Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732023

RESUMEN

The gradual loss of kidney function due to increasing age is accompanied by structural changes such as fibrosis of the tissue. The underlying molecular mechanisms are complex, but not yet fully understood. Non-fibrillar collagen type VIII (COL8) could be a potential factor in the fibrosis processes of the aging kidney. A pathophysiological significance of COL8 has already been demonstrated in the context of diabetic kidney disease, with studies showing that it directly influences both the development and progression of renal fibrosis occurring. The aim of this study was to investigate whether COL8 impacts age-related micro-anatomical and functional changes in a mouse model. The kidneys of wild-type (Col8-wt) and COL8-knockout (Col8-ko) mice of different age and sex were characterized with regard to the expression of molecular fibrosis markers, the development of nephrosclerosis and renal function. The age-dependent regulation of COL8 mRNA expression in the wild-type revealed sex-dependent effects that were not observed with collagen IV (COL4). Histochemical staining and protein analysis of profibrotic cytokines TGF-ß1 (transforming growth factor) and CTGF (connective tissue growth factor) in mouse kidneys showed significant age effects as well as interactions of the factors age, sex and Col8 genotype. There were also significant age and Col8 genotype effects in the renal function data analyzed by urinary cystatin C. In summary, the present study shows, for the first time, that COL8 is regulated in an age- and sex-dependent manner in the mouse kidney and that the expression of COL8 influences the severity of age-induced renal fibrosis and function.


Asunto(s)
Envejecimiento , Colágeno Tipo VIII , Factor de Crecimiento del Tejido Conjuntivo , Fibrosis , Riñón , Animales , Femenino , Masculino , Ratones , Envejecimiento/metabolismo , Colágeno Tipo VIII/metabolismo , Colágeno Tipo VIII/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética
2.
Clin Sci (Lond) ; 133(3): 545-550, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30760641

RESUMEN

Interstitial fibrosis is a typical feature of end-stage renal diseases, regardless of the initial cause of kidney injury. Epithelial-to-mesenchymal transition (EMT) is a mechanism that is thought to play a role in generating the interstitial matrix-producing myofibroblasts and is prominently induced by the transforming growth factor-ß 1 (TGF-ß1). TGF-ß1 signals through a variety of Smad and non-Smad signaling pathways, including the mitogen-activated protein kinase (MAPK) pathways. In a study published in a recent issue of Clinical Science (Clin. Sci. (2018) 132(21),2339-2355), Li et al. investigated the potential role of the Mitogen-activated protein kinase phosphatase 2 (MKP2), also known as Dusp4, in the control of EMT and renal fibrosis. Based on results obtained with an animal model of kidney fibrosis and a proximal tubular epithelial cell line system, the authors put forward a role for MKP2 as a negative feedback regulator of TGF-ß1-induced EMT and fibrosis in the kidney. Intriguingly, MKP2 is found to down-regulate activity of c-Jun, but not that of other MAPKs, extracellular signal-regulated kinases or p38, implying a role for c-Jun N-terminal kinase-dependent signaling in renal fibrosis. In this commentary, I discuss the findings of Li and co-workers in the context of the recent literature placing a focus on potential clinical/therapeutic implications.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1 , Animales , Células Epiteliales , Fibrosis , Humanos , Sistema de Señalización de MAP Quinasas
3.
Cell Tissue Res ; 372(1): 115-133, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29209813

RESUMEN

Extracellular matrix deposition during tubulointerstitial fibrosis (TIF), a central pathological process in patients with diabetic nephropathy (DN), is driven by locally activated, disease-relevant myofibroblasts. Myofibroblasts can arise from various cellular sources, e.g., tubular epithelial cells via a process named epithelial-to-mesenchymal transition (EMT). Transforming growth factor beta 1 (TGF-ß1) and its downstream Smad signaling play a critical role in both TIF and EMT. Whereas Smad3 is one central mediator, the role of the other prominently expressed variant, Smad2, is not completely understood. In this study, we sought to analyze the role of renal Smad2 in the development of TIF and EMT during streptozotocin-induced DN by using a fibroblast-specific protein 1 (FSP1)-promotor-driven SMAD2 knockout mouse model with decreased tubular, endothelial, and interstitial Smad2 expression. In contrast to wild-type diabetic mice, diabetic SMAD2 knockout mice showed the following features: (1) significantly reduced DN and TIF (shown by KIM1 expression; periodic acid Schiff staining; collagen I and III, fibronectin, and connective tissue growth factor deposition); (2) significantly reduced tubular EMT-like changes (e.g., altered Snail1, E-cadherin, matrix metalloproteinase 2, and vimentin deposition); and (3) significantly decreased expression of myofibroblast markers (α-smooth muscle actin, FSP1). As one mechanism for the protection against diabetes-induced TIF and EMT, decreased Smad3 protein levels and, as a possible consequence, reduced TGF-ß1 levels were observed in diabetic SMAD2 knockout mice. Our findings thus support the important role of Smad2 for pro-fibrotic TGF-ß/Smad3 signaling in experimental DN.


Asunto(s)
Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Túbulos Renales/patología , Proteína de Unión al Calcio S100A4/metabolismo , Proteína Smad2/metabolismo , Animales , Biomarcadores/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Fibrosis , Eliminación de Gen , Túbulos Renales/metabolismo , Ratones Noqueados , Estreptozocina , Factor de Crecimiento Transformador beta/metabolismo
4.
Nephrol Dial Transplant ; 32(12): 2017-2034, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28992060

RESUMEN

BACKGROUND: Progressive diabetic nephropathy (DN) is characterized by tubulointerstitial fibrosis that is caused by accumulation of extracellular matrix. Induced by several factors, matrix-producing myofibroblasts may to some extent originate from tubular cells by epithelial-to-mesenchymal transition (EMT). Although previous data document that activation of hypoxia-inducible factor (HIF) signalling can be renoprotective in acute kidney disease, this issue remains controversial in chronic kidney injury. Here, we studied whether DN and EMT-like changes are ameliorated in a mouse model of type 2 diabetes mellitus with increased stability and activity of the HIF. METHODS: We used db/db mice that were crossed with transgenic mice expressing reduced levels of mitogen-activated protein kinase organizer 1 (MORG1), a scaffold protein interacting with prolyl hydroxylase domain 3 (PHD3), because of deletion of one MORG1 allele. RESULTS: We found significantly reduced nephropathy in diabetic MORG1+/- heterozygous mice compared with the diabetic wild-types (db/dbXMORG1+/+). Furthermore, we demonstrated that EMT-like changes in the tubulointerstitium of diabetic wild-type MORG1+/+ mice are present, whereas diabetic mice with reduced expression of MORG1 showed significantly fewer EMT-like changes. CONCLUSIONS: These findings reveal that a deletion of one MORG1 allele inhibits the development of DN in db/db mice. The data suggest that the diminished interstitial fibrosis in these mice is a likely consequence of suppressed EMT-like changes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/prevención & control , Transición Epitelial-Mesenquimal , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Transducción de Señal
5.
Am J Physiol Renal Physiol ; 308(6): F511-21, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25550320

RESUMEN

Acute kidney injury is a common complication of critically ill patients and may occur as a result of various factors and coexisting previous illnesses. Some pathophysiological responses seen in critical illness can be similar to the human physiological response to extreme environmental challenges, such as hypoxia from reduced oxygen availability at high altitudes (systemic hypoxia). Due to oxygen deficiency, mammalian cells activate the transcriptional factor hypoxia-inducible factor (HIF); its degradation is regulated by prolyl hydroxylase 3 (PHD3) in interaction with the scaffold protein MAPK organizer 1 (Morg1). While homozygous Morg1(-/-) mice are embryonically lethal, the kidneys of heterozygous Morg1(+/-) mice reveal elevated HIF protein levels and increased serum erythropoietin compared with wild-type Morg1(+/+) mice. In this study, we exposed wild-type and Morg1(+/-) mice to 10% oxygen in a hypoxic chamber for 3 days. This reduced oxygen concentration leads to a deterioration of renal function, an increase in renal inflammation, and significantly more tubular damage and apoptosis in the kidneys of wild-type (Morg1(+/+)) mice. In sharp contrast, Morg1(+/-) kidneys were protected against systemic hypoxia. They show significantly less renal lesions, reduced or no inflammation, and less tubular damage and apoptosis. Thus short-term systemic and subsequently renal hypoxia which may occur in many patients in the intensive care unit induces in wild-type mice renal injury, which is ameliorated by Morg1 deficiency. Our findings suggest that therapeutical manipulation of Morg1 may be an interesting novel target to prevent hypoxia-associated renal damage.


Asunto(s)
Lesión Renal Aguda/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Lesión Renal Aguda/etiología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citocinas/metabolismo , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones Endogámicos C57BL
6.
Eur J Clin Invest ; 45(3): 294-302, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25615026

RESUMEN

BACKGROUND: Renal hypoxia is known to play an important role in the pathophysiology of acute renal injury as well as in chronic kidney diseases. The mediators of hypoxia are the transcription factors HIF (hypoxia-inducible factors), that are highly regulated. Under normoxic conditions constitutively expressed HIF-α subunits are hydroxylated by prolyl hydroxylases (PHD1, PHD2, and PHD3) and subsequently degraded by proteasomes. MATERIALS AND METHODS: This narrative review is based on the material searched for and obtained via PubMed and MEDLINE up to January 2015. RESULTS: The MAPK organizer 1 (Morg1) has been identified to act as a scaffold protein of PHD3 and suppression of Morg1 leads to the stabilization of HIF-α, which forms in the absence of oxygen a heterodimer with HIF-ß, translocates to the nucleus and promotes the transcription of HIF target genes. CONCLUSIONS: This review summarizes the current knowledge regarding the role of hypoxia, HIF signalling, and Morg1 in acute and chronic renal injury.


Asunto(s)
Lesión Renal Aguda/etiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Hipoxia/complicaciones , Translocador Nuclear del Receptor de Aril Hidrocarburo/fisiología , Eritropoyetina/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Fallo Renal Crónico/etiología , Transducción de Señal/fisiología
7.
Nephrol Dial Transplant ; 29 Suppl 1: i37-i45, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24030832

RESUMEN

Transforming growth factor-ß (TGF-ß) is a profibrotic cytokine found in chronic renal diseases, which initiates and modulates a variety of pathophysiological processes. It is synthesized by many renal cell types and exerts its biological functions through a variety of signalling pathways, including the Smad and MAPK pathways. In renal diseases, TGF-ß is upregulated and induces renal cells to produce extracellular matrix proteins leading to glomerulosclerosis as well as tubulointerstitial fibrosis. Different types of renal cells undergo different pathophysiological changes induced by TGF-ß, leading to apoptosis, hypertrophy and abnormalities of podocyte foot processes, which ultimately result in renal dysfunction. In this review, we describe the effects of TGF-ß on different renal cell types and the means by which TGF-ß participates in the pathomechanisms of glomerular and tubulointerstitial diseases.


Asunto(s)
Enfermedades Renales/diagnóstico , Factor de Crecimiento Transformador beta/metabolismo , Animales , Progresión de la Enfermedad , Humanos , Enfermedades Renales/metabolismo , Transducción de Señal
8.
Front Immunol ; 15: 1469353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39450175

RESUMEN

Introduction: Up to 40% of patients with typical hemolytic-uremic syndrome (HUS), characterized by microangiopathic hemolytic anemia and acute kidney injury (AKI), develop long-term consequences, most prominently chronic kidney disease (CKD). The transition from AKI to CKD, particularly in the context of HUS, is not yet fully understood. The objective of this study was to establish and characterize a Shiga toxin (Stx)-induced long-term HUS model to facilitate the study of mechanisms underlying the AKI-to-CKD transition. Methods: C57BL/6J mice were subjected to 5, 10, 15, or 20 ng/kg Stx on days 0, 3, and 6 of the experiment and were sacrificed on day 14 or day 21 to identify the critical time of turnover from the acute to the chronic state of HUS disease. Results: Acute disease, indicated by weight loss, plasma neutrophil gelatinase-associated lipocalin (NGAL) and urea, and renal neutrophils, diminished after 14 days and returned to sham level after 21 days. HUS-associated hemolytic anemia transitioned to non-hemolytic microcytic anemia along with unchanged erythropoietin levels after 21 days. Renal cytokine levels indicated a shift towards pro-fibrotic signaling, and interstitial fibrosis developed concentration-dependently after 21 days. While Stx induced the intrarenal invasion of pro-inflammatory M1 and pro-fibrotic M2 macrophages after 14 days, pro-fibrotic M2 macrophages were the dominant phenotype after 21 days. Conclusion: In conclusion, we established and characterized the first Stx-induced long-term model of HUS. This tool facilitates the study of underlying mechanisms in the early AKI-to-CKD transition following HUS and allows the testing of compounds that may protect patients with AKI from developing subsequent CKD.


Asunto(s)
Lesión Renal Aguda , Modelos Animales de Enfermedad , Síndrome Hemolítico-Urémico , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica , Toxina Shiga , Animales , Síndrome Hemolítico-Urémico/inducido químicamente , Síndrome Hemolítico-Urémico/etiología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Ratones , Insuficiencia Renal Crónica/etiología , Toxina Shiga/toxicidad , Masculino , Citocinas/metabolismo , Progresión de la Enfermedad , Riñón/patología , Lipocalina 2
9.
Am J Physiol Renal Physiol ; 305(6): F911-8, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23825071

RESUMEN

Podocyte damage and accumulation of advanced glycation end products (AGEs) are characteristics of diabetic nephropathy (DN). The pathophysiology of AGE-challenged podocytes, such as hypertrophy, apoptosis, and reduced cell migration, is closely related to the induction of the cell cycle inhibitor p27(Kip1) and to the inhibition of neuropilin 1 (NRP1). We have previously demonstrated that treatment with erythropoietin is associated with protective effects for podocytes in vitro. db/db mice with overt DN aged 15-16 wk were treated with either placebo, epoetin-ß, or continuous erythropoietin receptor activator (CERA) for 2 wk. db/db mice compared with nondiabetic db/m control mice revealed the expected increases in body weight, blood glucose, albumin-to-creatinine ratio, and AGE accumulation. Whereas there were no differences in body weight, hyperglycemia and AGEs were observed among diabetic mice that received epoetin-ß compared with CERA and placebo treatment, indicating that epoetin-ß/CERA treatment does not interfere with the development of diabetes in this model. However, the albumin-to-creatinine ratio was significantly lower in db/db mice treated with epoetin-ß or CERA. Furthermore, kidney weights in db/db mice were increased compared with db/m control mice, indicating renal hypertrophy, whereas the increase in renal weight in epoetin-ß- or CERA-treated db/db mice was significantly lower than in placebo-treated control mice. Induction of p27(Kip1) and suppression of NRP1 were significantly reduced in the epoetin-ß treatment group versus the CERA treatment group. Furthermore, erythropoietin treatment diminished the diabetes-induced podocyte loss. Together, independently from hematopoetic effects, epoetin-ß or CERA treatment was associated with protective changes in DN, especially that NRP1 and p27(Kip1) expressions as well as numbers of podocytes returned to normal levels. Our data show, for the first time, that medication of overt DN with erythropoietin for a short time can ameliorate albuminuria and podocyte loss.


Asunto(s)
Nefropatías Diabéticas/tratamiento farmacológico , Eritropoyetina/uso terapéutico , Polietilenglicoles/uso terapéutico , Albuminuria/prevención & control , Animales , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/biosíntesis , Nefropatías Diabéticas/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Masculino , Ratones , Neuropilina-1/antagonistas & inhibidores , Podocitos/efectos de los fármacos , Podocitos/fisiología , Proteínas Recombinantes/uso terapéutico
10.
J Clin Med ; 12(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37109170

RESUMEN

Differences between the sexes exist in many diseases, and in most cases, being a specific sex is considered a risk factor in the development and/or progression. This is not quite so clear in diabetic kidney disease (DKD), the development and severity of which depends on many general factors, such as the duration of diabetes mellitus, glycemic control, and biological risk factors. Similarly, sex-specific factors, such as puberty or andro-/menopause, also determine the microvascular complications in both the male and female sex. In particular, the fact that diabetes mellitus itself influences sex hormone levels, which in turn seem to be involved in renal pathophysiology, highlights the complexity of the question of sex differences in DKD. The major objective of this review is to summarize and simplify the current knowledge on biological sex-related aspects in the development/progression but also treatment strategies of human DKD. It also highlights findings from basic preclinical research that may provide explanations for these differences.

11.
Biomedicines ; 11(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37760919

RESUMEN

Epigenetic alterations contribute to the pathogenesis of chronic diseases such as diabetes mellitus. Previous studies of our group showed that diabetic conditions reduce the trimethylation of H3K27 in podocytes in a NIPP1- (nuclear inhibitor of protein phosphatase 1) and EZH2- (enhancer of zeste homolog 2) dependent manner. It has been previously reported that in differentiated podocytes, hypoxia decreases the expression of slit diaphragm proteins and promotes foot process effacement, thereby contributing to the progression of renal disease. The exact mechanisms are, however, not completely understood. The aim of this study was to analyze the role of hypoxia and HIFs (hypoxia-inducible factor) on epigenetic changes in podocytes affecting NIPP1, EZH2 and H3K27me3, in vitro and in vivo. In vivo studies were performed with mice exposed to 10% systemic hypoxia for 3 days or injected with 3,4-DHB (dihydroxybenzoate), a PHD (prolyl hydroxylase) inhibitor, 24 h prior analyses. Immunodetection of H3K27me3, NIPP1 and EZH2 in glomerular podocytes revealed, to the best of our knowledge for the first time, that hypoxic conditions and pharmacological HIFs activation significantly reduce the expression of NIPP1 and EZH2 and diminish H3K27 trimethylation. These findings are also supported by in vitro studies using murine-differentiated podocytes.

12.
Front Physiol ; 14: 1154551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064891

RESUMEN

Introduction: Advanced glycation end products (AGEs) are a heterogeneous group of molecules with potential pathophysiological effects on the kidneys. Fibrosis together with the accumulation of AGEs has been investigated for its contribution to age-related decline in renal function. AGEs mediate their effects in large parts through their interactions with the receptor for AGEs (RAGE). RAGE is a transmembrane protein that belongs to the immunoglobulin superfamily and has the ability to interact with multiple pro-inflammatory/pro-oxidative ligands. The role of RAGE in aging kidneys has not been fully characterized, especially for sex-based differences. Methods: Therefore, we analyzed constitutive RAGE knockout (KO) mice in an age- and sex-dependent manner. Paraffin-embedded kidney sections were used for histological analysis and protein expression of fibrosis and damage markers. RNA expression analysis from the kidney cortex was done by qPCR for AGE receptors, kidney damage, and early inflammation/fibrosis factors. FACS analysis was used for immune cell profiling of the kidneys. Results: Histological analysis revealed enhanced infiltration of immune cells (positive for B220) in aged (>70 weeks old) KO mice in both sexes. FACS analysis revealed a similar pattern of enhanced B-1a cells in aged KO mice. There was an age-based increase in pro-fibrotic and pro-inflammatory markers (IL-6, TNF, TGF-ß1, and SNAIL1) in KO male mice that presumably contributed to renal fibrosis and renal damage (glomerular and tubular). In fact, in KO mice, there was an age-dependent increase in renal damage (assessed by NGAL and KIM1) that was accompanied by increased fibrosis (assessed by CTGF). This effect was more pronounced in male KO mice than in the female KO mice. In contrast to the KO animals, no significant increase in damage markers was detectable in wild-type animals at the age examined (>70 weeks old). Moreover, there is an age-based increase in AGEs and scavenger receptor MSR-A2 in the kidneys. Discussion: Our data suggest that the loss of the clearance receptor RAGE in male animals further accelerates age-dependent renal damage; this could be in part due to an increase in AGEs load during aging and the absence of protective female hormones. By contrast, in females, RAGE expression seems to play only a minor role when compared to tissue pathology.

13.
Biomolecules ; 13(7)2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37509073

RESUMEN

The mitogen-activated protein kinase organizer 1 (MORG1) is a scaffold molecule for the ERK signaling pathway, but also binds to prolyl-hydroxylase 3 and modulates HIFα expression. To obtain further insight into the role of MORG1, knockout-mice were generated by homologous recombination. While Morg1+/- mice developed normally without any apparent phenotype, there were no live-born Morg1-/- knockout offspring, indicating embryonic lethality. The intrauterine death of Morg1-/- embryos is caused by a severe failure to develop brain and other neuronal structures such as the spinal cord and a failure of chorioallantoic fusion. On E8.5, Morg1-/- embryos showed severe underdevelopment and proliferative arrest as indicated by absence of Ki67 expression, impaired placental vascularization and altered phenotype of trophoblast giant cells. On E9.5, the malformed Morg1-/- embryos showed defective turning into the final fetal position and widespread apoptosis in many structures. In the subsequent days, apoptosis and decomposition of embryonic tissue progressed, accompanied by a massive infiltration of inflammatory cells. Developmental aberrancies were accompanied by altered expression of HIF-1/2α and VEGF-A and caspase-3 activation in embryos and extraembryonic tissues. In conclusion, the results suggest a multifactorial process that causes embryonic death in homozygous Morg1 mutant mice, described here, to the best of our knowledge, for the first time.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Placenta , Animales , Femenino , Ratones , Embarazo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/metabolismo , Ratones Noqueados , Placenta/metabolismo , Transducción de Señal
14.
Am J Physiol Renal Physiol ; 303(5): F733-45, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22759394

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is an important mechanism of renal tubulo-interstitial fibrosis in diabetic nephropathy (DN). Inducers of EMT, among others, are transforming growth factor-ß(1) (TGF-ß(1)) as well as extracellular collagens. In renal cells of diabetic mice and in kidneys of patients with DN, the expression of collagen VIII (gene: Col8α1/α2) is enhanced and characteristic features of DN in streptozotocin (STZ)-induced diabetic Col8α1/α2 knockout-(KO) mice are attenuated compared with diabetic wild-type mice. This study aimed to investigate whether collagen type VIII may influence the induction of EMT. DN was induced in wild-type and Col8α1/α2-KO mice using the established and widely accepted low-dose STZ model [treatment for 5 consecutive days (50 mg/kg)]. Healthy and diabetic mice were analyzed for changes in renal function and the expression of EMT-related genes and proteins. Renal morphology, fibrosis, and various EMT markers were studied in kidneys using immunohistological and molecular biological methods. Knockout of Col8α1/α2 attenuated albuminuria, extracellular matrix production, as well as fibrosis. Furthermore, the kidneys of diabetic Col8α1/α2-KO mice showed a marked reduction in interstitial myofibroblasts, and in tubular cells the inhibition of the expression of epithelial markers as well as the expression of typical mesenchymal markers was reduced. The present study demonstrates that in contrast to diabetic wild-type mice EMT-like changes were attenuated in diabetic Col8α1/α2-KO mice, which indicates that either collagen VIII may be one of the major inducers of EMT-like changes in kidneys of diabetic wild-type mice or/possibly the lack of Col8α1/α2 disrupts TGF-ß(1)-induced EMT-like changes.


Asunto(s)
Colágeno Tipo VIII/fisiología , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Animales , Colágeno Tipo VIII/genética , Riñón/patología , Riñón/fisiopatología , Ratones , Ratones Noqueados , Factor de Crecimiento Transformador beta1/metabolismo
15.
J Am Soc Nephrol ; 22(4): 649-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21372207

RESUMEN

Mesangial cells in diabetic mice and human kidneys with diabetic nephropathy exhibit increased type VIII collagen, a nonfibrillar protein that exists as a heterodimer composed of α1(VIII) and α2(VIII), encoded by Col8a1 and Col8a2, respectively. Because TGF-ß1 promotes the development of diabetic glomerulosclerosis, we studied whether type VIII collagen modulates the effects of TGF-ß1 in mesangial cells. We obtained primary cultures of mesangial cells from wild-type, doubly heterozygous (Col8a1(+/-)/Col8a2(+/-)), and double-knockout (Col8a1(-/-)/Col8a2(-/-)) mice. TGF-ß1 bound normally to double-knockout mesangial cells. In wild-type mesangial cells, TGF-ß1 inhibited proliferation, but in double-knockout cells, it stimulated proliferation, promoted cell cycle progression, and reduced apoptosis; we could reverse this effect by reconstituting α1(VIII). Furthermore, in wild-type cells, TGF-ß1 mainly stimulated the Smad pathways, whereas in double-knockout cells, it activated the MAPK and PI3K/Akt pathways and induced expression of fibroblast growth factor 21 (FGF21). Inhibiting FGF21 expression by either interfering with activation of the MAPK and PI3K/Akt pathways or by FGF21 siRNA attenuated the TGF-ß1-induced proliferation of double-knockout mesangial cells. In vivo, diabetic double-knockout mice had significantly higher expression of renal FGF21 mRNA and protein compared with diabetic wild-type mice. Immunohistochemistry revealed strong expression of FGF21 in both glomerular (mesangial) and tubular cells of diabetic mice. Taken together, these data suggest that type VIII collagen significantly modulates the effect of TGF-ß1 on mesangial cells and may therefore play a role in the pathogenesis of diabetic nephropathy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Colágeno Tipo VIII/metabolismo , Células Mesangiales/metabolismo , Células Mesangiales/patología , Factor de Crecimiento Transformador beta1/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Células Cultivadas , Colágeno Tipo VIII/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/fisiopatología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Factores de Crecimiento de Fibroblastos/metabolismo , Células Mesangiales/efectos de los fármacos , Ratones , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Estreptozocina , Factor de Crecimiento Transformador beta1/fisiología
16.
Biomedicines ; 10(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35052710

RESUMEN

Renal fatty acid (FA) metabolism is severely altered in type 1 and 2 diabetes mellitus (T1DM and T2DM). Increasing evidence suggests that altered lipid metabolism is linked to tubulointerstitial fibrosis (TIF). Our previous work has demonstrated that mice with reduced MORG1 expression, a scaffold protein in HIF and ERK signaling, are protected against TIF in the db/db mouse model. Renal TGF-ß1 expression and EMT-like changes were reduced in mice with single-allele deficiency of MORG1. Given the well-known role of HIF and ERK signaling in metabolic regulation, here we examined whether protection was also associated with a restoration of lipid metabolism. Despite similar features of TIF in T1DM and T2DM, diabetes-associated changes in renal lipid metabolism differ between both diseases. We found that de novo synthesis of FA/cholesterol and ß-oxidation were more strongly disrupted in T1DM, whereas pathological fat uptake into tubular cells mediates lipotoxicity in T2DM. Thus, diminished MORG1 expression exerts renoprotection in the diabetic nephropathy by modulating important factors of TIF and lipid dysregulation to a variable extent in T1DM and T2DM. Prospectively, targeting MORG1 appears to be a promising strategy to reduce lipid metabolic alterations in diabetic nephropathy.

17.
Cells ; 9(10)2020 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-33023010

RESUMEN

While females are less affected by non-diabetic kidney diseases compared to males, available data on sex differences in diabetic nephropathy (DN) are controversial. Although there is evidence for an imbalance of sex hormones in diabetes and hormone-dependent mechanisms in transforming growth factor ß1 (TGF-ß1) signaling, causes and consequences are still incompletely understood. Here we investigated the influence of sex hormones and sex-specific gene signatures in diabetes- and TGF-ß1-induced renal damage using various complementary approaches (a db/db diabetes mouse model, ex vivo experiments on murine renal tissue, and experiments with a proximal tubular cell line TKPTS). Our results show that: (i) diabetes affects sex hormone concentrations and renal expression of their receptors in a sex-specific manner; (ii) sex, sex hormones and diabetic conditions influence differences in expression of TGF-ß1, its receptor and bone morphogenetic protein 7 (BMP7); (iii) the sex and sex hormones, in combination with variable TGF-ß1 doses, determine the net outcome in TGF-ß1-induced expression of connective tissue growth factor (CTGF), a profibrotic cytokine. Altogether, these results suggest complex crosstalk between sex hormones, sex-dependent expression pattern and profibrotic signals for the precise course of DN development. Our data may help to better understand previous contradictory findings regarding sex differences in DN.


Asunto(s)
Nefropatías Diabéticas/genética , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Caracteres Sexuales
18.
J Clin Med ; 7(2)2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29385703

RESUMEN

Tubulointerstitial fibrosis (TIF) is a pivotal pathophysiological process in patients with diabetic nephropathy (DN). Multiple profibrotic factors and cell types, including transforming growth factor beta 1 (TGF-ß1) and interstitial myofibroblasts, respectively, are responsible for the accumulation of extracellular matrix in the kidney. Matrix-producing myofibroblasts can originate from different sources and different mechanisms are involved in the activation process of the myofibroblasts in the fibrotic kidney. In this study, 16-week-old db/db mice, a model for type 2 DN, were treated for two weeks with continuous erythropoietin receptor activator (CERA), a synthetic erythropoietin variant with possible non-hematopoietic, tissue-protective effects. Non-diabetic and diabetic mice treated with placebo were used as controls. The effects of CERA on tubulointerstitial fibrosis (TIF) as well as on the generation of the matrix-producing myofibroblasts were evaluated by morphological, immunohistochemical, and molecular biological methods. The placebo-treated diabetic mice showed significant signs of beginning renal TIF (shown by picrosirius red staining; increased connective tissue growth factor (CTGF), fibronectin and collagen I deposition; upregulated KIM1 expression) together with an increased number of interstitial myofibroblasts (shown by different mesenchymal markers), while kidneys from diabetic mice treated with CERA revealed less TIF and fewer myofibroblasts. The mechanisms, in which CERA acts as an anti-fibrotic agent/drug, seem to be multifaceted: first, CERA inhibits the generation of matrix-producing myofibroblasts and second, CERA increases the ability for tissue repair. Many of these CERA effects can be explained by the finding that CERA inhibits the renal expression of the cytokine TGF-ß1.

19.
Cells ; 4(4): 631-52, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26473930

RESUMEN

The pathophysiology of diabetic nephropathy (DN), one of the most serious complications in diabetic patients and the leading cause of end-stage renal disease worldwide, is complex and not fully elucidated. A typical hallmark of DN is the excessive deposition of extracellular matrix (ECM) proteins in the glomerulus and in the renal tubulointerstitium, eventually leading to glomerulosclerosis and interstitial fibrosis. Although it is obvious that myofibroblasts play a major role in the synthesis and secretion of ECM, the origin of myofibroblasts in DN remains the subject of controversial debates. A number of studies have focused on epithelial-to-mesenchymal transition (EMT) as one source of matrix-generating fibroblasts in the diseased kidney. EMT is characterized by the acquisition of mesenchymal properties by epithelial cells, preferentially proximal tubular cells and podocytes. In this review we comprehensively review the literature and discuss arguments both for and against a function of EMT in renal fibrosis in DN. While the precise extent of the contribution to nephrotic fibrosis is certainly arduous to quantify, the picture that emerges from this extensive body of literature suggests EMT as a major source of myofibroblasts in DN.

20.
Diabetes ; 58(7): 1672-81, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19401424

RESUMEN

OBJECTIVE: Key features of diabetic nephropathy include the accumulation of extracellular matrix proteins. In recent studies, increased expression of type VIII collagen in the glomeruli and tubulointerstitium of diabetic kidneys has been noted. The objectives of this study were to assess whether type VIII collagen affects the development of diabetic nephropathy and to determine type VIII collagen-dependent pathways in diabetic nephropathy in the mouse model of streptozotocin (STZ)-induced diabetes. RESEARCH DESIGN AND METHODS: Diabetes was induced by STZ injections in collagen VIII-deficient or wild-type mice. Functional and histological analyses were performed 40 days after induction of diabetes. Type VIII collagen expression was assessed by Northern blots, immunohistochemistry, and real-time PCR. Proliferation of primary mesangial cells was measured by thymidine incorporation and direct cell counting. Expression of phosphorylated extracellular signal-regulated kinase (ERK1/2) and p27(Kip1) was assessed by Western blots. Finally, Col8a1 was stably overexpressed in mesangial cells. RESULTS: Diabetic wild-type mice showed a strong renal induction of type VIII collagen. Diabetic Col8a1(-)/Col8a2(-) animals revealed reduced mesangial expansion and cellularity and extracellular matrix expansion compared with the wild type. These were associated with less albuminuria. High-glucose medium as well as various cytokines induced Col8a1 in cultured mesangial cells. Col8a1(-)/Col8a2(-) mesangial cells revealed decreased proliferation, less phosphorylation of Erk1/2, and increased p27(Kip1) expression. Overexpression of Col8a1 in mesangial cells induced proliferation. CONCLUSIONS: Lack of type VIII collagen confers renoprotection in diabetic nephropathy. One possible mechanism is that type VIII collagen permits and/or fosters mesangial cell proliferation in early diabetic nephropathy.


Asunto(s)
Colágeno Tipo VIII/deficiencia , Diabetes Mellitus Experimental/fisiopatología , Nefropatías Diabéticas/prevención & control , Mesangio Glomerular/patología , Animales , División Celular , Colágeno Tipo VIII/genética , Cartilla de ADN , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA