Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Cell Physiol ; 236(3): 1926-1938, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32780451

RESUMEN

Aberrant expression of transforming growth factor-ß1 (TGF-ß1) is associated with renal cell carcinoma (RCC) progression by inducing cancer metastasis. However, the downstream effector(s) in TGF-ß signaling pathway is not fully characterized. In the present study, the elevation of secreted protein acidic and rich in cysteine (SPARC) as a TGF-ß regulated gene in RCC was identified by applying differentially expressed gene analysis and microarray analysis, we further confirmed this result in several RCC cell lines. Clinically, the expression of these two genes is positively correlated in RCC patient specimens. Furthermore, elevated SPARC expression is found in all the subtypes of RCC and positively correlated with the RCC stage and grade. In contrast, SPARC expression is inversely correlated with overall and disease-free survival of patients with RCC, suggesting SPARC as a potent prognostic marker of RCC patient survival. Knocking down SPARC significantly inhibits RCC cell invasion and metastasis both in vitro and in vivo. Similarly, in vitro cell invasion can be diminished by using a specific monoclonal antibody. Mechanistically, SPARC activates protein kinase B (AKT) pathway leading to elevated expression of matrix metalloproteinase-2 that can facilitate RCC invasion. Altogether, our data support that SPARC is a critical role of TGF-ß signaling network underlying RCC progression and a potential therapeutic target as well as a prognostic marker.


Asunto(s)
Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Osteonectina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones SCID , Invasividad Neoplásica , Metástasis de la Neoplasia , Osteonectina/genética , Factores de Transcripción de la Familia Snail/metabolismo , Transcripción Genética , Resultado del Tratamiento
2.
Int J Cancer ; 141(10): 2121-2130, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28722220

RESUMEN

The presence of androgen receptor variant 7 (AR-V7) variants becomes a significant hallmark of castration-resistant prostate cancer (CRPC) relapsed from hormonal therapy and is associated with poor survival of CRPC patients because of lacking a ligand-binding domain. Currently, it still lacks an effective agent to target AR-V7 or AR-Vs in general. Here, we showed that a novel class of agents (thailanstatins, TSTs and spliceostatin A analogs) can significantly suppress the expression of AR-V7 mRNA and protein but in a less extent on the full-length AR expression. Mechanistically, TST-D is able to inhibit AR-V7 gene splicing by interfering the interaction between U2AF65 and SAP155 and preventing them from binding to polypyrimidine tract located between the branch point and the 3' splice site. In vivo, TST-D exhibits a potent tumor inhibitory effect on human CRPC xenografts leading to cell apoptosis. The machinery associated with AR gene splicing in CRPC is a potential target for drugs. Based on their potency in the suppression of AR-V7 responsible for the growth/survival of CRPC, TSTs representing a new class of anti-AR-V agents warrant further development into clinical application.


Asunto(s)
Apoptosis/efectos de los fármacos , Variación Genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Piranos/farmacología , Empalme del ARN/genética , Receptores Androgénicos/genética , Burkholderia/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/patología , Isoformas de Proteínas , Receptores Androgénicos/química , Células Tumorales Cultivadas
3.
Int J Mol Sci ; 18(10)2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28973968

RESUMEN

In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality.


Asunto(s)
Transición Epitelial-Mesenquimal , Próstata/patología , Neoplasias de la Próstata/patología , Animales , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Próstata/metabolismo , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética
4.
Cell Death Dis ; 15(9): 678, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284838

RESUMEN

SPHK1 (sphingosine kinase type 1) is characterized as a rate-limiting enzyme in sphingolipid metabolism to phosphorylate sphingosine into sphingosine-1-phosphate (S1P) that can bind to S1P receptors (S1PRs) to initiate several signal transductions leading to cell proliferation and survival of normal cell. Many studies have indicated that SPHK1 is involved in several types of cancer development, however, a little is known in bladder cancer. The TCGA database analysis was utilized for analyzing the clinical relevance of SPHK1 in bladder cancer. Through CRISPR/Cas9 knockout (KO) and constitutive activation (CA) strategies on SPHK1 in the bladder cancer cells, we demonstrated the potential downstream target could be programmed cell death 1 ligand 2 (PD-L2). On the other hand, we demonstrated that FDA-approved SPHK1 inhibitor Gilenya® (FTY720) can successfully suppress bladder cancer metastasis by in vitro and in vivo approaches. This finding indicated that SPHK1 as a potent therapeutic target for metastatic bladder cancer by dissecting the mechanism of action, SPHK1/S1P-elicited Akt/ß-catenin activation promoted the induction of PD-L2 that is a downstream effector in facilitating bladder cancer invasion and migration. Notably, PD-L2 interacted with c-Src that further activates FAK. Here, we unveil the clinical relevance of SPHK1 in bladder cancer progression and the driver role in bladder cancer metastasis. Moreover, we demonstrated the inhibitory effect of FDA-approved SPHK1 inhibitor FTY720 on bladder cancer metastasis from both in vitro and in vivo models.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol) , Transducción de Señal , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Metástasis de la Neoplasia , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Familia-src Quinasas/metabolismo , Movimiento Celular , Ratones Desnudos , Lisofosfolípidos/metabolismo , Proteína Tirosina Quinasa CSK/metabolismo , Clorhidrato de Fingolimod/farmacología , Proliferación Celular
5.
Clin Transl Med ; 12(8): e978, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35908276

RESUMEN

BACKGROUND: Lineage plasticity in prostate cancer (PCa) has emerged as an important mechanism leading to the onset of therapy- and castration-resistant PCa (t-CRPC), which is closely associated with cancer stem cell (CSC) activity. This study is to identify critical driver(s) with mechanism of action and explore new targeting strategy. METHODS: Various PCa cell lines with different genetic manipulations were subjected to in vitro prostasphere assay, cell viability assay and in vivo stemness potential. In addition, bioinformatic analyses such as Ingenuity pathway and Gene Set Enrichment Analysis were carried out to determine clinical relevance. The in vivo anti-tumour activity of JAK or STAT1 inhibitors was examined in clinically relevant t-CRPC model. RESULTS: We demonstrated the role of interferon-related signalling pathway in promoting PCa stemness, which correlated with significant elevation of interferon related DNA damage resistance signature genes in metastatic PCa. Inhibition of JAK-STAT1 signalling suppresses the in vitro and in vivo CSC capabilities. Mechanistically, IFIT5, a unique downstream effector of JAK-STAT1 pathway, can facilitate the acquisition of stemness properties in PCa by accelerating the turnover of specific microRNAs (such as miR-128 and -101) that can target several CSC genes (such as BMI1, NANOG, and SOX2). Consistently, knocking down IFIT5 in t-CRPC cell can significantly reduce in vitro prostasphere formation as well as decrease in vivo tumour initiating capability. CONCLUSIONS: This study provides a critical role of STAT1-IFIT5 in the acquisition of PCSC and highlights clinical translation of JAK or STAT1 inhibitors to prevent the outgrowth of t-CRPC.


Asunto(s)
MicroARNs , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Interferones , Quinasas Janus/metabolismo , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Factores de Transcripción STAT/metabolismo , Transducción de Señal
6.
Nat Cancer ; 3(9): 1071-1087, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36065066

RESUMEN

Emerging evidence indicates that various cancers can gain resistance to targeted therapies by acquiring lineage plasticity. Although various genomic and transcriptomic aberrations correlate with lineage plasticity, the molecular mechanisms enabling the acquisition of lineage plasticity have not been fully elucidated. We reveal that Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is a crucial executor in promoting lineage plasticity-driven androgen receptor (AR)-targeted therapy resistance in prostate cancer. Importantly, ectopic JAK-STAT activation is specifically required for the resistance of stem-like subclones expressing multilineage transcriptional programs but not subclones exclusively expressing the neuroendocrine-like lineage program. Both genetic and pharmaceutical inhibition of JAK-STAT signaling resensitizes resistant tumors to AR-targeted therapy. Together, these results suggest that JAK-STAT are compelling therapeutic targets for overcoming lineage plasticity-driven AR-targeted therapy resistance.


Asunto(s)
Quinasas Janus , Neoplasias de la Próstata , Humanos , Quinasas Janus/genética , Masculino , Preparaciones Farmacéuticas , Receptores Androgénicos/genética , Factores de Transcripción STAT/genética
7.
Am J Clin Exp Urol ; 9(4): 277-286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34541026

RESUMEN

First established by Dr. Leland W. K. Chung's lab, the androgen-repressed prostate cancer cell (ARCaP) line is derived from the ascitic fluid of a prostate cancer (PCa) patient with widely metastatic disease. Based on its unique characteristic of growth suppression in the presence of androgen, ARCaP cell line has contributed to the research of PCa disease progression toward therapy- and castration-resistant PCa (t-CRPC). It has been widely applied in studies exploring experimental therapeutic reagents including Genistein, Vorinostat and Silibinin. ARCaP cells have showed increased metastatic potential to the bone and soft tissues. In addition, accumulating studies using ARCaP model have demonstrated the epithelial-to-mesenchymal transitional plasticity of PCa using epithelial-like ARCaPE line treated in vitro with growth factors derived from bone microenvironment. The resulting mesenchymal-like ARCaPM sub-clone derived from bone-metastasized tumor has high expression of several factors correlated with cancer metastasis, such as N-Cadherin, Vimentin, MCM3, Granzyme B, ß2-microglobulin and RANKL. In particular, the increased secretion of RANKL in ARCaPM further facilitates its capacity of inducing osteoclastogenesis at the bone microenvironment, leading to bone resorption and tumor colonization. Meanwhile, sphingosine kinase 1 (SphK1) acts as a key molecule driver in the neuroendocrine differentiation (NED) of ARCaP sublines, suggesting the unique facet of ARCaP cells for insightful studies in more malignant neuroendocrine prostate cancer (NEPC). Overall, the establishment of ARCaP line has provided a valuable model to explore the mechanisms underlying PCa progression toward metastatic t-CRPC. In this review, we will focus on the contribution of ARCaP model in PCa research covering hormone receptor activity, skeletal metastasis, plasticity of epithelial-to-mesenchymal transition (EMT) and application of therapeutic strategies.

8.
Mol Imaging Biol ; 23(2): 230-240, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33140261

RESUMEN

PURPOSE: We have previously demonstrated by MRI that high glucose stimulates efflux of zinc ions from the prostate. To our knowledge, this phenomena had not been reported previously and the mechanism remains unknown. Here, we report some initial observations that provide new insights into zinc processing during glucose-stimulated zinc secretion (GSZS) in the immortalized human prostate epithelial cell line, PNT1A. Additionally, we identified the subtypes of zinc-containing cells in human benign prostatic hyperplasia (BPH) tissue to further identify which cell types are likely responsible for zinc release in vivo. PROCEDURE: An intracellular fluorescence marker, FluoZin-1-AM, was used to assess the different roles of ZnT1 and ZnT4 in zinc homeostasis in wild type (WT) and mRNA knockdown PNT1A cell lines. Additionally, Bafilomycin A1 (Baf) was used to disrupt lysosomes and assess the role of lysosomal storage during GSZS. ZIMIR, an extracellular zinc-responsive fluorescent marker, was used to assess dynamic zinc efflux of WT and ZnT1 mRNA knockdown cells exposed to high glucose. Electron microscopy was used to assess intracellular zinc storage in response to high glucose and evaluate how Bafilomycin A1 affects zinc trafficking. BPH cells were harvested from transurtheral prostatectomy tissue and stained with fluorescent zinc granule indicator (ZIGIR), an intracellular zinc-responsive fluorescent marker, before being sorted for cell types using flow cytometry. RESULTS: Fluorescent studies demonstrate that ZnT1 is the major zinc efflux transporter in prostate epithelial cells and that loss of ZnT1 via mRNA knockdown combined with lysosomal storage disruption results in a nearly 4-fold increase in cytosolic zinc. Knockdown of ZnT1 dramatically reduces zinc efflux during GSZS. Electron microscopy (EM) reveals that glucose stimulation significantly increases lysosomal storage of zinc; disruption of lysosomes via Baf or ZnT4 mRNA knockdown increases multi-vesicular body (MVB) formation and cytosolic zinc levels. In human BPH tissue, only the luminal epithelial cells contained significant amounts of zinc storage granules. CONCLUSIONS: Exposure of prostate epithelial cells to high glucose alters zinc homeostasis by inducing efflux of zinc ions via ZnT1 channels and increasing lysosomal storage via ZnT4. Given that prostate cancer cells undergo profound metabolic changes that result in reduced levels of total zinc, understanding the complex interplay between glucose exposure and zinc homeostasis in the prostate may provide new insights into the development of prostate carcinogenesis.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Células Epiteliales/metabolismo , Glucosa/administración & dosificación , Próstata/metabolismo , Zinc/metabolismo , Animales , Línea Celular , Células Epiteliales/patología , Humanos , Masculino , Próstata/patología , Edulcorantes/farmacología
9.
Biomedicines ; 9(2)2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557143

RESUMEN

Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men and usually becomes refractory because of recurrence and metastasis. CD44, a transmembrane glycoprotein, serves as a receptor for hyaluronic acid (HA). It has been found to be abundantly expressed in cancer stem cells (CSCs) that often exhibit a radioresistant phenotype. Cytolethal distending toxin (CDT), produced by Campylobacter jejuni, is a tripartite genotoxin composed of CdtA, CdtB, and CdtC subunits. Among the three, CdtB acts as a type I deoxyribonuclease (DNase I), which creates DNA double-strand breaks (DSBs). Nanoparticles loaded with antitumor drugs and specific ligands that recognize cancerous cell receptors are promising methods to overcome the therapeutic challenges. In this study, HA-decorated nanoparticle-encapsulated CdtB (HA-CdtB-NPs) were prepared and their targeted therapeutic activity in radioresistant PCa cells was evaluated. Our results showed that HA-CdtB-NPs sensitized radioresistant PCa cells by enhancing DSB and causing G2/M cell-cycle arrest, without affecting the normal prostate epithelial cells. HA-CdtB-NPs possess maximum target specificity and delivery efficiency of CdtB into the nucleus and enhance the effect of radiation in radioresistant PCa cells. These findings demonstrate that HA-CdtB-NPs exert target specificity accompanied with radiomimetic activity and can be developed as an effective strategy against radioresistant PCa.

10.
Asian J Androl ; 21(3): 233-240, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30178777

RESUMEN

Prostate cancer (PCa) is the most common cause of malignancy in males and the third leading cause of cancer mortality in the United States. The standard care for primary PCa with local invasive disease mainly is surgery and radiation. For patients with distant metastases, androgen deprivation therapy (ADT) is a gold standard. Regardless of a favorable outcome of ADT, patients inevitably relapse to an end-stage castration-resistant prostate cancer (CRPC) leading to mortality. Therefore, revealing the mechanism and identifying cellular components driving aggressive PCa is critical for prognosis and therapeutic intervention. Cancer stem cell (CSC) phenotypes characterized as poor differentiation, cancer initiation with self-renewal capabilities, and therapeutic resistance are proposed to contribute to the onset of CRPC. In this review, we discuss the role of CSC in CRPC with the evidence of CSC phenotypes and the possible underlying mechanisms.


Asunto(s)
Células Madre Neoplásicas/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transducción de Señal/genética , Antagonistas de Andrógenos/uso terapéutico , Diferenciación Celular/genética , Progresión de la Enfermedad , Humanos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología
11.
Am J Clin Exp Urol ; 7(1): 31-45, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30906803

RESUMEN

Interferon is known as a pleiotropic factor in innate immunity, cancer immunity and therapy. Despite an objective short-term response of interferon (IFN) therapy in renal cell carcinoma (RCC) patients, the potential adverse effect of IFN on RCC cells is not fully understood. In this study, we demonstrate that IFNs can enhance RCC invasion via a new mechanism of IFIT5-mediated tumor suppressor microRNA (miRNA) degradation resulted in the elevation of Slug and ZEB1 and epithelial-to-mesenchymal transition (EMT). Clinically, a significant upregulation of IFNγ signaling pathway (such as IFNGR1, IFNGR2, STAT1 and STAT2) is observed in RCC patients with metastatic disease. Overall, this study provides a new mechanism of action of IFN-elicited canonical pathway in regulating suppressor miRNAs. Most importantly, it highlights the potential pro-metastatic effect of IFNs, which could undermine the clinical applicability of IFNs for treating RCC patients.

12.
Cell Death Dis ; 10(6): 437, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164632

RESUMEN

The prognosis of bladder cancer (BCa) depends on several key factors including anatomical site, tumor grade, and stage. In general, muscle-invasive bladder cancer (MIBC) is associated with higher incidence of distant metastasis compared with Non-muscle-invasive bladder cancer (NMIBC). Treatment outcome of the patients with metastatic BCa has been very poor with ~15% of overall survival rate. Thus, it is apparently important to understand the underlying biology for metastatic progression of BCa. Although epithelial-mesenchymal transition (EMT) has long been implicated in BCa metastasis and treatment resistance, the underlying mechanism is not fully understood. In this study, we have identified that the expression of interferon induced protein with tetratricopeptide repeats 5 (IFIT5) is positively correlated with pathological characteristics, and predicts a poor prognosis of BCa patients. Since the function of IFIT5 in BCa has not yet been characterized, we demonstrate that IFIT5 can induce EMT, promote cell migration and invasion, and increase the expression of ICAM1 in BCa via down-regulation of mature miR-99a. Moreover, ICAM1 is shown as a direct target of miR-99a. Overall, we conclude that IFIT5 is a new oncogene in BCa.


Asunto(s)
Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Pronóstico , Trasplante Heterólogo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
13.
Oncogene ; 38(28): 5580-5598, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31152147

RESUMEN

Gram-negative bacteria have been found to be a major population in prostatitis and prostate cancer (PCa) tissues. Lipopolysaccharide (LPS), a major compound of Gram-negative bacteria, with stimulatory activities in some cancer types, but has not been fully studied in PCa. In this study, we examined the effect of LPS on the invasion of PCa cells. Interestingly, LPS can enhance the invasiveness of PCa, but had no significant effect on PCa cell viability. Using protease inhibitor screening and biochemical analyses, matriptase, a member of the membrane-anchored serine protease family, is found to play a key role in LPS-induced PCa cell invasion. Mechanistically, Toll-like receptor 4 (TLR4, LPS receptor)-sphingosine kinase 1 (SphK1) signaling underlies LPS-induced matriptase activation and PCa cell invasion. Specifically, LPS induced the S225 phosphorylation of SphK1 and the translocation of SphK1 to plasma membrane, leading to the production of sphingosine 1-phosphate (S1P), ERK1/2 and matriptase activation via S1P receptor 4 (S1PR4). This phenomenon is further validated using the patient-derived explant (PDE) model. Indeed, there is a significant correlation among the elevated SphK1 levels, the Gleason grades of PCa specimens, and the poor survival of PCa patients. Taken together, this study demonstrates a potential impact of LPS on PCa progression. Our results provide not only a new finding of the role of bacterial infection in PCa progression but also potential therapeutic target(s) associated with PCa metastasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Invasividad Neoplásica , Metástasis de la Neoplasia , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Polisacáridos/farmacología , Neoplasias de la Próstata/patología , Serina Endopeptidasas/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Progresión de la Enfermedad , Activación Enzimática , Humanos , Masculino , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/metabolismo
14.
Cell Death Dis ; 10(11): 834, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685812

RESUMEN

A subpopulation of cancer stem cells (CSCs) plays a critical role of cancer progression, recurrence, and therapeutic resistance. Many studies have indicated that castration-resistant prostate cancer (CRPC) is associated with stem cell phenotypes, which could further promote neuroendocrine transdifferentiation. Although only a small subset of genetically pre-programmed cells in each organ has stem cell capability, CSCs appear to be inducible among a heterogeneous cancer cell population. However, the inductive mechanism(s) leading to the emergence of these CSCs are not fully understood in CRPC. Tumor cells actively produce, release, and utilize exosomes to promote cancer development and metastasis, cancer immune evasion as well as chemotherapeutic resistance; the impact of tumor-derived exosomes (TDE) and its cargo on prostate cancer (PCa) development is still unclear. In this study, we demonstrate that the presence of Cav-1 in TDE acts as a potent driver to induce CSC phenotypes and epithelial-mesenchymal transition in PCa undergoing neuroendocrine differentiation through NFκB signaling pathway. Furthermore, Cav-1 in mCRPC-derived exosomes is capable of inducing radio- and chemo-resistance in recipient cells. Collectively, these data support Cav-1 as a critical driver for mCRPC progression.


Asunto(s)
Caveolina 1/metabolismo , Exosomas/metabolismo , Proteínas de Neoplasias/metabolismo , Comunicación Paracrina , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal , Animales , Línea Celular Tumoral , Exosomas/patología , Humanos , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata Resistentes a la Castración/patología
15.
Cancer Res ; 79(6): 1098-1112, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30504123

RESUMEN

IFNγ, a potent cytokine known to modulate tumor immunity and tumoricidal effects, is highly elevated in patients with prostate cancer after radiation. In this study, we demonstrate that IFNγ can induce epithelial-to-mesenchymal transition (EMT) in prostate cancer cells via the JAK-STAT signaling pathway, leading to the transcription of IFN-stimulated genes (ISG) such as IFN-induced tetratricopeptide repeat 5 (IFIT5). We unveil a new function of IFIT5 complex in degrading precursor miRNAs (pre-miRNA) that includes pre-miR-363 from the miR-106a-363 cluster as well as pre-miR-101 and pre-miR-128, who share a similar 5'-end structure with pre-miR-363. These suppressive miRNAs exerted a similar function by targeting EMT transcription factors in prostate cancer cells. Depletion of IFIT5 decreased IFNγ-induced cell invasiveness in vitro and lung metastasis in vivo. IFIT5 was highly elevated in high-grade prostate cancer and its expression inversely correlated with these suppressive miRNAs. Altogether, this study unveils a prometastatic role of the IFNγ pathway via a new mechanism of action, which raises concerns about its clinical application.Significance: A unique IFIT5-XRN1 complex involved in the turnover of specific tumor suppressive microRNAs is the underlying mechanism of IFNγ-induced epithelial-to-mesenchymal transition in prostate cancer.See related commentary by Liu and Gao, p. 1032.


Asunto(s)
Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Interferón gamma/farmacología , Neoplasias Pulmonares/secundario , MicroARNs/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/patología , Animales , Antivirales/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones SCID , Proteínas de Neoplasias/genética , Pronóstico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cancers (Basel) ; 11(1)2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30602706

RESUMEN

Radiotherapy is one of the most common treatment options for local or regional advanced prostate cancer (PCa). Importantly, PCa is prone to radioresistance and often develops into malignancies after long-term radiotherapy. Antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, possesses pharmacological efficacy against various cancer types; however, its therapeutic potential requires comprehensive exploration, particularly in radioresistant PCa cells. In this study, we emphasized the effects of antrocin on radioresistant PCa cells and addressed the molecular mechanism underlying the radiosensitization induced by antrocin. Our results showed that a combination treatment with antrocin and ionizing radiation (IR) synergistically inhibited cell proliferation and induced apoptosis in radioresistant PCa cells. We further demonstrated that antrocin downregulated PI3K/AKT and MAPK signaling pathways as well as suppressed type 1 insulin-like growth factor 1 receptor (IGF-1R)-mediated induction of ß-catenin to regulate cell cycle and apoptosis. Using xenograft mouse models, we showed that antrocin effectively enhanced radiotherapy in PCa. Our study demonstrates that antrocin sensitizes PCa to radiation through constitutive suppression of IGF-1R downstream signaling, revealing that it can be developed as a potent therapeutic agent to overcome radioresistant PCa.

17.
PLoS One ; 12(1): e0169204, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28081154

RESUMEN

Resveratrol (RV, 3,4',5-trihydroxystilbene) is naturally produced by a wide variety of plants including grapes and peanuts (Arachis hypogaea). However, the yield of RV from peanut stem and its potential radiosensitizing effects in prostate cancer (PCa) have not been well investigated. In this study, we characterized RV in peanut stem extract (PSE) for the first time and showed that both RV and PSE dose-dependently induced cell death in DOC-2/DAB2 interactive protein (DAB2IP)-deficient PCa cells with the radioresistant phenotype. Furthermore, the combination of radiation with either RV or PSE induced the death of radioresistant PCa cells through delayed repair of radiation-induced DNA double-strand break (DSB) and prolonged G2/M arrest, which induced apoptosis. The administration of RV and PSE effectively enhanced radiation therapy in the shDAB2IP PCa xenograft mouse model. These results demonstrate the promising synergistic effect of RV and PSE combined with radiation in the treatment of radioresistant PCa.


Asunto(s)
Arachis/química , Quimioradioterapia/métodos , Tallos de la Planta/química , Neoplasias de la Próstata/terapia , Estilbenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Tolerancia a Radiación , Resveratrol , Estilbenos/química , Estilbenos/aislamiento & purificación , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Artículo en Inglés | MEDLINE | ID: mdl-28642840

RESUMEN

Cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB) and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa). However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR). In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1) expression and the inhibition of acidic vesicular organelle (AVO) formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa.


Asunto(s)
Toxinas Bacterianas/farmacología , Próstata/efectos de los fármacos , Próstata/efectos de la radiación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Tolerancia a Radiación/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Campylobacter jejuni/metabolismo , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Quimioterapia Combinada , Proteína HMGB1/efectos de los fármacos , Proteína HMGB1/metabolismo , Humanos , Masculino , Ratones
20.
Asian J Urol ; 3(4): 203-210, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29264188

RESUMEN

Prostate cancer (PCa) is the most common cause of malignancy in males and the second leading cause of cancer mortality in United States. Current treatments for PCa include surgery, radiotherapy, and androgen-deprivation therapy. Eventually, PCa relapses to an advanced castration-resistant PCa (CRPC) that becomes a systematic disease and incurable. Therefore, identifying cellular components and molecular mechanisms that drive aggressive PCa at early stage is critical for disease prognosis and therapeutic intervention. One potential strategy for aggressive PCa is to target cancer stem cells (CSCs) that are identified by several unique characteristics such as immortal, self-renewal, and pluripotency. Also, CSC is believed to be a major factor contributing to resistance to radiotherapy and conventional chemotherapies. Moreover, CSCs are thought to be the critical cause of metastasis, tumor recurrence and cancer-related death of multiple cancer types, including PCa. In this review, we discuss recent progress made in understanding prostate cancer stem cells (PCSCs). We focus on the therapeutic strategies aimed at targeting specific surface markers of CSCs, the key signaling pathways in the maintenance of self-renewal capacity of CSCs, ATP-binding cassette (ABC) transporters that mediate the drug-resistance of CSCs, dysregulated microRNAs expression profiles in CSCs, and immunotherapeutic strategies developed against PCSCs surface markers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA