RESUMEN
The genus Alphavirus harbours mostly insect-transmitted viruses that cause severe disease in humans, livestock and wildlife. Thus far, only three alphaviruses with a host range restricted to insects have been found in mosquitoes from the Old World, namely Eilat virus (EILV), Taï Forest alphavirus (TALV) and Mwinilunga alphavirus (MWAV). In this study, we found a novel alphavirus in one Culex declarator mosquito sampled in Panama. The virus was isolated in C6/36 mosquito cells, and full genome sequencing revealed an 11â468 nt long genome with maximum pairwise nucleotide identity of 62.7â% to Sindbis virus. Phylogenetic analyses placed the virus as a solitary deep rooting lineage in a basal relationship to the Western equine encephalitis antigenic complex and to the clade comprising EILV, TALV and MWAV, indicating the detection of a novel alphavirus, tentatively named Agua Salud alphavirus (ASALV). No growth of ASALV was detected in vertebrate cell lines, including cell lines derived from ectothermic animals, and replication of ASALV was strongly impaired above 31 °C, suggesting that ASALV represents the first insect-restricted alphavirus of the New World.
Asunto(s)
Alphavirus/genética , Culicidae/virología , Especificidad del Huésped/genética , Virus de Insectos/genética , Animales , Línea Celular , Panamá , Filogenia , ARN Viral/genética , Vertebrados/virología , Replicación Viral/genéticaRESUMEN
The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.
La República de Panamá es el segundo país de Centroamérica con la distribución más desigual de la riqueza, ha resultado afectado recientemente por la pandemia de COVID-19 y tiene una de las mayores tasas de pruebas diagnósticas por habitante de la región y, por consiguiente, la mayor tasa de incidencia de COVID-19. Estos aspectos la convierten en un lugar ideal para examinar posibles escenarios de evaluación de la preparación para la epidemia y para plantear oportunidades de investigación en la Región de las Américas. Se abordan dos preguntas importantes y oportunas: ¿Cuáles son los riesgos singulares de la COVID-19 en Panamá que podrían ayudar a otros países de la Región a estar mejor preparados? y ¿Qué tipo de conocimiento científico puede aportar Panamá al estudio regional y mundial de la COVID-19? En este artículo se presentan sugerencias sobre la forma en que la comunidad de investigadores podría apoyar a las autoridades sanitarias locales a planificar medidas ante diferentes escenarios y disminuir la ansiedad de la población. También se presentan oportunidades científicas básicas sobre patógenos pandémicos emergentes para promover la salud mundial desde la perspectiva de un país de ingresos medios.
RESUMEN
The genus Phlebovirus (order Bunyavirales, family Phenuiviridae) comprises 57 viruses that are grouped into nine species-complexes. Sandfly-transmitted phleboviruses are found in Europe, Africa and the Americas and are responsible for febrile illness and infections of the nervous system in humans. The aim of this study was to assess the genetic diversity of sandfly-transmitted phleboviruses in connected and isolated forest habitats throughout the Panama Canal area in Central Panama. In total, we collected 13 807 sandflies comprising eight phlebotomine species. We detected several strains pertaining to five previously unknown viruses showing maximum pairwise identities of 45-78 % to the RNA-dependent RNA polymerase genes of phleboviruses. Entire coding regions were directly sequenced from infected sandflies as virus isolation in cell culture was not successful. The viruses were tentatively named La Gloria virus (LAGV), Mona Grita virus (MOGV), Peña Blanca virus (PEBV), Tico virus (TICV) and Tres Almendras virus (TRAV). Inferred phylogenies and p-distance-based analyses revealed that PEBV groups with the Bujaru phlebovirus species-complex, TRAV with the Candiru phlebovirus species-complex and MOGV belongs to the proposed Icoarci phlebovirus species-complex, whereas LAGV and TICV seem to be distant members of the Bujaru phlebovirus species-complex. No specific vector or habitat association was found for any of the five viruses. Relative abundance of sandflies was similar over habitat types. Our study shows that blood-feeding insects originating from remote and biodiverse habitats harbour multiple previously unknown phleboviruses. These viruses should be included in future surveillance studies to assess their geographic distribution and to elucidate if these viruses cause symptoms of disease in animals or humans.
Asunto(s)
Phlebovirus/genética , Phlebovirus/aislamiento & purificación , Psychodidae/virología , África , Animales , Europa (Continente) , Genoma Viral/genética , Humanos , Insectos Vectores/virología , Panamá , Fiebre por Flebótomos/virología , FilogeniaRESUMEN
OBJECTIVE: To explore possible changes in the community attributes of haematophagous insects as a function of forest disturbance. We compare the patterns of diversity and abundance, plus the behavioural responses of three epidemiologically distinct vector assemblages across sites depicting various levels of forest cover. METHODS: Over a 3-year period, we sampled mosquitoes, sandflies and biting-midges in forested habitats of central Panama. We placed CDC light traps in the forest canopy and in the understorey to gather blood-seeking females. RESULTS: We collected 168 405 adult haematophagous dipterans in total, including 26 genera and 86 species. Pristine forest settings were always more taxonomically diverse than the disturbed forest sites, confirming that disturbance has a negative impact on species richness. Species of Phlebotominae and Culicoides were mainly classified as climax (i.e. forest specialist) or disturbance-generalist, which tend to decrease in abundance along with rising levels of disturbance. In contrast, a significant portion of mosquito species, including primary and secondary disease vectors, was classified as colonists (i.e. disturbed-areas specialists), which tend to increase in numbers towards more disturbed forest habitats. At pristine forest, the most prevalent species of Phlebotominae and Culicoides partitioned the vertical niche by being active at the forest canopy or in the understorey; yet this pattern was less clear in disturbed habitats. Most mosquito species were not vertically stratified in their habitat preference. CONCLUSION: We posit that entomological risk and related pathogen exposure to humans is higher in pristine forest scenarios for Culicoides and Phlebotominae transmitted diseases, whereas forest disturbance poses a higher entomological risk for mosquito-borne infections. This suggests that the Dilution Effect Hypothesis (DEH) does not apply in tropical rainforests where highly abundant, yet unrecognised insect vectors and neglected zoonotic diseases occur. Comprehensive, community level entomological surveillance is, therefore, the key for predicting potential disease spill over in scenarios of pristine forest intermixed with anthropogenic habitats. We suggest that changes in forest quality should also be considered when assessing arthropod-borne disease transmission risk.
OBJECTIF: Explorer les changements possibles dans les attributs communautaires des insectes hématophages en fonction de la perturbation des forêts. Nous comparons les modèles de diversité et d'abondance, ainsi que les réponses comportementales de trois assemblages de vecteurs épidémiologiquement distincts sur des sites illustrant divers niveaux de couverture forestière. MÉTHODES: Au cours d'une période de trois ans, nous avons échantillonné des moustiques, des phlébotomes et des moucherons piqueurs dans les habitats forestiers du centre de Panama. Nous avons placé des pièges à lumière CDC dans la canopée de la forêt et dans le sous-étage pour recueillir les femelles en quête de sang. RÉSULTATS: Nous avons collecté un total de 168.405 diptères hématophages adultes, dont 26 genres et 86 espèces. Les environnements de forêt intacts étaient toujours plus diversifiés du point de vue taxonomique que les sites forestiers perturbés, confirmant que les perturbations avaient un impact négatif sur la richesse en espèces. Les espèces de phlébotome et Culicoïdes étaient principalement classés comme climax (spécialiste de la forêt) ou généralistes de perturbation, qui ont tendance à diminuer en abondance parallèlement aux niveaux croissants de perturbation. En revanche, une partie importante des espèces de moustiques, y compris les vecteurs primaires et secondaires de maladies, a été classée dans la catégorie des colons (c'est-à-dire spécialistes des zones perturbées), qui ont tendance à se multiplier vers des habitats forestiers plus perturbés. Dans la forêt vierge, les espèces de phlébotomes et Culicoïdes les plus répandues cloisonnaient la niche verticale en étant actives dans la canopée de la forêt ou dans le sous-étage; pourtant, cette tendance était moins nette dans les habitats perturbés. La plupart des espèces de moustiques n'étaient pas stratifiées verticalement dans leur préférence d'habitat. CONCLUSION: Nous estimons que le risque entomologique et l'exposition associée des agents pathogènes à l'homme est plus élevé dans les scénarios de forêt vierge pour les maladies transmises par les phlébotomes et Culicoïdes, alors que la perturbation des forêts pose un risque entomologique plus élevé pour les infections transmises par les moustiques. Cela suggère que l'hypothèse de l'effet de dilution ne s'applique pas dans les forêts tropicales humides où se reproduisent très abondamment les insectes vecteurs, mais non reconnus, et où des maladies zoonotiques négligées surviennent. Une surveillance entomologique approfondie au niveau de la communauté est donc la clé pour prédire le potentiel de propagation des maladies dans des scénarios de forêt vierge mélangée à des habitats anthropiques. Nous suggérons que les changements dans la qualité des forêts soient également pris en compte lors de l'évaluation du risque de propagation de maladies transmises par les arthropodes.
Asunto(s)
Ceratopogonidae/fisiología , Culicidae/fisiología , Insectos Vectores/fisiología , Psychodidae/fisiología , Bosque Lluvioso , Animales , Mosquitos Vectores/fisiología , Panamá , Densidad de PoblaciónRESUMEN
BACKGROUND: Malaria control in Panama is problematic due to the high diversity of morphologically similar Anopheles mosquito species, which makes identification of vectors of human Plasmodium challenging. Strategies by Panamanian health authorities to bring malaria under control targeting Anopheles vectors could be ineffective if they tackle a misidentified species. METHODS: A rapid mass spectrometry identification procedure was developed to accurately and timely sort out field-collected Neotropical Anopheles mosquitoes into vector and non-vector species. Matrix-assisted laser desorption/ionization (MALDI) mass spectra of highly-abundant proteins were generated from laboratory-reared mosquitoes using different extraction protocols, body parts, and sexes to minimize the amount of material from specimen vouchers needed and optimize the protocol for taxonomic identification. Subsequently, the mass spectra of field-collected Neotropical Anopheles mosquito species were classified using a combination of custom-made unsupervised (i.e., Principal component analysis-PCA) and supervised (i.e., Linear discriminant analysis-LDA) classification algorithms. RESULTS: Regardless of the protocol used or the mosquito species and sex, the legs contained the least intra-specific variability with enough well-preserved proteins to differentiate among distinct biological species, consistent with previous literature. After minimizing the amount of material needed from the voucher, one leg was enough to produce reliable spectra between specimens. Further, both PCA and LDA were able to classify up to 12 mosquito species, from different subgenera and seven geographically spread localities across Panama using mass spectra from one leg pair. LDA demonstrated high discriminatory power and consistency, with validation and cross-validation positive identification rates above 93% at the species level. CONCLUSION: The selected sample processing procedure can be used to identify field-collected Anopheles species, including vectors of Plasmodium, in a short period of time, with a minimal amount of tissue and without the need of an expert mosquito taxonomist. This strategy to analyse protein spectra overcomes the drawbacks of working without a reference library to classify unknown samples. Finally, this MALDI approach can aid ongoing malaria eradication efforts in Panama and other countries with large number of mosquito's species by improving vector surveillance in epidemic-prone sites such as indigenous Comarcas.
Asunto(s)
Anopheles/clasificación , Mosquitos Vectores/clasificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Malaria/transmisión , Panamá , Plasmodium/fisiologíaRESUMEN
Six Phlebotominae sand fly species are incriminated as biological vectors of human pathogens in Panama, but molecular corroboration is still needed. We aim at confirming the identity of Phlebotominae species documented as anthropophilic in Panama. Adult sandflies were collected from August 2010 to February 2012 in Central Panama using CDC light traps. Species confirmation was accomplished through molecular barcodes and allied sequences from GenBank. A total of 53,366 sand fly specimens representing 18 species were collected. Five species were validated molecularly as single phylogenetic clusters, but Psychodopygus thula depicted two genetically divergent lineages, which may be indicative of cryptic speciation.
Asunto(s)
Biodiversidad , Insectos Vectores/genética , Psychodidae/genética , Animales , Insectos Vectores/clasificación , Leishmaniasis Cutánea/transmisión , Panamá , Filogenia , Psychodidae/clasificaciónRESUMEN
PURPOSE: To report the results of an association study between single-nucleotide polymorphisms of the p53 and LTA genes and the risk of proliferative vitreoretinopathy (PVR)/retinal detachment (RD) in a Mexican cohort. METHODS: A total of 380 unrelated subjects were studied, including 98 patients with primary rhegmatogenous RD without PVR, 82 patients with PVR after RD surgery, and 200 healthy, ethnically matched subjects. Genotyping of single-nucleotide polymorphisms rs1042522 (p53 gene) and rs2229094 (LTA gene) was performed by direct nucleotide sequencing. Allele frequencies, genotype frequencies, and Hardy-Weinberg equilibrium were assessed with HaploView software. RESULTS: No significant differences in the allelic distributions of the previously identified risk C allele for LTA rs2229094 were observed between RD subjects and controls (odds ratio [95% confidence interval] = 0.8 [0.5-1.2]; P = 0.3). Conversely, the C allele for rs1042522 in p53 was positively associated with an increased risk for RD (odds ratio [95% confidence interval] = 1.4 [1.01-1.9]; P = 0.04). No significant differences were observed when the subgroup of 82 RD + PVR subjects was compared with the subgroup of 98 patients with RD. CONCLUSION: The C allele for rs1042522 in p53 was genetically associated with a higher risk for RD but not for PVR in this cohort. This is the first association study attempting replication of PVR-associated risk alleles in a nonwhite population.
Asunto(s)
ADN/genética , Predisposición Genética a la Enfermedad , Linfotoxina-alfa/genética , Polimorfismo de Nucleótido Simple , Desprendimiento de Retina/genética , Proteína p53 Supresora de Tumor/genética , Vitreorretinopatía Proliferativa/genética , Anciano , Alelos , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Incidencia , Linfotoxina-alfa/metabolismo , Masculino , México/epidemiología , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Pronóstico , Desprendimiento de Retina/diagnóstico , Desprendimiento de Retina/epidemiología , Factores de Riesgo , Proteína p53 Supresora de Tumor/metabolismo , Vitreorretinopatía Proliferativa/diagnóstico , Vitreorretinopatía Proliferativa/epidemiología , Cuerpo Vítreo/patologíaRESUMEN
Diabetic retinopathy (DR) affects approximately one third of all diabetic subjects and is the leading cause of blindness in young to middle-aged adults in the developed world. While early diagnosis is crucial for preventing DR-associated visual loss, the identification of accessible biomarkers that could lead to presymptomatic recognition of the disease is of great clinical importance. The aim of this work was to investigate the possible involvement of alternative splicing events in DR development by performing a genome-wide transcriptional profiling comparing blood-derived RNA from DR subjects and from diabetic-non DR controls. A total of 95 RNA samples, 67 from patients with bilateral DR and 28 from diabetic patients without DR after a period of at least 10 years with type 2 DM, were compared in a genome-wide transcriptome analysis using the GeneChip® Human Gene 2.0 ST Array which contains probe sets covering all exons of â¼33,500 coding transcripts of annotated genes. Microarray data analysis followed by RT-PCR and cDNA sequencing identified important differential splicing events in TUBD1 (Tubulin, Delta-1) isoforms between DR and DM samples. Specifically, the co-expression of particular TUBD1 isoforms was significantly associated with NPDR risk (p = 0.039 by Pearson's chi-squared test; OR (CI 95%): 8.1 (1.0-72.7)). Analysis of TUBD1 signal pathways and regulating networks using a MetaCore platform showed that HIF-1, a molecule playing an important role in the pathogenesis of DR, is a direct regulator of TUBD1 expression. In conjunction, our data suggest that TUBD1 mRNA isoform expression profile in peripheral blood could be an accessible biomarker for predicting the risk for diabetic retinopathy development.
Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Retinopatía Diabética/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , ARN Mensajero/genética , Tubulina (Proteína)/genética , Adulto , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Retinopatía Diabética/etiología , Retinopatía Diabética/metabolismo , Exones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tubulina (Proteína)/biosíntesisRESUMEN
Three patients with a history of previous pars-plana vitrectomy, 2 of them with perfluoropropane, and 1 with sulfur hexafluoride used, experienced eyelid swelling and pain after travelling to a higher altitude city. Gas was found in the orbit and periocular tissues, causing orbital compartment syndrome in 2 of the patients. The gas persisted on these patients despite surgical intervention, so hyperbaric oxygen therapy was advised. One patient refused, the other patient responded well to this therapy and the gas disappeared. The patient without an orbital compartment syndrome made a full recovery without needing medical or surgical intervention.
Asunto(s)
Enfisema/etiología , Enfermedades Orbitales/etiología , Complicaciones Posoperatorias , Enfermedades de la Retina/cirugía , Vitrectomía/efectos adversos , Adulto , Enfisema/diagnóstico , Humanos , Masculino , Enfermedades Orbitales/diagnóstico , Enfermedades Raras , Tomografía Computarizada por Rayos XRESUMEN
BACKGROUND: Simulation in medicine is an indispensable tool to improve doctors' responses to different situations, enhancing their performance. However, simulation in ophthalmology is a very recent trend, mainly because of the high complexity of developing newer teaching tools, with the need for highly realistic models, mostly in surgical ophthalmic simulation. DISCUSSION: The whole development of simulation in ophthalmology, from the very first attempts that used basic models, to the newer virtual reality models, allows for a comprehensive, faster, and more efficient development of skills necessary in basic and advance procedures in ophthalmology, creating a better learning environment, improving costs, and developing a very promising panorama, in which simulation can be incorporated in teaching programs all around the globe. CONCLUSIONS: Simulation in ophthalmology allows for better results in the formation of ophthalmologists, and it is becoming a new tool to achieve better results in medical and surgical procedures, thus improving outcomes and quality of care.
Asunto(s)
Simulación por Computador , Procedimientos Quirúrgicos Oftalmológicos/educación , Oftalmología/educación , Educación de Postgrado en Medicina/métodos , HumanosRESUMEN
Vector-borne diseases are a major source of morbidity in Panama. Herein, we describe historical usage patterns of synthetic insecticides to control arthropod disease vectors in this country. We examine the influence of interventions by vector control programs on the emergence of insecticide resistance. Chemical control has traditionally focused on two mosquito species: Anopheles albimanus, a major regional malaria vector, and Aedes aegypti, a historical vector of yellow fever, and current vector of dengue, chikungunya, and Zika. Countrywide populations of An. albimanus depict hyperirritability to organochlorine insecticides administered by indoor residual spraying, although they appear susceptible to these insecticides in bioassays settings, as well as to organophosphate and carbamate insecticides in field tests. Populations of Ae. aegypti show resistance to pyrethroids, particularly in areas near Panama City, but the spread of resistance remains unknown in Ae. aegypti and Aedes albopictus. A One Health approach is needed in Panama to pinpoint the insecticide resistance mechanisms including the frequency of knockdown mutations and behavioral plasticity in populations of Anopheles and Aedes mosquitoes. This information is necessary to guide the sustainable implementation of chemical control strategies and the use of modern vector control technologies such as genetically modified mosquitoes, and endosymbiont Wolbachia-based biological control.
Asunto(s)
Insecticidas , Control de Mosquitos , Mosquitos Vectores , Enfermedades Transmitidas por Vectores , Animales , Humanos , Aedes/efectos de los fármacos , Anopheles/efectos de los fármacos , Historia del Siglo XX , Historia del Siglo XXI , Resistencia a los Insecticidas , Insecticidas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores/efectos de los fármacos , Panamá , Enfermedades Transmitidas por Vectores/prevención & controlRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. While research on COVID-19 has mainly focused on its epidemiology, pathogenesis, and treatment, studies on the naso-oropharyngeal microbiota have emerged in the last few years as an overlooked area of research. Here, we analyzed the bacterial community composition of the naso-oropharynx in 50 suspected SARS-CoV-2 cases (43 detected, 7 not detected) from Veraguas province (Panama) distributed across five age categories. Statistical analysis revealed no significant differences (p < 0.05) in bacterial alpha and beta diversities between the groups categorized by SARS-CoV-2 test results, age, or patient status. The genera Corynebacterium, Staphylococcus, Prevotella, Streptococcus, and Tepidiphilus were the most abundant in both detected and not-detected SARS-CoV-2 group. The linear discriminant analysis effect size (LEfSe) for biomarker exploration indicated that Veillonella and Prevotella were enriched in detected and hospitalized patients with SARS-CoV-2 relative to non-detected patients, while Thermoanaerobacterium and Haemophilus were enriched in non-detected patients with SARS-CoV-2. The results also indicated that the genus Corynebacterium was found to decrease in patients with detected SARS-CoV-2 relative to those with non-detected SARS-CoV-2. Understanding the naso-oropharyngeal microbiota provides insights into the diversity, composition, and resilience of the microbial community in patients with SARS-CoV-2.
RESUMEN
We searched for evidence of knockdown resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) mosquitoes from Panama. Conventional PCR was performed on 469 Ae. aegypti and 349 Ae. albopictus. We did not discover kdr mutations in Ae. albopictus, but 2 nonsynonymous kdr mutations, V1016I (found in 101 mosquitoes) and F1534C (found in 29 of the mosquitoes with the V1016I), were detected in Ae. aegypti. These kdr mutations were present in all specimens that were successfully sequenced for both IIS5-S6 and IIIS6 regions, which included samples collected from 8 of the 10 provinces of Panama. No other kdr mutations were found in Ae. aegypti, including V1016G, which has already been reported in Panama. Findings suggest that the V1016I-F1534C variant is prevalent in Panama, which might be related to the introduction and passive movement of mosquitoes as part of the used-tire trade. However, we cannot rule out the possibility that selection on de novo replacement of kdr mutations also partially explains the widespread distribution pattern of these mutations. These 2 ecological and evolutionary processes are not mutually exclusive, though, as they can occur in tandem. Research in Panama needs to calculate the genotypic and allelic frequencies of kdr alleles in local Ae. aegypti populations and to test whether some combinations confer phenotypic resistance or not. Finally, future studies will have to track the introduction and spreading of new kdr mutations in both Aedes species.
RESUMEN
Aedeomyia squamipennis and Culex (Melanoconion) ocossa, two ubiquitous Neotropical mosquito species, are likely involved in the transmission of several bird pathogens in Gamboa, central Panama. However, knowledge on their eco-epidemiological profiles is still incomplete. Our goal in this study was to investigate temporal trends of vector density and their relationship with avian plasmodia prevalence. This information is central to identifying the risk posed by each vector species to the avian community locally. We found that A. squamipennis maintains stable population size across climatic seasons and thus maybe a more efficient vector of avian malaria than C. ocossa. In contrast, C. ocossa, which undergoes considerable population expansion in the rainy season and contraction in the dry season, is likely only an important avian malaria vector during part of the year. This is consistent with the larger number of parasite isolations and Plasmodium cyt b lineages recovered from A. squamipennis than from C. ocossa and might be explained by marked differences in their seasonality and host-feeding preferences. More Plasmodium PCR testing in mosquito communities from other areas of Panama might reveal additional vectors of avian plasmodia.
Asunto(s)
Culicidae/parasitología , Malaria Aviar/parasitología , Malaria Aviar/transmisión , Plasmodium/aislamiento & purificación , Animales , Malaria Aviar/epidemiología , Panamá/epidemiología , Estaciones del AñoRESUMEN
Sylvatic New World mosquitoes (e.g. Old-growth Forest species) can transmit viruses among non-human primates. This could be a continuous source of viral cycling and spillover events from animals to humans, particularly in changing environments. However, most species of Neotropical sylvatic mosquitoes (genera Aedes, Haemagogus, and Sabethes), which include vector and non-vector species, currently lack genomic resources because there is no reliable and accurate approach for creating de novo reference genomes for these insects. This is a major knowledge gap in the biology of these mosquitoes, restricting our ability to predict and mitigate the emergence and spread of novel arboviruses in Neotropical regions. We discuss recent advances and potential solutions for generating hybrid de novo assemblies from vector and non-vector species using pools of consanguineous offspring. We also discussed research opportunities likely to emerge from these genomic resources.
Asunto(s)
Aedes , Mosquitos Vectores , Animales , Mosquitos Vectores/genética , Primates , Aedes/genética , GenómicaRESUMEN
Background: This work aims to analyze the landscape of scientific publications on subjects related to One Health and infectious diseases in Panama. The research questions are: How does the One Health research landscape look like in Panama? Are historical research efforts aligned with the One Health concept? What infectious diseases have received more attention from the local scientific community since 1990? Methods: Boolean searches on the Web of Science, SCOPUS and PubMed were undertaken to evaluate the main trends of publications related to One Health and infectious disease research in the country of Panama, between 1990 and 2019. Results: 4546 publications were identified since 1990, including 3564 peer-reviewed articles interconnected with One Health related descriptors, and 211 articles focused particularly on infectious diseases. A pattern of exponential growth in the number of publications with various contributions from Panamanian institutions was observed. The rate of multidisciplinary research was moderate, whereas those of interinstitutional and intersectoral research ranged from low to very low. Research efforts have centered largely on protozoan, neglected and arthropod-borne diseases with a strong emphasis on malaria, Chagas and leishmaniasis. Conclusion: Panama has scientific capabilities on One Health to tackle future infectious disease threats, but the official collaboration schemes and strategic investment to develop further competencies need to be conciliated with modern times, aka the pandemics era. The main proposition here, addressed to the government of Panama, is to launch a One Health regional center to promote multidisciplinary, interinstitutional and intersectoral research activities in Panama and beyond.
RESUMEN
Here, the main goal is to assess natural infections of Plasmodium spp. in anophelines in a forest reserve from the same region where we previously found a surprisingly high rate (5.2%) of plasmodia infections (n = 25) in Kerteszia mosquitoes (N = 480) on the slopes of Serra do Mar, Atlantic Forest, Brazil. The mosquito collection sampling was carried out at the Legado das Águas Forest Reserve using CDC light traps and Shannon traps at night (5-10 pm) in 3-day collections in November 2021 and March, April, May, and November 2022. The captured specimens were morphologically identified at the species level and had their genomic DNA extracted in pools of up to 10 mosquitoes/pool. Each pool was tested using 18S qPCR and cytb nested PCR plus sequencing. A total of 5301 mosquitoes, mostly belonging to the genus Kerteszia (99.7%), were sampled and sorted into 773 pools. Eight pools positive for Plasmodium spp. were identified: four for Plasmodium spp., one for P. vivax or P. simium, one for P. malariae or P. brasilianum, and two for the P. falciparum-like parasite. After Sanger sequencing, two results were further confirmed: P. vivax or P. simium and P. malariae or P. brasilianum. The minimum infection rate for Kerteszia mosquitoes was 0.15% (eight positive pools/5285 Kerteszia mosquitoes). The study reveals a lower-than-expected natural infection rate (expected = 5.2% vs. observed = 0.15%). This low rate relates to the absence of Alouatta monkeys as the main simian malaria reservoir in the studied region. Their absence was due to a significant population decline following the reemergence of yellow fever virus outbreaks in the Atlantic Forest from 2016 to 2019. However, this also indicates the existence of alternative reservoirs to infect Kerteszia mosquitoes. The found zoonotic species of Plasmodium, including the P. falciparum-like parasite, may represent a simian malaria risk and thus a challenge for malaria elimination in Brazil.
RESUMEN
Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated.
Especies extendidas frecuentemente tiene diversidad genética no reconocida, y investigando los factores asociados con esta variación críptica puede ayudarnos a entender las fuerzas que impulsan la diversificación. Aquí, identificamos especies crípticas potenciales basadas en un conjunto de datos de códigos de barras de ADN mitocondrial de 2,333 individuos de aves de Panama en 429 especies, representando 391 (59%) de las 659 especies de aves terrestres residentes del país, además de algunas aves acuáticas muestreada de manera oportunista. Adicionalmente, complementamos estos datos con secuencias mitocondriales disponibles públicamente de otros loci, tal como ND2 o citocroma b, obtenidos de los genomas mitocondriales completos de 20 taxones. Utilizando los números de identificación de código de barras (en ingles: BINs), un sistema taxonómico numérico que proporcina una estimación imparcial de la diversidad potencial a nivel de especie, encontramos especies crípticas putativas en 19% de las especies de aves terrestres, lo que destaca la diversidad oculta en la avifauna bien descrita de Panamá. Aunque algunos de estos eventos de divergencia conciden con características geográficas que probablemente aislaron las poblaciones, la mayoría (74%) de la divergencia en las tierras bajas se encuentra entre las poblaciones orientales y occidentales. El tiempo de esta divergencia no coincidió entre los taxones, sugiriendo que eventos históricos tales como la formación del Istmo de Panamá y los ciclos climáticos del pleistoceno, no fueron los principales impulsores de la especiación. En cambio, observamos asociaciones fuertes entre las características ecológicas y la divergencia mitocondriale: las especies del bosque, sotobosque, con una dieta insectívora, y con territorialidad fuerte mostraton múltiple BINs probables. Adicionalmente, el índice mano-ala, que está asociado a la capacidad de dispersión, fue significativamente menor en las especies con BINs multiples, sugiriendo que la capacidad de dispersión tiene un rol importamente en la generación de la diversidad de las aves neotropicales. Estos resultos demonstran la necesidad de que estudios evolutivos de las comunidades de aves tropicales consideren los factores ecológicos en conjunto con las explicaciones geográficos.
RESUMEN
Diabetic retinopathy (DR) is the major microvascular complication of diabetes and causes vitreous traction and intraretinal hemorrhages leading to retinal detachment and total blindness. The evolution of diabetes is related to exacerbating inflammation caused by hyperglycemia and activation of inflammatory cells. Neutrophils are cells able to release structures of extracellular DNA and proteolytic enzymes called extracellular traps (NETs), which are associated with the persistence of inflammation in chronic pathologies. The purpose of the study was to determine the usefulness of neutrophil traps as indicators of DR progression in patients with type 2 diabetes (T2DM). We performed a case-control study of seventy-four cases classified into five groups (non-proliferative DR, mild, moderate, severe, and proliferative) and fifteen healthy controls. We found correlations between NETs and a diagnostic time of T2DM (r = 0.42; p < 0.0001), fasting glucose (r = 0.29; p < 0.01), glycated hemoglobin (HbA1c) (r = 0.31; p < 0.01), estimated glomerular filtration rate (eGFR) (r = -0.29; p < 0.01), and plasma osmolarity (r = 0.25; p < 0.01). These results suggest that due to NETs being associated with clinical indicators, such as HbA1c and eGFR, and that NETs are also associated with DR, clinical indicators might be explained in part through an NET-mediated inflammation process.
RESUMEN
PURPOSE: To investigate the association of age-related macular degeneration (AMD)-high risk alleles of the complement factor H (CFH), complement factor B (CFB), complement component 2 (C2), complement component 3 (C3), and age-related maculopathy susceptibility 2 (ARMS2) genes in a Mexican population for the first time. METHODS: Genotyping was performed for the Y402H variant of CFH, for the L9H, R32Q, and K565E variants of CFB, the E318D variant of C2, the A69S variant of ARMS2, and the R102G variant of C3 in 159 Mexican mestizo patients at advanced stages of AMD, i.e., CARMS (Clinical Age-Related Maculopathy Staging System) grade 4 or 5. The frequency of these variants was also investigated in a group of 152 control subjects without AMD. Genomic DNA was extracted from blood leukocytes, and genotyping was performed using PCR followed by direct sequencing. Allele-specific restriction enzyme digestion was used to detect the R102G polymorphism in C3. RESULTS: There were significant differences in the allelic distribution between the two groups for CFH Y402H (p=1×10(-5)), ARMS A69S (p=4×10(-7)), and CFB R32Q (p=0.01). The odds ratios (95% confidence interval) obtained for the risk alleles of these three variants were 3.8 (2.4-5.9), 3.04 (2.2-4.3), and 2.5 (1.1-5.7), respectively. Haplotype analysis including the two most significantly associated alleles (CFH Y402H and ARMS A69S) indicated that the C-T combination conferred an odds ratio (95% confidence interval) of 6.9 (3.2-14.8). The exposed attributable risk for this particular haplotype was 85.5%. CONCLUSIONS: This is the first case-control investigation of AMD-high risk alleles in a Latino population. Our results support that CFH, ARMS2, and CFB AMD-risk alleles are consistently associated with the disease, even in ethnic groups with a complex admixture of ancestral populations such as Mexican mestizos.