Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396905

RESUMEN

Chronic rhinosinusitis (CRS) is a multifactorial infection of the nasal cavity and sinuses. In this study, nasal swabs from control donors (N = 128) and patients with CRS (N = 246) were analysed. Culture methods and metagenomics revealed no obvious differences in the composition of the bacterial communities between the two groups. However, at the functional level, several metabolic pathways were significantly enriched in the CRS group compared to the control group. Pathways such as carbohydrate transport metabolism, ATP synthesis, cofactors and vitamins, photosynthesis and transcription were highly enriched in CRS. In contrast, pathways related to lipid metabolism were more representative in the control microbiome. As S. aureus is one of the main species found in the nasal cavity, staphylococcal isolates from control and CRS samples were analysed by microarray and functional assays. Although no significant genetic differences were detected by microarray, S. aureus from CRS induced less cytotoxicity to lung cells and lower rates of glycolysis in host cells than control isolates. These results suggest the differential modulation of staphylococcal virulence by the environment created by other microorganisms and their interactions with host cells in control and CRS samples. These changes were reflected in the differential expression of cytokines and in the expression of Agr, the most important quorum-sensing regulator of virulence in S. aureus. In addition, the CRS isolates remained stable in their cytotoxicity, whereas the cytotoxic activity of S. aureus isolated from control subjects decreased over time during in vitro passage. These results suggest that host factors influence the virulence of S. aureus and promote its adaptation to the nasal environment during CRS.


Asunto(s)
Senos Paranasales , Rinitis , Rinosinusitis , Sinusitis , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Adaptación al Huésped , Sinusitis/microbiología , Infecciones Estafilocócicas/microbiología , Enfermedad Crónica , Rinitis/microbiología
2.
Int J Obes (Lond) ; 47(11): 1088-1099, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37587162

RESUMEN

OBJECTIVE: Obesity is an independent risk factor for severe influenza virus and COVID-19 infections. There might be an interplay between adipose tissue and respiratory pathogens, although the mechanism is unknown. Proinflammatory factors secreted by the adipose tissue are often discussed to serve as indirect contributor to virus infection. However, the direct potential of adipose tissue to serve as a viral niche has not yet been investigated. METHODS: Two murine obesity models (DIO and ob/ob) were infected with influenza A virus (IAV) and monitored for 3 weeks. p.i. Lung and adipose tissue were harvested, and the viral load was analysed. Direct replication of IAV in vitro was investigated in human derived primary adipocytes and macrophages. The indirect impact of the secretory products of adipocytes during infection was analysed in a co-culture system with lung fibroblasts. Moreover, lung and adipose tissue was harvested from deceased patients infected with SARS-CoV-2 omicron variant. Additionally, replication of SARS-CoV-2 alpha, delta, and omicron variants was investigated in vitro in adipocytes and macrophages. RESULTS: Both murine obesity models presented high IAV titers compared to non-obese mice. Interestingly, adipose tissue adjacent to the lungs was a focal point for influenza virus replication in mice. We further detected IAV replication and antiviral response in human adipocytes. Co-cultivation of adipocytes and lung fibroblasts led to increased IL-8 concentration during infection. Though we observed SARS-CoV-2 in the thoracic adipose tissue of COVID-19 patients, no active replication was found in adipocytes in vitro. However, SARS-CoV-2 was detected in the macrophages and this finding was associated with increased inflammation. CONCLUSIONS: Our study revealed that thoracic adipose tissue contributes to respiratory virus infection. Besides indirect induction of proinflammatory factors during infection, adipocytes and macrophages within the tissue can directly support viral replication.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Ratones , Animales , Pulmón , Tejido Adiposo , Virus de la Influenza A/fisiología , Obesidad
3.
Eur J Clin Microbiol Infect Dis ; 42(4): 461-470, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36810725

RESUMEN

Identification of Salmonella serovars is performed by conventional seroagglutination or sequencing. These methods are labor-intensive and require technical experience. An easy-to-perform assay allowing the timely identification of the most common non-typhoidal serovars (NTS) is needed. In this study, a molecular assay based on loop-mediated isothermal amplification (LAMP) targeting specific gene sequences of Salmonella Enteritidis, S. Typhimurium, S. Infantis, S. Derby, and S. Choleraesuis has been developed for rapid serovar identification from cultured colonies. A total of 318 Salmonella strains and 25 isolates of other Enterobacterales species that served as negative controls were analyzed. All S. Enteritidis (n = 40), S. Infantis (n = 27), and S. Choleraesuis (n = 11) strains were correctly identified. Seven out of 104 S. Typhimurium and 10 out of 38 S. Derby strains missed a positive signal. Cross-reactions of the gene targets were only rarely observed and restricted to the S. Typhimurium primer set (5 false-positives). Sensitivity and specificity of the assay compared to seroagglutination were as follows: 100% and 100% for S. Enteritidis, 93.3% and 97.7% for S. Typhimurium, 100% and 100% for S. Infantis, 73.7% and 100% for S. Derby, and 100% and 100% for S. Choleraesuis, respectively. With results available in just a few minutes of hands-on time and a test run time of 20 min, the LAMP assay developed here may be a useful tool for the rapid identification of common Salmonella NTS in daily routine diagnostics.


Asunto(s)
Prueba de Diagnóstico Rápido , Fiebre Tifoidea , Humanos , Serogrupo , Técnicas de Amplificación de Ácido Nucleico , Salmonella enteritidis
4.
Infection ; 51(4): 1051-1059, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36788173

RESUMEN

PURPOSE: The Co-HCW study is a prospective, longitudinal, single-center observational study that aims to assess the SARS-CoV-2 seroprevalence and infection status in staff members of Jena University Hospital (JUH) in Jena, Germany. METHODS: This follow-up study covers the observation period from 19th May 2020 to 22nd June 2021. At each of the three voluntary study visits, participants filled out a questionnaire regarding their SARS-CoV-2 exposure and provided serum samples to detect specific SARS-CoV-2 antibodies. Participants who were tested positive for antibodies against nucleocapsid and/or spike protein without previous vaccination and/or reported a positive SARS-CoV-2 PCR test were regarded to have been infected with SARS-CoV-2. Multivariable logistic regression modeling was applied to identify potential risk factors for infected compared to non-infected participants. RESULTS: Out of 660 participants that were included during the first study visit, 406 participants (61.5%) were eligible for the final analysis as their COVID-19 risk area (high-risk n = 76; intermediate-risk n = 198; low-risk n = 132) did not change during the study. Forty-four participants [10.8%, 95% confidence interval (95%CI) 8.0-14.3%] had evidence of a current or past SARS-CoV-2 infection detected by serology (n = 40) and/or PCR (n = 28). No association between SARS-CoV-2 infection and the COVID-19 risk group according to working place was detected. However, exposure to a SARS-CoV-2 positive household member [adjusted OR (AOR) 4.46, 95% CI 2.06-9.65] or colleague (AOR 2.30, 95%CI 1.10-4.79) was found to significantly increase the risk of a SARS-CoV-2 infection. CONCLUSION: Our results demonstrate that non-patient-related SARS-CoV-2 exposure posed the highest infection risk for hospital staff members of JUH.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/diagnóstico , Estudios de Seguimiento , Estudios Seroepidemiológicos , Estudios Prospectivos , Personal de Hospital , Anticuerpos Antivirales , Hospitales Universitarios , Personal de Salud
5.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834031

RESUMEN

As vaccination efforts against SARS-CoV-2 progress in many countries, there is still an urgent need for efficient antiviral treatment strategies for those with severer disease courses, and lately, considerable efforts have been undertaken to repurpose existing drugs as antivirals. The local anaesthetic procaine has been investigated for antiviral properties against several viruses over the past decades. Here, we present data on the inhibitory effect of the procaine prodrugs ProcCluster® and procaine hydrochloride on SARS-CoV-2 infection in vitro. Both procaine prodrugs limit SARS-CoV-2 progeny virus titres as well as reduce interferon and cytokine responses in a proportional manner to the virus load. The addition of procaine during the early stages of the SARS-CoV-2 replication cycle in a cell culture first limits the production of subgenomic RNA transcripts, and later affects the replication of the viral genomic RNA. Interestingly, procaine additionally exerts a prominent effect on SARS-CoV-2 progeny virus release when added late during the replication cycle, when viral RNA production and protein production are already largely completed.


Asunto(s)
COVID-19 , Profármacos , Animales , Chlorocebus aethiops , SARS-CoV-2 , Antivirales/farmacología , Anestésicos Locales/farmacología , Profármacos/farmacología , Células Vero , Procaína/farmacología , Replicación Viral
6.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003500

RESUMEN

Methicillin-sensitive Staphylococcus (S.) aureus (MSSA) bacteremia remains a global challenge, despite the availability of antibiotics. Primary treatments include ß-lactam agents such as cefazolin and flucloxacillin. Ongoing discussions have focused on the potential synergistic effects of combining these agents with rifampicin or fosfomycin to combat infections associated with biofilm formation. Managing staphylococcal infections is challenging due to antibacterial resistance, biofilms, and S. aureus's ability to invade and replicate within host cells. Intracellular invasion shields the bacteria from antibacterial agents and the immune system, often leading to incomplete bacterial clearance and chronic infections. Additionally, S. aureus can assume a dormant phenotype, known as the small colony variant (SCV), further complicating eradication and promoting persistence. This study investigated the impact of antibiotic combinations on the persistence of S. aureus 6850 and its stable small colony variant (SCV strain JB1) focusing on intracellular survival and biofilm formation. The results from the wild-type strain 6850 demonstrate that ß-lactams combined with RIF effectively eliminated biofilms and intracellular bacteria but tend to select for SCVs in planktonic culture and host cells. Higher antibiotic concentrations were associated with an increase in the zeta potential of S. aureus, suggesting reduced membrane permeability to antimicrobials. When using the stable SCV mutant strain JB1, antibiotic combinations with rifampicin successfully cleared planktonic bacteria and biofilms but failed to eradicate intracellular bacteria. Given these findings, it is reasonable to report that ß-lactams combined with rifampicin represent the optimal treatment for MSSA bacteremia. However, caution is warranted when employing this treatment over an extended period, as it may elevate the risk of selecting for small colony variants (SCVs) and, consequently, promoting bacterial persistence.


Asunto(s)
Bacteriemia , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Staphylococcus aureus , Meticilina/farmacología , Rifampin/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Biopelículas , beta-Lactamas/farmacología , Pruebas de Sensibilidad Microbiana
7.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298718

RESUMEN

Osteomyelitis is an infection of the bone that is often difficult to treat and causes a significant healthcare burden. Staphylococcus aureus is the most common pathogen causing osteomyelitis. Osteomyelitis mouse models have been established to gain further insights into the pathogenesis and host response. Here, we use an established S. aureus hematogenous osteomyelitis mouse model to investigate morphological tissue changes and bacterial localization in chronic osteomyelitis with a focus on the pelvis. X-ray imaging was performed to follow the disease progression. Six weeks post infection, when osteomyelitis had manifested itself with a macroscopically visible bone deformation in the pelvis, we used two orthogonal methods, namely fluorescence imaging and label-free Raman spectroscopy, to characterise tissue changes on a microscopic scale and to localise bacteria in different tissue regions. Hematoxylin and eosin as well as Gram staining were performed as a reference method. We could detect all signs of a chronically florid tissue infection with osseous and soft tissue changes as well as with different inflammatory infiltrate patterns. Large lesions dominated in the investigated tissue samples. Bacteria were found to form abscesses and were distributed in high numbers in the lesion, where they could occasionally also be detected intracellularly. In addition, bacteria were found in lower numbers in surrounding muscle tissue and even in lower numbers in trabecular bone tissue. The Raman spectroscopic imaging revealed a metabolic state of the bacteria with reduced activity in agreement with small cell variants found in other studies. In conclusion, we present novel optical methods to characterise bone infections, including inflammatory host tissue reactions and bacterial adaptation.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Infecciones Estafilocócicas , Ratones , Animales , Staphylococcus aureus/fisiología , Osteomielitis/patología , Modelos Animales de Enfermedad , Inflamación , Infecciones Estafilocócicas/microbiología , Infección Persistente
8.
Molecules ; 28(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836647

RESUMEN

(1) Background: In the oral environment, sound enamel and dental restorative materials are immediately covered by a pellicle layer, which enables bacteria to attach. For the development of new materials with repellent surface functions, information on the formation and maturation of salivary pellicles is crucial. Therefore, the present in situ study aimed to investigate the proteomic profile of salivary pellicles formed on different dental composites. (2) Methods: Light-cured composite and bovine enamel samples (controls) were exposed to the oral cavity for 30, 90, and 120 min. All samples were subjected to optical and mechanical profilometry, as well as SEM surface evaluation. Acquired pellicles and unstimulated whole saliva samples were analyzed by SELDI-TOF-MS. The significance was determined by the generalized estimation equation and the post-hoc bonferroni adjustment. (3) Results: SEM revealed the formation of homogeneous pellicles on all test and control surfaces. Profilometry showed that composite surfaces tend to be of higher roughness compared to enamel. SELDI-TOF-MS detected up to 102 different proteins in the saliva samples and up to 46 proteins in the pellicle. Significant differences among 14 pellicle proteins were found between the composite materials and the controls. (4) Conclusions: Pellicle formation was material- and time-dependent. Proteins differed among the composites and to the control.


Asunto(s)
Proteómica , Saliva , Animales , Bovinos , Película Dental , Proteínas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Immunology ; 166(1): 47-67, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35143048

RESUMEN

Staphylococcus aureus causes severe infections associated with inflammation, such as sepsis or osteomyelitis. Inflammatory processes are regulated by distinct lipid mediators (LMs) but how their biosynthetic pathways are orchestrated in S. aureus infections is elusive. We show that S. aureus strikingly not only modulates pro-inflammatory, but also inflammation-resolving LM pathways in murine osteomyelitis and osteoclasts as well as in human monocyte-derived macrophages (MDMs) with different phenotype. Targeted LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed massive generation of LM with distinct LM signature profiles in acute and chronic phases of S. aureus-induced murine osteomyelitis in vivo. In human MDM, S. aureus elevated cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2  synthase-1 (mPGES-1), but impaired the levels of 15-lipoxygenase-1 (15-LOX-1), with respective changes in LM signature profiles initiated by these enzymes, that is, elevated PGE2 and impaired specialized pro-resolving mediators, along with reduced M2-like phenotypic macrophage markers. The cell wall component, lipoteichoic acid (LTA), mimicked the impact of S. aureus elevating COX-2/mPGES-1 expression via NF-κB and p38 MAPK signalling in MDM, while the impairment of 15-LOX-1 correlates with reduced expression of Lamtor1. In conclusion, S. aureus dictates LM pathways via LTA resulting in a shift from anti-inflammatory M2-like towards pro-inflammatory M1-like LM signature profiles.


Asunto(s)
Osteomielitis , Staphylococcus aureus , Animales , Ciclooxigenasa 2/metabolismo , Dinoprostona , Inflamación/metabolismo , Lipopolisacáridos , Ratones , Prostaglandina-E Sintasas/metabolismo , Receptores Depuradores de Clase E , Ácidos Teicoicos
10.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637603

RESUMEN

Infections with SARS-CoV-2 can be asymptomatic, but they can also be accompanied by a variety of symptoms that result in mild to severe coronavirus disease-19 (COVID-19) and are sometimes associated with systemic symptoms. Although the viral infection originates in the respiratory system, it is unclear how the virus can overcome the alveolar barrier, which is observed in severe COVID-19 disease courses. To elucidate the viral effects on the barrier integrity and immune reactions, we used mono-cell culture systems and a complex human chip model composed of epithelial, endothelial, and mononuclear cells. Our data show that SARS-CoV-2 efficiently infected epithelial cells with high viral loads and inflammatory response, including interferon expression. By contrast, the adjacent endothelial layer was neither infected nor did it show productive virus replication or interferon release. With prolonged infection, both cell types were damaged, and the barrier function was deteriorated, allowing the viral particles to overbear. In our study, we demonstrate that although SARS-CoV-2 is dependent on the epithelium for efficient replication, the neighboring endothelial cells are affected, e.g., by the epithelial cytokines or components induced during infection, which further results in the damage of the epithelial/endothelial barrier function and viral dissemination.IMPORTANCESARS-CoV-2 challenges healthcare systems and societies worldwide in unprecedented ways. Although numerous new studies have been conducted, research to better understand the molecular pathogen-host interactions are urgently needed. For this, experimental models have to be developed and adapted. In the present study we used mono cell-culture systems and we established a complex chip model, where epithelial and endothelial cells are cultured in close proximity. We demonstrate that epithelial cells can be infected with SARS-CoV-2, while the endothelium did not show any infection signs. Since SARS-CoV-2 is able to establish viremia, the link to thromboembolic events in severe COVID-19 courses is evident. However, whether the endothelial layer is damaged by the viral pathogens or whether other endothelial-independent homeostatic factors are induced by the virus is essential for understanding the disease development. Therefore, our study is important as it demonstrates that the endothelial layer could not be infected by SARS-CoV-2 in our in vitro experiments, but we were able to show the destruction of the epithelial-endothelial barrier in our chip model. From our experiments we can assume that virus-induced host factors disturbed the epithelial-endothelial barrier function and thereby promote viral spread.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA