RESUMEN
This paper presents an innovative approach for predicting timing errors tailored to near-/sub-threshold operations, addressing the energy-efficient requirements of digital circuits in applications, such as IoT devices and wearables. The method involves assessing deep path activity within an adjustable window prior to the root clock's rising edge. By dynamically adapting the prediction window and supply voltage based on error detection outcomes, the approach effectively mitigates false predictions-an essential concern in low-voltage prediction techniques. The efficacy of this strategy is demonstrated through its implementation in a near-/sub-threshold 32-bit microprocessor system. The approach incurs only a modest 6.84% area overhead attributed to well-engineered lightweight design methodologies. Furthermore, with the integration of clock gating, the system functions seamlessly across a voltage range of 0.4 V-1.2 V (5-100 MHz), effectively catering to adaptive energy efficiency. Empirical results highlight the potential of the proposed strategy, achieving a significant 46.95% energy reduction at the Minimum Energy Point (MEP, 15 MHz) compared to signoff margins. Additionally, a 19.75% energy decrease is observed compared to the zero-margin operation, demonstrating successful realization of negative margins.
RESUMEN
OBJECTIVE: To investigate the current status of antibiotic use for very and extremely low birth weight (VLBW/ELBW) infants in neonatal intensive care units (NICUs) of Hunan Province. METHODS: The use of antibiotics was investigated in multiple level 3 NICUs of Hunan Province for VLBW and ELBW infants born between January, 2017 and December, 2017. RESULTS: The clinical data of 1â442 VLBW/ELBW infants were collected from 24 NICUs in 2017. The median antibiotic use duration was 17 days (range: 0-86 days), accounting for 53.0% of the total length of hospital stay. The highest duration of antibiotic use was up to 91.4% of the total length of hospital stay, with the lowest at 14.6%. In 16 out of 24 NICUs, the antibiotic use duration was accounted for more than 50.0% of the hospitalization days. There were 113 cases with positive bacterial culture grown in blood or cerebrospinal fluid, making the positive rate of overall bacterial culture as 7.84%. The positive rate of bacterial culture in different NICUs was significantly different from 0% to 14.9%. The common isolated bacterial pathogens Klebsiella pneumoniae was 29 cases (25.7%); Escherichia coli 12 cases (10.6%); Staphylococcus aureus 3 cases (2.7%). The most commonly used antibiotics were third-generation of cephalosporins, accounting for 41.00% of the total antibiotics, followed by penicillins, accounting for 32.10%, and followed by carbapenems, accounting for 13.15%. The proportion of antibiotic use time was negatively correlated with birth weight Z-score and the change in weight Z-score between birth and hospital discharge (rs=-0.095, -0.151 respectively, P<0.01), positively correlated with death/withdrawal of care (rs=0.196, P<0.01). CONCLUSIONS: Antibiotics used for VLBW/ELBW infants in NICUs of Hunan Province are obviously prolonged in many NICUs. The proportion of routine use of third-generation of cephalosporins and carbapenems antibiotics is high among the NICUs.
Asunto(s)
Recien Nacido con Peso al Nacer Extremadamente Bajo , Antibacterianos , Peso al Nacer , Humanos , Lactante , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Encuestas y CuestionariosRESUMEN
BACKGROUND: Colorectal cancer (CRC) is a malignancy that arises within the gastrointestinal tract. Despite ongoing research, the etiology and pathogenesis of CRC remain elusive; particularly, the distribution and characteristics of tumor-associated macrophages is currently an active area of investigation in understanding the pathological progression and prevention of CRC. METHODS: This study utilized CRC patient surgical samples, mouse models of colitis-associated cancer, colonic organoid, and co-culture cell line to examine the changes in CD11b/CD86 at different pathological region and detect the Wnt signaling pathway activity. RESULTS: Our findings revealed a sensitive and increased expression of CD11b from the early to the advanced CRC tissues and correlated with poor prognosis, while CD86 expression was reduced in advanced CRC tissues. CD133 expression was also elevated in advanced CRC tissues and mainly co-localized with CD11b, suggesting a positive regulatory effect of CD11b and CD133 expression that may contribute to CRC progression. In AOM/DSS mouse models, activation of the Wnt signaling pathway was associated with increased CD133 and CD11b expression. In vitro, THP-1 cell was induced to high expression of CD11b, and the above conditional cultural medium enhanced HCT116 cell colony number and CD133 protein expression. Furthermore, colonic crypts from AOM/DSS mouse models were isolated to culture, and the colonic organoids exhibited dilation and significant increases expression of CD133 and ß-Catenin/N-P-B-Catenin. CONCLUSIONS: CD11b might be an important factor to participate the progress of CRC. And the high CD11b of CRC microenviroment might potentially promote CD133 expression and associate with Wnt signal activation.
Asunto(s)
Antígeno AC133 , Antígeno B7-2 , Antígeno CD11b , Neoplasias Colorrectales , Microambiente Tumoral , Vía de Señalización Wnt , Animales , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Ratones , Microambiente Tumoral/inmunología , Antígeno CD11b/metabolismo , Antígeno B7-2/metabolismo , Antígeno AC133/metabolismo , Masculino , Femenino , Células HCT116 , Modelos Animales de Enfermedad , Organoides/metabolismo , Células THP-1 , PronósticoRESUMEN
Intestinal macrophages play crucial roles in both intestinal inflammation and immune homeostasis. They can adopt two distinct phenotypes, primarily determined by environmental cues. These phenotypes encompass the classically activated pro-inflammatory M1 phenotype, as well as the alternatively activated anti-inflammatory M2 phenotype. In regular conditions, intestinal macrophages serve to shield the gut from inflammatory harm. However, when a combination of genetic and environmental elements influences the polarization of these macrophages, it can result in an M1/M2 macrophage activation imbalance, subsequently leading to a loss of control over intestinal inflammation. This shift transforms normal inflammatory responses into pathological damage within the intestines. In patients with ulcerative colitis-associated colorectal cancer (UC-CRC), disorders related to intestinal inflammation are closely correlated with an imbalance in the polarization of intestinal M1/M2 macrophages. Therefore, reinstating the equilibrium in M1/M2 macrophage polarization could potentially serve as an effective approach to the prevention and treatment of UC-CRC. This paper aims to scrutinize the clinical evidence regarding Chinese medicine (CM) in the treatment of UC-CRC, the pivotal role of macrophage polarization in UC-CRC pathogenesis, and the potential mechanisms through which CM regulates macrophage polarization to address UC-CRC. Our objective is to offer fresh perspectives for clinical application, fundamental research, and pharmaceutical advancement in UC-CRC.