Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dev Neurosci ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190820

RESUMEN

INTRODUCTION: A striking pattern in young children after severe TBI is when the entire cortical ribbon displays tissue damage: hemispheric hypodensity (HH). HH is often a result of abusive head trauma (AHT). We previously reported a model of HH in a gyrencephalic species where a combination of injuries consisting of 1) cortical impact, 2) midline shift, 3) subdural hematoma/subarachnoid hemorrhage, 4) traumatic seizures, and 5) brief apnea and hypoventilation, resulted in extensive, hypoxic-ischemic type injury. Importantly, this mechanism closely resembles that seen in children, with relative sparing of the contralateral cortex, thus, ruling out a pure asphyxia mechanism. In this model, piglets of similar developmental stage to human toddlers (postnatal day 30, PND30) have extensive hypoxic-ischemic damage to the cortical ribbon with sparing of the contralateral hemisphere and deep gray matter areas. However, piglets of similar developmental stage to human infants (postnatal day 7, PND7) have less hypoxic-ischemic damage that is notably bilateral and patchy. We therefore sought to discover whether the extensive tissue damage observed in PND30 was due to a greater upregulation of matrix metalloproteinases (MMPs). MATERIALS AND METHODS: In PND 7 or PND 30 piglets receiving AHT injuries (cortical impact, midline shift, subdural hematoma/subarachnoid hemorrhage, traumatic seizures, and brief apnea and hypoventilation) or a sham injury, the pattern of albumin extravasation and MMP-9 upregulation throughout the brain was determined via immunohistochemistry, brain tissue adjacent to the cortical impact where the tissue damage spreads was collected for Western blots, and the gelatinase activity was determined over time in peripheral plasma. EEG was recorded and piglets survived up to 24 hours after injury administration. RESULTS: The pattern of albumin extravasation, indicating vasogenic edema, as well as increase in MMP-9, were both present at the same areas of hypoxic-ischemic tissue damage. Evidence from immunohistochemistry, western blot, and zymogens demonstrate that MMP- 2,- 3 or -9 are constitutively expressed during immaturity and are not different between developmental stages; however, active forms are upregulated in PND30 but not PND7 after in response to AHT model injuries. Furthermore, peripheral active MMP-9 was downregulated after model injuries in PND7. CONCLUSIONS: This differential response to AHT model injuries might confer protection to the PND7 brain. Additionally, we find that immature gyrencephalic species have a greater baseline and array of MMP's than previously demonstrated in rodent species. Treatment with an oral or intravenous broad-spectrum matrix metalloproteinase inhibitor might reduce the extensive spread of injury in PND30, but the exposure to metalloproteinase inhibitors must be acute as to not interfere with the homeostatic role of matrix metalloproteinases in normal postnatal brain development and plasticity as well as post-injury synaptogenesis and tissue repair.

2.
J Neurochem ; 167(4): 571-581, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37874764

RESUMEN

In the central nervous system, microglia are responsible for removing infectious agents, damaged/dead cells, and amyloid plaques by phagocytosis. Other cell types, such as astrocytes, are also recently recognized to show phagocytotic activity under some conditions. Oligodendrocyte precursor cells (OPCs), which belong to the same glial cell family as microglia and astrocytes, may have similar functions. However, it remains largely unknown whether OPCs exhibit phagocytic activity against foreign materials like microglia. To answer this question, we examined the phagocytosis activity of OPCs using primary rat OPC cultures. Since innate phagocytosis activity could trigger cell death pathways, we also investigated whether participating in phagocytosis activity may lead to OPC cell death. Our data shows that cultured OPCs phagocytosed myelin-debris-rich lysates prepared from rat corpus callosum, without progressing to cell death. In contrast to OPCs, mature oligodendrocytes did not show phagocytotic activity against the bait. OPCs also exhibited phagocytosis towards lysates of rat brain cortex and cell membrane debris from cultured astrocytes, but the percentage of OPCs that phagocytosed beta-amyloid was much lower than the myelin debris. We then conducted RNA-seq experiments to examine the transcriptome profile of OPC cultures and found that myelination- and migration-associated genes were downregulated 24 h after phagocytosis. On the other hand, there were a few upregulated genes in OPCs 24 h after phagocytosis. These data confirm that OPCs play a role in debris removal and suggest that OPCs may remain in a quiescent state after phagocytosis.


Asunto(s)
Células Precursoras de Oligodendrocitos , Ratas , Animales , Células Precursoras de Oligodendrocitos/fisiología , Diferenciación Celular/fisiología , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Fagocitosis/genética , Células Cultivadas
3.
Handb Exp Pharmacol ; 273: 267-293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33580391

RESUMEN

The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.


Asunto(s)
Lesiones Encefálicas , Accidente Cerebrovascular , Barrera Hematoencefálica , Células Endoteliales , Humanos , Pericitos
4.
Stroke ; 52(5): 1861-1865, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33840224

RESUMEN

Background and Purpose: Physical exercise offers therapeutic potentials for several central nervous system disorders, including stroke and cardiovascular diseases. However, it is still mostly unknown whether and how exercise preconditioning affects the prognosis of intracerebral hemorrhage (ICH). In this study, we examined the effects of preconditioning on ICH pathology in mature adult mice using treadmill exercise. Methods: Male C57BL/6J (25-week old) mice were subjected to 6 weeks of treadmill exercise followed by ICH induction. Outcome measurements included various neurological function tests at multiple time points and the assessment of lesion volume at 8 days after ICH induction. In addition, plasma soluble factors and phagocytotic microglial numbers in the peri-lesion area were also measured to determine the mechanisms underlying the effects of exercise preconditioning. Results: The 6-week treadmill exercise preconditioning promoted recovery from ICH-induced neurological deficits in mice. In addition, mice with exercise preconditioning showed smaller lesion volumes and increased numbers of phagocytotic microglia. Furthermore, the levels of several soluble factors, including endostatin, IGFBP (insulin-like growth factor-binding protein)-2 and -3, MMP (matrix metallopeptidase)-9, osteopontin, and pentraxin-3, were increased in the plasma samples from ICH mice with exercise preconditioning compared with ICH mice without exercise. Conclusions: These results suggest that mice with exercise preconditioning may suffer less severe injury from hemorrhagic stroke, and therefore, a habit of physical exercise may improve brain health even in middle adulthood.


Asunto(s)
Hemorragia Cerebral/fisiopatología , Condicionamiento Físico Animal/fisiología , Recuperación de la Función/fisiología , Animales , Proteína C-Reactiva/metabolismo , Hemorragia Cerebral/sangre , Endostatinas/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Masculino , Metaloproteinasas de la Matriz/sangre , Ratones , Microglía , Osteopontina/sangre , Componente Amiloide P Sérico/metabolismo
5.
J Neuroinflammation ; 18(1): 173, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34372870

RESUMEN

BACKGROUND: Traumatic brain injury (TBI) is a significant cause of death and disability worldwide. The TLR4-NFκB signaling cascade is the critical pro-inflammatory activation pathway of leukocytes after TBI, and modulating this signaling cascade may be an effective therapeutic target for treating TBI. Previous studies indicate that recombinant annexin A2 (rA2) might be an interactive molecule modulating the TLR4-NFκB signaling; however, the role of rA2 in regulating this signaling pathway in leukocytes after TBI and its subsequent effects have not been investigated. METHODS: C57BL/6 mice were subjected to TBI and randomly divided into groups that received intraperitoneal rA2 or vehicle at 2 h after TBI. The peripheral leukocyte activation and infiltrating immune cells were examined by flow cytometry, RT-qPCR, and immunostaining. The neutrophilic TLR4 expression on the cell membrane was examined by flow cytometry and confocal microscope, and the interaction of annexin A2 with TLR4 was assessed by co-immunoprecipitation coupled with Western blotting. Neuroinflammation was measured via cytokine proteome profiler array and RT-qPCR. Neurodegeneration was determined by Western blotting and immunostaining. Neurobehavioral assessments were used to monitor motor and cognitive function. Brain tissue loss was assessed via MAP2 staining. RESULTS: rA2 administration given at 2 h after TBI significantly attenuates neutrophil activation and brain infiltration at 24 h of TBI. In vivo and in vitro data show that rA2 binds to and reduces TLR4 expression on the neutrophil surface and suppresses TLR4/NFκB signaling pathway in neutrophils at 12 h after TBI. Furthermore, rA2 administration also reduces pro-inflammation of brain tissues within 24 h and neurodegeneration at 48 h after TBI. Lastly, rA2 improves long-term sensorimotor ability and cognitive function, and reduces brain tissue loss at 28 days after TBI. CONCLUSIONS: Systematic rA2 administration at 2 h after TBI significantly inhibits activation and brain infiltration of peripheral leukocytes, especially neutrophils at the acute phase. Consequently, rA2 reduces the detrimental brain pro-inflammation-associated neurodegeneration and ultimately ameliorates neurological deficits after TBI. The underlying molecular mechanism might be at least in part attributed to rA2 bindings to pro-inflammatory receptor TLR4 in peripheral leukocytes, thereby blocking NFκB signaling activation pathways following TBI.


Asunto(s)
Anexina A2/administración & dosificación , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Leucocitos/efectos de los fármacos , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Leucocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo
6.
Glia ; 68(7): 1435-1444, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32057146

RESUMEN

Upon infection or brain damage, microglia are activated to play roles in immune responses, including phagocytosis and soluble factor release. However, little is known whether the event of phagocytosis could be a trigger for releasing soluble factors from microglia. In this study, we tested if microglia secrete a neurovascular mediator matrix metalloproteinase-9 (MMP-9) after phagocytosis in vitro. Primary microglial cultures were prepared from neonatal rat brains. Cultured microglia phagocytosed Escherichia coli bioparticles within 2 hr after incubation and started to secrete MMP-9 at around 12 hr after the phagocytosis. A TLR4 inhibitor TAK242 suppressed the E. coli-bioparticle-induced MMP-9 secretion. However, TAK242 did not change the engulfment of E. coli bioparticles in microglial cultures. Because lipopolysaccharides (LPS), the major component of the outer membrane of E. coli, also induced MMP-9 secretion in a dose-response manner and because the response was inhibited by TAK242 treatment, we assumed that the LPS-TLR4 pathway, which was activated by adhering to the substance, but not through the engulfing process of phagocytosis, would play a role in releasing MMP-9 from microglia after E. coli bioparticle treatment. To support the finding that the engulfing step would not be a critical trigger for MMP-9 secretion after the event of phagocytosis in microglia, we confirmed that cell debris and amyloid beta were both captured into microglia via phagocytosis, but neither of them induced MMP-9 secretion from microglia. Taken together, these data demonstrate that microglial response in MMP-9 secretion after phagocytosis differs depending on the types of particles/substances that microglia encountered.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Microglía/metabolismo , Fagocitosis/fisiología , Animales , Células Cultivadas , Escherichia coli/metabolismo , Lipopolisacáridos/farmacología , Ratas
7.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260683

RESUMEN

A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that associates with intracellular molecules to regulate multiple signal transductions. Although the roles of AKAP12 in the central nervous system are still relatively understudied, it was previously shown that AKAP12 regulates blood-retinal barrier formation. In this study, we asked whether AKAP12 also supports the function and integrity of the blood-brain barrier (BBB). In a mouse model of focal ischemia, the expression level of AKAP12 in cerebral endothelial cells was upregulated during the acute phase of stroke. Also, in cultured cerebral endothelial cells, oxygen-glucose deprivation induced the upregulation of AKAP12. When AKAP12 expression was suppressed by an siRNA approach in cultured endothelial cells, endothelial permeability was increased along with the dysregulation of ZO-1/Claudin 5 expression. In addition, the loss of AKAP12 expression caused an upregulation/activation of the Rho kinase pathway, and treatment of Rho kinase inhibitor Y-27632 mitigated the increase of endothelial permeability in AKAP12-deficient endothelial cell cultures. These in vitro findings were confirmed by our in vivo experiments using Akap12 knockout mice. Compared to wild-type mice, Akap12 knockout mice showed a larger extent of BBB damage after stroke. However, the inhibition of rho kinase by Y-27632 tightened the BBB in Akap12 knockout mice. These data may suggest that endogenous AKAP12 works to alleviate the damage and dysfunction of the BBB caused by ischemic stress. Therefore, the AKAP12-rho-kinase signaling pathway represents a novel therapeutic target for stroke.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Proteínas de Ciclo Celular/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Animales , Permeabilidad de la Membrana Celular , Endotelio Vascular/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Quinasas Asociadas a rho/metabolismo
8.
Glia ; 67(4): 718-728, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30793389

RESUMEN

During development or after brain injury, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes to supplement the number of oligodendrocytes. Although mechanisms of OPC differentiation have been extensively examined, the role of epigenetic regulators, such as histone deacetylases (HDACs) and DNA methyltransferase enzymes (DNMTs), in this process is still mostly unknown. Here, we report the differential roles of epigenetic regulators in OPC differentiation. We prepared primary OPC cultures from neonatal rat cortex. Our cultured OPCs expressed substantial amounts of mRNA for HDAC1, HDAC2, DNMT1, and DNMT3a. mRNA levels of HDAC1 and HDAC2 were both decreased by the time OPCs differentiated into myelin-basic-protein expressing oligodendrocytes. However, DNMT1 or DNMT3a mRNA level gradually decreased or increased during the differentiation step, respectively. We then knocked down those regulators in cultured OPCs with siRNA technique before starting OPC differentiation. While HDAC1 knockdown suppressed OPC differentiation, HDAC2 knockdown promoted OPC differentiation. DNMT1 knockdown also suppressed OPC differentiation, but unlike HDAC1/2, DNMT1-deficient cells showed cell damage during the later phase of OPC differentiation. On the other hand, when OPCs were transfected with siRNA for DNMT3a, the number of OPCs was decreased, indicating that DNMT3a may participate in OPC survival/proliferation. Taken together, these data demonstrate that each epigenetic regulator has different phase-specific roles in OPC survival and differentiation.


Asunto(s)
Epigénesis Genética/fisiología , Células Precursoras de Oligodendrocitos/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular , Corteza Cerebral/citología , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , ADN Metiltransferasa 3A , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transfección
9.
Stem Cells ; 36(5): 751-760, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29314444

RESUMEN

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes in cerebral white matter. However, the underlying mechanisms that regulate this process remain to be fully defined, especially in adult brains. Recently, it has been suggested that signaling via A-kinase anchor protein 12 (AKAP12), a scaffolding protein that associates with intracellular molecules such as protein kinase A, may be involved in Schwann cell homeostasis and peripheral myelination. Here, we asked whether AKAP12 also regulates the mechanisms of myelination in the CNS. AKAP12 knockout mice were compared against wild-type (WT) mice in a series of neurochemical and behavioral assays. Compared with WTs, 2-months old AKAP12 knockout mice exhibited loss of myelin in white matter of the corpus callosum, along with perturbations in working memory as measured by a standard Y-maze test. Unexpectedly, very few OPCs expressed AKAP12 in the corpus callosum region. Instead, pericytes appeared to be one of the major AKAP12-expressing cells. In a cell culture model system, conditioned culture media from normal pericytes promoted in-vitro OPC maturation. However, conditioned media from AKAP12-deficient pericytes did not support the OPC function. These findings suggest that AKAP12 signaling in pericytes may be required for OPC-to-oligodendrocyte renewal to maintain the white matter homeostasis in adult brain. Stem Cells 2018;36:751-760.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/fisiología , Células-Madre Neurales/citología , Oligodendroglía/metabolismo , Sustancia Blanca/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Envejecimiento , Animales , Proteínas de Ciclo Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Medios de Cultivo Condicionados , Ratones Noqueados , Vaina de Mielina/metabolismo , Neurogénesis/fisiología , Oligodendroglía/citología , Sustancia Blanca/citología
10.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817350

RESUMEN

Our laboratory and others previously showed that Annexin A2 knockout (A2KO) mice had impaired blood-brain barrier (BBB) development and elevated pro-inflammatory response in macrophages, implying that Annexin A2 (AnxA2) might be one of the key endogenous factors for maintaining homeostasis of the neurovascular unit in the brain. Traumatic brain injury (TBI) is an important cause of disability and mortality worldwide, and neurovascular inflammation plays an important role in the TBI pathophysiology. In the present study, we aimed to test the hypothesis that A2KO promotes pro-inflammatory response in the brain and worsens neurobehavioral outcomes after TBI. TBI was conducted by a controlled cortical impact (CCI) device in mice. Our experimental results showed AnxA2 expression was significantly up-regulated in response to TBI at day three post-TBI. We also found more production of pro-inflammatory cytokines in the A2KO mouse brain, while there was a significant increase of inflammatory adhesion molecules mRNA expression in isolated cerebral micro-vessels of A2KO mice compared with wild-type (WT) mice. Consistently, the A2KO mice brains had a significant increase in leukocyte brain infiltration at two days after TBI. Importantly, A2KO mice had significantly worse sensorimotor and cognitive function deficits up to 28 days after TBI and significantly larger brain tissue loss. Therefore, these results suggested that AnxA2 deficiency results in exacerbated early neurovascular pro-inflammation, which leads to a worse long-term neurologic outcome after TBI.


Asunto(s)
Anexina A2/deficiencia , Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Trastornos del Conocimiento/metabolismo , Macrófagos/metabolismo , Animales , Anexina A2/metabolismo , Barrera Hematoencefálica/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Trastornos del Conocimiento/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Macrófagos/patología , Ratones , Ratones Noqueados , Regulación hacia Arriba
11.
Stroke ; 49(4): 1003-1010, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29511131

RESUMEN

BACKGROUND AND PURPOSE: Endothelial progenitor cells (EPCs) have been extensively investigated as a therapeutic approach for repairing the vascular system in cerebrovascular diseases. Beyond vascular regeneration per se, EPCs may also release factors that affect the entire neurovascular unit. Here, we aim to study the effects of the EPC secretome on oligovascular remodeling in a mouse model of white matter injury after prolonged cerebral hypoperfusion. METHODS: The secretome of mouse EPCs was analyzed with a proteome array. In vitro, the effects of the EPC secretome and its factor angiogenin were assessed on primary oligodendrocyte precursor cells and mature human cerebral microvascular endothelial cells (hCMED/D3). In vivo, mice were subjected to permanent bilateral common carotid artery stenosis, then treated with EPC secretome at 24 hours and at 1 week, and cognitive outcome was evaluated with the Y maze test together with oligodendrocyte precursor cell proliferation/differentiation and vascular density in white matter at 4 weeks. RESULTS: Multiple growth factors, cytokines, and proteases were identified in the EPC secretome, including angiogenin. In vitro, the EPC secretome significantly enhanced endothelial and oligodendrocyte precursor cell proliferation and potentiated oligodendrocyte precursor cell maturation. Angiogenin was proved to be a key factor since pharmacological blockade of angiogenin signaling negated the positive effects of the EPC secretome. In vivo, treatment with the EPC secretome increased vascular density, myelin, and mature oligodendrocytes in white matter and rescued cognitive function in the mouse hypoperfusion model. CONCLUSIONS: Factors secreted by EPCs may ameliorate white matter damage in the brain by boosting oligovascular remodeling.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Estenosis Carotídea/metabolismo , Proliferación Celular/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Ribonucleasa Pancreática/farmacología , Remodelación Vascular/efectos de los fármacos , Sustancia Blanca/efectos de los fármacos , Animales , Isquemia Encefálica/metabolismo , Medios de Cultivo Condicionados , Citocinas/metabolismo , Modelos Animales de Enfermedad , Gutatión-S-Transferasa pi/metabolismo , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Proteína Básica de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Péptido Hidrolasas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ribonucleasa Pancreática/metabolismo , Sustancia Blanca/irrigación sanguínea
12.
J Neurosci ; 35(41): 14002-8, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26468200

RESUMEN

Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAP(cre)/BDNF(wt/fl)) in which BDNF expression is downregulated specifically in GFAP(+) astrocytes. Both wild-type (GFAP(wt)/BDNF(wt/fl) mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. SIGNIFICANCE STATEMENT: The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white matter. However, the underlying mechanisms are still mostly unknown. Here, we use a combination of cell biology and an animal model to report a new pathway in which astrocyte-derived BDNF supports oligodendrogenesis and regeneration after white matter damage. These findings provide new mechanistic insight into white matter physiology and pathophysiology, which would be broadly and clinically applicable to CNS disease.


Asunto(s)
Astrocitos/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular/fisiología , Leucoencefalopatías/patología , Animales , Antimutagênicos/farmacología , Astrocitos/química , Astrocitos/metabolismo , Isquemia Encefálica/complicaciones , Factor Neurotrófico Derivado del Encéfalo/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Cromonas/farmacología , Cobalto/farmacología , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gutatión-S-Transferasa pi/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leucoencefalopatías/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfolinas/farmacología , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Fosfopiruvato Hidratasa/metabolismo , Células Madre/fisiología
13.
Stroke ; 47(4): 1094-100, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26965847

RESUMEN

BACKGROUND AND PURPOSE: Pentraxin 3 (PTX3) is released on inflammatory responses in many organs. However, roles of PTX3 in brain are still mostly unknown. Here we asked whether and how PTX3 contributes to blood-brain barrier dysfunction during the acute phase of ischemic stroke. METHODS: In vivo, spontaneously hypertensive rats were subjected to focal cerebral ischemia by transient middle cerebral artery occlusion. At day 3, brains were analyzed to evaluate the cellular origin of PTX3 expression. Correlations with blood-brain barrier breakdown were assessed by IgG staining. In vitro, rat primary astrocytes and rat brain endothelial RBE.4 cells were cultured to study the role of astrocyte-derived PTX3 on vascular endothelial growth factor-mediated endothelial permeability. RESULTS: During the acute phase of stroke, reactive astrocytes in the peri-infarct area expressed PTX3. There was negative correlation between gradients of IgG leakage and PTX3-positive astrocytes. Cell culture experiments showed that astrocyte-conditioned media increased levels of tight junction proteins and reduced endothelial permeability under normal conditions. Removing PTX3 from astrocyte-conditioned media by immunoprecipitation increased endothelial permeability. PTX3 strongly bound vascular endothelial growth factor in vitro and was able to decrease vascular endothelial growth factor-induced endothelial permeability. CONCLUSIONS: Astrocytes in peri-infarct areas upregulate PTX3, which may support blood-brain barrier integrity by regulating vascular endothelial growth factor-related mechanisms. This response in astrocytes may comprise a compensatory mechanism for maintaining blood-brain barrier function after ischemic stroke.


Asunto(s)
Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Proteína C-Reactiva/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Componente Amiloide P Sérico/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Muerte Celular , Medios de Cultivo Condicionados , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratas , Ratas Endogámicas SHR , Accidente Cerebrovascular/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
J Neurochem ; 136(2): 250-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26438054

RESUMEN

Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1ß-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-ß isoform acts on IL-1ß-induced endothelial permeability. Our data show that NRG1-ß increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1ß-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-ß on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-ß on IL-1ß-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-ß signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 ß (IL-1ß)-induced endothelial hyperpermeability: IL-1ß leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability. Neuregulin-1ß acts through its transmembrane receptors to activate intracellular signaling pathways which inhibit IL-1ß-induced RhoA activation and MLC phosphorylation, thereby preserving the f-actin cytoskeletal structure and endothelial barrier function.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Interleucina-1beta/farmacología , Cadenas Ligeras de Miosina/metabolismo , Neurregulina-1/farmacología , Transducción de Señal/fisiología , Quinasas Asociadas a rho/metabolismo , Adolescente , Benzotiazoles/farmacología , Encéfalo , Células Cultivadas , Impedancia Eléctrica , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Inhibidores Enzimáticos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Neurregulina-1/metabolismo , Permeabilidad/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tirfostinos/farmacología , Adulto Joven
15.
Brain ; 138(Pt 11): 3206-20, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26377633

RESUMEN

See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and ICAM1 without decreasing the levels of ABCD1 protein itself. Together, these data demonstrate that ABCD1 deficiency induces significant alterations in brain endothelium via c-MYC and may thereby contribute to the increased trafficking of leucocytes across the blood-brain barrier as seen in cerebral adrenouleukodystrophy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Adrenoleucodistrofia/genética , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Enfermedades Desmielinizantes/metabolismo , Endotelio Vascular/metabolismo , Microvasos/metabolismo , ARN Mensajero/metabolismo , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Adolescente , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patología , Adulto , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio , Estudios de Casos y Controles , Células Cultivadas , Niño , Claudina-5/genética , Claudina-5/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enfermedades Desmielinizantes/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/patología , Ácidos Grasos/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Heterocigoto , Homocigoto , Células Endoteliales de la Vena Umbilical Humana , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Masculino , Proteínas de Microfilamentos , Microscopía Confocal , Microvasos/citología , Microvasos/patología , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Esclerosis Múltiple Recurrente-Remitente/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Adulto Joven , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
16.
J Neurochem ; 132(6): 622-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25557118

RESUMEN

Inflammation is a key part of central nervous system pathophysiology. However, inflammatory factors are now thought to have both beneficial and deleterious effects. Here, we examine the hypothesis that lipocalin-2 (LCN2), an inflammatory molecule that can be up-regulated in the distressed central nervous system, may enhance angiogenesis in brain endothelial cells. Adding LCN2 (0.5-2.0 µg/mL) to RBE (Rat brain endothelial cells). 4 rat brain endothelial cells significantly increased matrigel tube formation and scratch migration, and also elevated levels of iron and reactive oxygen species. Co-treatment with a radical scavenger (U83836E), a Nox inhibitor (apocynin) and an iron chelating agent (deferiprone) significantly dampened the ability of LCN2 to enhance tube formation and scratch migration in brain endothelial cells. These findings provide in vitro proof of the concept that LCN2 can promote angiogenesis via iron- and reactive oxygen species-related pathways, and support the idea that LCN2 may contribute to the neurovascular recovery aspects of inflammation. Angiogenesis is an important part of stroke recovery. In the present study, we examined the hypothesis that lipocalin-2 (LCN2) may enhance angiogenesis in brain endothelial cells. LCN2 promoted tube formation and migration via iron and ROS-related pathways in rat brain endothelial cells. ROS scavengers, Nox inhibitors and iron chelators all dampened the ability of LCN2 to enhance in vitro angiogenesis. These findings support the idea that LCN2 that is released by damaged neurons may act as a 'help me' signal that promotes neurovascular recovery after stroke and brain injury.


Asunto(s)
Encéfalo/metabolismo , Células Endoteliales/metabolismo , Hierro/metabolismo , Lipocalinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Encéfalo/efectos de los fármacos , Línea Celular , Células Endoteliales/efectos de los fármacos , Lipocalina 2 , Ratas
17.
Stroke ; 45(7): 2085-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24916903

RESUMEN

BACKGROUND AND PURPOSE: We explored the hypothesis that injured neurons release lipocalin-2 as a help me signal. METHODS: In vivo lipocalin-2 responses were assessed in rat focal cerebral ischemia and human stroke brain samples using a combination of ELISA and immunostaining. In vitro, microglia and astrocytes were exposed to lipocalin-2, and various markers and assays of glial activation were quantified. Functional relevance of neuron-to-glia lipocalin-2 signaling was examined by transferring conditioned media from lipocalin-2-activated microglia and astrocytes onto neurons to see whether activated glia could protect neurons against oxygen-glucose deprivation and promote neuroplasticity. RESULTS: In human stroke samples and rat cerebral ischemia, neuronal expression of lipocalin-2 was significantly increased. In primary cell cultures, exposing microglia and astrocytes to lipocalin-2 resulted in glial activation. In microglia, lipocalin-2 converted resting ramified shapes into a long-rod morphology with reduced branching, increased interleukin-10 release, and enhanced phagocytosis. In astrocytes, lipocalin-2 upregulated glial fibrillary acid protein, brain-derived neurotropic factor, and thrombospondin-1. Conditioned media from lipocalin-2-treated astrocytes upregulated synaptotagmin, and conditioned media from lipocalin-2-treated microglia upregulated synaptophysin and post-synaptic density 95 (PSD95) and protected neurons against oxygen-glucose deprivation. CONCLUSIONS: These findings provide proof of concept that lipocalin-2 is released by injured neurons as a help me distress signal that activates microglia and astrocytes into potentially prorecovery phenotypes.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Astrocitos/metabolismo , Isquemia Encefálica/metabolismo , Corteza Cerebral/metabolismo , Lipocalinas/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Accidente Cerebrovascular/metabolismo , Anciano , Animales , Biomarcadores/metabolismo , Corteza Cerebral/patología , Femenino , Humanos , Lipocalina 2 , Masculino , Plasticidad Neuronal/fisiología , Fenotipo , Ratas , Ratas Wistar , Método Simple Ciego
18.
J Clin Neurol ; 19(4): 329-337, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37417430

RESUMEN

A-kinase anchoring protein (AKAP) 12 is a scaffolding protein that anchors various signaling proteins to the plasma membrane. These signaling proteins include protein kinase A, protein kinase C, protein phosphatase 2B, Src-family kinases, cyclins, and calmodulin, which regulate their respective signaling pathways. AKAP12 expression is observed in the neurons, astrocytes, endothelial cells, pericytes, and oligodendrocytes of the central nervous system (CNS). Its physiological roles include promoting the development of the blood-brain barrier, maintaining white-matter homeostasis, and even regulating complex cognitive functions such as long-term memory formation. Under pathological conditions, dysregulation of AKAP12 expression levels may be involved in the pathology of neurological diseases such as ischemic brain injury and Alzheimer's disease. This minireview aimed to summarize the current literature on the role of AKAP12 in the CNS.

19.
BMC Neurosci ; 13: 67, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22703519

RESUMEN

BACKGROUND: Accumulating evidence has demonstrated that over-expression of Neuroglobin (Ngb) is neuroprotective against hypoxic/ischemic brain injuries. In this study we tested the neuroprotective effects of Ngb over-expression against traumatic brain injury (TBI) in mice. RESULTS: Both Ngb over-expression transgenic (Ngb-Tg) and wild-type (WT) control mice were subjected to TBI induced by a controlled cortical impact (CCI) device. TBI significantly increased Ngb expression in the brains of both WT and Ngb-Tg mice, but Ngb-Tg mice had significantly higher Ngb protein levels at the pre-injury baseline and post-TBI. Production of oxidative tissue damage biomarker 3NT in the brain was significantly reduced in Ngb-Tg mice compared to WT controls at 6 hours after TBI. The traumatic brain lesion volume was significantly reduced in Ngb Tg mice compared to WT mice at 3 weeks after TBI; however, there were no significant differences in the recovery of sensorimotor and spatial memory functional deficits between Ngb-Tg and WT control mice for up to 3 weeks after TBI. CONCLUSION: Ngb over-expression reduced traumatic lesion volume, which might partially be achieved by decreasing oxidative stress.


Asunto(s)
Lesiones Encefálicas/complicaciones , Corteza Cerebral/metabolismo , Regulación de la Expresión Génica/fisiología , Globinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Convulsiones , Análisis de Varianza , Animales , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Trastornos Neurológicos de la Marcha/etiología , Regulación de la Expresión Génica/genética , Globinas/genética , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Neuroglobina , Convulsiones/etiología , Convulsiones/metabolismo , Convulsiones/prevención & control , Percepción Espacial/fisiología , Tirosina/análogos & derivados , Tirosina/metabolismo
20.
J Neurochem ; 118(2): 248-55, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21534958

RESUMEN

Oxidative stress is a pathway of injury that is common to almost all neurological conditions. Hence, methods to scavenge radicals have been extensively tested for neuroprotection. However, saving neurons alone may not be sufficient in treating CNS disease. In this study, we tested the cytoprotective actions of the glutathione precursor gamma-glutamylcysteine ethyl ester (GCEE) in brain endothelium. First, oxidative stress was induced in a human brain microvascular endothelial cell line by exposure to H(2)O(2). Addition of GCEE significantly reduced formation of reactive oxygen species, restored glutathione levels which were reduced in the presence of H(2)O(2), and decreased cell death during H(2)O(2)-mediated injury. Next, we asked whether GCEE can also protect brain endothelial cells against oxygen-glucose deprivation (OGD). As expected, OGD disrupted mitochondrial membrane potentials. GCEE was able to ameliorate these mitochondrial effects. Concomitantly, GCEE significantly decreased endothelial cell death after OGD. Lastly, our in vivo experiments using a mouse model of brain trauma show that post-trauma (10 min after controlled cortical impact) administration of GCEE by intraperitoneal injection results in a decrease in acute blood-brain barrier permeability. These data suggest that the beneficial effects of GCEE on brain endothelial cells and microvessels may contribute to its potential efficacy as a neuroprotective agent in traumatic brain injury.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Lesiones Encefálicas/metabolismo , Permeabilidad Capilar/fisiología , Dipéptidos/uso terapéutico , Células Endoteliales/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Animales , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Encefálicas/prevención & control , Permeabilidad Capilar/efectos de los fármacos , Línea Celular , Dipéptidos/farmacología , Células Endoteliales/efectos de los fármacos , Humanos , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA