Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; : e202400974, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871646

RESUMEN

Supramolecular hydrogels play a pivotal role in many fields of biomedical research, including emerging applications in designing advanced tools for point-of-care testing, clinical diagnostics, and lab-on-chip analysis. This review outlines the growing relevance of supramolecular hydrogels in biosensing and bioassay devices, highlighting recent advancements that deliver increased sensitivity, real-time monitoring, and multiplexing capabilities through the distinctive properties of these nanomaterials. Furthermore, the exploration extends to additional applications, such as using hydrogels as three-dimensional matrices for cell-based assays.

2.
Chirality ; 34(8): 1053-1064, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35596548

RESUMEN

1,4-Benzoxathiane, 2- or 3-substituted, is an important scaffold, and despite its presence in several therapeutic agents, it is chemically unexploited. Furthermore, only a few examples in literature report this moiety in its enantiopure form. Here, taking advantage to the formation of diastereomeric amides by using (S)-phenylethylamine, which show significant differences in terms of 1 H-nuclear magnetic resonance (NMR) spectra and other physical chemical properties, we defined for the first time the absolute configuration of each amide, both 2- or 3-substituted. Moreover, the diastereomeric amides were further hydrolyzed in acid conditions, letting to the achievement of the corresponding 1,4-benzoxathian carboxylic acids.


Asunto(s)
Amidas , Ácidos Carboxílicos , Amidas/química , Ácidos Carboxílicos/química , Espectroscopía de Resonancia Magnética , Fenetilaminas , Estereoisomerismo
3.
Adv Sci (Weinh) ; : e2400533, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822532

RESUMEN

Extracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating. Yet, the heterogeneous nature of EVs poses challenges, as proposed markers may not be as universally present as thought, raising concerns about biomarker screening reliability. This issue extends to EV-mimics, where conventional methods may lack applicability. Addressing these challenges, the study reports on Membrane Sensing Peptides (MSP) as pan-vesicular affinity ligands for both EVs and their non-canonical analogs, streamlining capture and phenotyping through Single Molecule Array (SiMoA). MSP ligands enable direct analysis of circulating EVs, eliminating the need for prior isolation. Demonstrating clinical translation, MSP technology detects an EV-associated epitope signature in serum and plasma, distinguishing myocardial infarction from stable angina. Additionally, MSP allow analysis of tetraspanin-lacking Red Blood Cell-derived EVs, overcoming limitations associated with antibody-based methods. Overall, the work underlines the value of MSP as complementary tools to antibodies, advancing EV analysis for clinical diagnostics and beyond, and marking the first-ever peptide-based application in SiMoA technology.

4.
ChemMedChem ; 18(17): e202300236, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389978

RESUMEN

Cell-penetrating peptides (CPPs) encompass a class of peptides that possess the remarkable ability to cross cell membranes and deliver various types of cargoes, including drugs, nucleic acids, and proteins, into cells. For this reason, CPPs are largely investigated in drug delivery applications in the context of many diseases, such as cancer, diabetes, and genetic disorders. While sharing this functionality and some common structural features, such as a high content of positively charged amino acids, CPPs represent an extremely diverse group of elements, which can differentiate under many aspects. In this review, we summarize the most common characteristics of CPPs, introduce their main distinctive features, mechanistic aspects that drive their function, and outline the most widely used techniques for their structural and functional studies. We highlight current gaps and future perspectives in this field, which have the potential to significantly impact the future field of drug delivery and therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA