATPEK, VVEGEPSLK, and QKLPEKPER had umami-enhancing thresholds of 0.18, 0.18, and 0.35 mM, while LDSPATPEK and VVEGEPSLK had similar thresholds for salt (0.09 mM). Molecular docking revealed that taste receptor proteins interacted with umami peptides through hydrogen, carbon-hydrogen, alkyl, and van der Waals forces. Specific amino acids in the umami receptor T1R1 had roles in bonding with umami peptides through hydrogen and carbon-hydrogen interactions. In conclusion, molecular docking proved to be an effective and efficient method for flavor peptide screening. Further, this study demonstrated that flavor peptides from H. marmoreuss had the capacity to enhance NaCl and MSG flavours and might be useful tools for reformulation, reducing salt and MSG contents.

14.
Foods ; 13(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790773

RESUMEN

Postharvest rot is an urgent problem affecting the storage of winter jujube. Therefore, the development of new technologies for efficient and safe preservation is very important. This study aimed to elucidate the fungal microbiota found on the epidermis of jujube during the storage period using high-throughput sequencing, as well as to monitor the changes in quality indexes throughout this period. Through internal transcribed spacer (ITS) sequencing, we identified two phyla (Basidiomycota and Ascomycota) and six genera (Cryptococcus, Bulleromyces, Sporidiobolus, Alternaria, Pseudozyma, and Sporobolomyces), which potentially contribute to the spoilage and deterioration of jujube, referred to as "core fungal taxa". A high correlation was further found between preservation indices (including decay rate, firmness, and total soluble solids) and the growth of multiple core fungi over time. These findings will provide insights and a theoretical basis for further research on preservation techniques related to biological control during date fruit storage.

15.
J Food Sci ; 89(6): 3276-3289, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38700316

RESUMEN

The objective of this paper was to evaluate the effect of spray drying (SD), spray freeze-drying (SFD), freeze-drying (FD), and microwave freeze-drying (MFD) on the characteristics of fish oil (FO) microcapsules. The physicochemical properties, morphology, fatty acid composition, and stability of the microcapsules were analyzed. The encapsulation efficiencies of microcapsules dried by SD, SFD, FD, and MFD were 86.98%, 77.79%, 63.29%, and 57.89%, respectively. SD microcapsules exhibited superior properties in terms of effective loading capacity, color, and flowability. Conversely, SFD microcapsules demonstrated improved solubility. Microencapsulation positively affected the thermal stability of FO, but the content of unsaturated fatty acids decreased. The findings from the storage experiment indicated that the oxidative stability of SD fish oil microcapsules was marginally lower compared to microcapsules produced through three alternative drying techniques, all of which were based on the FD concept. The comparison of various drying methods and their effects on the quality of FO microcapsules offers valuable insights that can serve as a foundation for the industrial production of high-quality microcapsules.


Asunto(s)
Cápsulas , Composición de Medicamentos , Aceites de Pescado , Liofilización , Microondas , Secado por Pulverización , Aceites de Pescado/química , Liofilización/métodos , Composición de Medicamentos/métodos , Desecación/métodos , Tamaño de la Partícula , Estabilidad de Medicamentos
16.
Food Chem ; 444: 138541, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330601

RESUMEN

The effects of resonant acoustic mixing (RAM) with different treatment times (0, 5, 10, 15, 20 and 30 min) on the structural and emulsifying properties of pea protein isolate (PPI) were investigated for the first time. Increasing the RAM treatment time from 0 to 20 min decreased the α-helix/ß-sheet ratio and particle size of the PPI samples by 37.84 % and 46.44 %, respectively, accompanied by an increase in solubility from 54.79 % to 71.80 % (P < 0.05). Consequently, the emulsifying activity index of PPI (from 10.45 m2/g to 14.2 m2/g) and the physical stability of RAM-PPI emulsions were effectively enhanced, which was confirmed by the small and uniformly distributed oil droplets in the micrographs of the emulsions. However, excessive RAM treatment (30 min) diminished the effectiveness of the aforementioned improvements. Therefore, obviously enhanced solubility and emulsifying properties of PPI can be attained through proper RAM treatment (15-20 min).


Asunto(s)
Proteínas de Guisantes , Emulsiones/química , Acústica , Solubilidad , Tamaño de la Partícula , Emulsionantes/química
17.
Front Chem ; 12: 1389846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746020

RESUMEN

This study investigated the synthesis of bioactive peptides from sheep milk through fermentation with Limosilactobacillus fermentum KGL4 MTCC 25515 strain and assessed lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition activities during the fermentation process. The study observed the highest activities, reaching 74.82%, 70.02%, 72.19%, and 67.08% (lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition) after 48 h at 37°C, respectively. Growth optimization experiments revealed that a 2.5% inoculation rate after 48 h of fermentation time resulted in the highest proteolytic activity at 9.88 mg/mL. Additionally, fractions with less than 3 kDa of molecular weight exhibited superior ACE-inhibition and anti-diabetic activities compared to other fractions. Fermentation of sheep milk with KGL4 led to a significant reduction in the excessive production of NO, TNF-α, IL-6, and IL-1ß produced in RAW 267.4 cells upon treatment with LPS. Peptides were purified utilizing SDS-PAGE and electrophoresis on 2D gels, identifying a maximum number of proteins bands ranging 10-70 kDa. Peptide sequences were cross-referenced with AHTPDB and BIOPEP databases, confirming potential antihypertensive and antidiabetic properties. Notably, the peptide (GPFPILV) exhibited the highest HPEPDOCK score against both α-amylase and ACE.

18.
Foods ; 12(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37238873

RESUMEN

The feasibility of using microwaves to quickly stimulate automatic color change in 3D-printed food containing curcumin or anthocyanins was studied. Firstly, with a dual-nozzle 3D printer, stacked structures included mashed potatoes (MPs, upper part, containing anthocyanins) and lemon juice-starch gel (LJSG, lower part) were 3D-printed and post-treated using a microwave. The results indicated that the viscosity and gel strength (indicated by the elastic modulus (G') and complex modulus (G*)) of LJSG were improved with the increase in starch concentration, while water mobility was reduced. During microwave post-treatment, the color change speed was negatively correlated with the gel strength but positively correlated with the diffusion of H+ and anthocyanin concentration. Secondly, nested structures were 3D-printed using MPs containing curcumin emulsion and baking soda (NaHCO3). During microwave post-treatment, the curcumin emulsion structure was destroyed, and NaHCO3 was decomposed, along with an increase in alkalinity; thus, the automatic color change was achieved with the automated presentation of hidden information. This study suggests that 4D printing could enable the creation of colorful and attractive food structures using a household microwave oven, leading to more imaginative solutions regarding personalized foods, which may be particularly important to people with poor appetites.

19.
Foods ; 12(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37835287

RESUMEN

Lipids are crucial components for the maintenance oof normal structure and function in the nervous system. Elucidating the diversity of lipids in spinal cords may contribute to our understanding of neurodevelopment. This study comprehensively analyzed the fatty acid (FA) compositions and lipidomes of the spinal cords of eight domesticated animal species: pig, cattle, yak, goat, horse, donkey, camel, and sika deer. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) were the primary FAs in the spinal cords of these domesticated animals, accounting for 72.54-94.23% of total FAs. Notably, oleic acid, stearic acid and palmitic acid emerged as the most abundant FA species. Moreover, untargeted lipidomics by UPLC-Q-Exactive Orbitrap-MS demonstrated that five lipid classes, including glycerophospholipids (GPs), sphingolipids (SPs), glycerolipids (GLs), FAs and saccharolipids (SLs), were identified in the investigated spinal cords, with phosphatidylcholine (PC) being the most abundant among all identified lipid classes. Furthermore, canonical correlation analysis showed that PC, PE, TAG, HexCer-NS and SM were significantly associated with genome sequence data. These informative data provide insight into the structure and function of mammalian nervous tissues and represent a novel contribution to lipidomics.

20.
Foods ; 12(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37569241

RESUMEN

Alzheimer's disease (AD) stands as a prevailing neurodegenerative condition (NDs), leading to the gradual deterioration of brain cells and subsequent declines in memory, thinking, behavior, and emotion. Despite the intensive research efforts and advances, an effective curative treatment for the disease has not yet been found. Mushrooms, esteemed globally for their exquisite flavors and abundant nutritional benefits, also hold a wealth of health-promoting compounds that contribute to improving AD health. These compounds encompass polysaccharides, proteins, lipids, terpenoids, phenols, and various other bioactive substances. Particularly noteworthy are the potent neuroprotective small molecules found in mushrooms, such as ergothioneine, erinacine, flavonoids, alkaloids, ergosterol, and melanin, which warrant dedicated scrutiny for their therapeutic potential in combating AD. This review summarizes such positive effects of mushroom bioactive compounds on AD, with a hope to contribute to the development of functional foods as an early dietary intervention for this neurodegenerative disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA