Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(5): 2158-2169, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36991132

RESUMEN

Individuals with autism spectrum disorder (henceforth referred to as autism) display significant variation in clinical outcome. For instance, across age, some individuals' adaptive skills naturally improve or remain stable, while others' decrease. To pave the way for 'precision-medicine' approaches, it is crucial to identify the cross-sectional and, given the developmental nature of autism, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 autistic and 172 neurotypical individuals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behaviour Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. Autistic participants were grouped into clinically meaningful "Increasers", "No-changers", and "Decreasers" in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup's neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences' potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with autism and for genes previously linked to neurobiological pathways implicated in autism (e.g. excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e. intra-individual change in clinical profiles) linked to autism core symptoms are associated with atypical cross-sectional and longitudinal, i.e. developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g. targeting mechanisms linked to relatively poorer outcomes.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Estudios de Seguimiento , Neuroanatomía , Estudios Transversales
2.
Br J Psychiatry ; 222(3): 100-111, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36700346

RESUMEN

BACKGROUND: Reward processing has been proposed to underpin the atypical social feature of autism spectrum disorder (ASD). However, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social reward processing in ASD. AIMS: Utilising a large sample, we aimed to assess reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. METHOD: Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.6 years of age) and 181 typically developing participants (7.6-30.8 years of age). RESULTS: Across social and monetary reward anticipation, whole-brain analyses showed hypoactivation of the right ventral striatum in participants with ASD compared with typically developing participants. Further, region of interest analysis across both reward types yielded ASD-related hypoactivation in both the left and right ventral striatum. Across delivery of social and monetary reward, hyperactivation of the ventral striatum in individuals with ASD did not survive correction for multiple comparisons. Dimensional analyses of autism and attention-deficit hyperactivity disorder (ADHD) scores were not significant. In categorical analyses, post hoc comparisons showed that ASD effects were most pronounced in participants with ASD without co-occurring ADHD. CONCLUSIONS: Our results do not support current theories linking atypical social interaction in ASD to specific alterations in social reward processing. Instead, they point towards a generalised hypoactivity of ventral striatum in ASD during anticipation of both social and monetary rewards. We suggest this indicates attenuated reward seeking in ASD independent of social content and that elevated ADHD symptoms may attenuate altered reward seeking in ASD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Recompensa , Imagen por Resonancia Magnética/métodos
3.
Mol Psychiatry ; 26(12): 7641-7651, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34341515

RESUMEN

Early detection and intervention are believed to be key to facilitating better outcomes in children with autism, yet the impact of age at treatment start on the outcome is poorly understood. While clinical traits such as language ability have been shown to predict treatment outcome, whether or not and how information at the genomic level can predict treatment outcome is unknown. Leveraging a cohort of toddlers with autism who all received the same standardized intervention at a very young age and provided a blood sample, here we find that very early treatment engagement (i.e., <24 months) leads to greater gains while controlling for time in treatment. Pre-treatment clinical behavioral measures predict 21% of the variance in the rate of skill growth during early intervention. Pre-treatment blood leukocyte gene expression patterns also predict the rate of skill growth, accounting for 13% of the variance in treatment slopes. Results indicated that 295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact at the protein level, are enriched for differentially histone acetylated genes in autism postmortem cortical tissue, and are normatively highly expressed in a variety of subcortical and cortical areas important for social communication and language development. This work suggests that pre-treatment biological and clinical behavioral characteristics are important for predicting developmental change in the context of early intervention and that individualized pre-treatment biology related to histone acetylation may be key.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno Autístico/genética , Comunicación , Intervención Educativa Precoz/métodos , Expresión Génica , Humanos , Resultado del Tratamiento
4.
J Child Psychol Psychiatry ; 63(8): 948-956, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34856637

RESUMEN

BACKGROUND: Joint developmental trajectories of internalizing and externalizing problems show considerable heterogeneity; however, this can be parsed into a small number of meaningful subgroups. Doing so offered insights into risk factors that lead to different patterns of internalizing/externalizing trajectories. However, despite both domains of problems showing strong heritability, no study has yet considered genetic risks as predictors of joint internalizing/externalizing problem trajectories. METHODS: Using parallel process latent class growth analysis, we estimated joint developmental trajectories of internalizing and externalizing difficulties assessed across ages 4 to 16 using the Strengths and Difficulties Questionnaire. Multinomial logistic regression was used to evaluate a range of demographic, perinatal, maternal mental health, and child and maternal polygenic predictors of group membership. Participants included 11,049 children taking part in the Avon Longitudinal Study of Parents and Children. Polygenic data were available for 7,127 children and 6,836 mothers. RESULTS: A 5-class model was judged optimal: Unaffected, Moderate Externalizing Symptoms, High Externalizing Symptoms, Moderate Internalizing and Externalizing Symptoms and High Internalizing and Externalizing Symptoms. Male sex, lower maternal age, maternal mental health problems, maternal smoking during pregnancy, higher child polygenic risk scores for ADHD and lower polygenic scores for IQ distinguished affected classes from the unaffected class. CONCLUSIONS: While affected classes could be relatively well separated from the unaffected class, phenotypic and polygenic predictors were limited in their ability to distinguish between different affected classes. Results thus add to existing evidence that internalizing and externalizing problems have mostly shared risk factors.


Asunto(s)
Madres , Herencia Multifactorial , Adolescente , Niño , Preescolar , Femenino , Humanos , Estudios Longitudinales , Masculino , Embarazo , Factores de Riesgo , Fumar
5.
Cereb Cortex ; 31(7): 3338-3352, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33693614

RESUMEN

Autism spectrum disorder (ASD) is associated with atypical brain development. However, the phenotype of regionally specific increased cortical thickness observed in ASD may be driven by several independent biological processes that influence the gray/white matter boundary, such as synaptic pruning, myelination, or atypical migration. Here, we propose to use the boundary sharpness coefficient (BSC), a proxy for alterations in microstructure at the cortical gray/white matter boundary, to investigate brain differences in individuals with ASD, including factors that may influence ASD-related heterogeneity (age, sex, and intelligence quotient). Using a vertex-based meta-analysis and a large multicenter structural magnetic resonance imaging (MRI) dataset, with a total of 1136 individuals, 415 with ASD (112 female; 303 male), and 721 controls (283 female; 438 male), we observed that individuals with ASD had significantly greater BSC in the bilateral superior temporal gyrus and left inferior frontal gyrus indicating an abrupt transition (high contrast) between white matter and cortical intensities. Individuals with ASD under 18 had significantly greater BSC in the bilateral superior temporal gyrus and right postcentral gyrus; individuals with ASD over 18 had significantly increased BSC in the bilateral precuneus and superior temporal gyrus. Increases were observed in different brain regions in males and females, with larger effect sizes in females. BSC correlated with ADOS-2 Calibrated Severity Score in individuals with ASD in the right medial temporal pole. Importantly, there was a significant spatial overlap between maps of the effect of diagnosis on BSC when compared with cortical thickness. These results invite studies to use BSC as a possible new measure of cortical development in ASD and to further examine the microstructural underpinnings of BSC-related differences and their impact on measures of cortical morphology.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Anciano , Niño , Preescolar , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
6.
BMC Pregnancy Childbirth ; 22(1): 848, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397016

RESUMEN

BACKGROUND: Maternal prenatal infections have been linked to children's neurodevelopment and cognitive outcomes. It remains unclear, however, whether infections occurring during specific vulnerable gestational periods can affect children's cognitive outcomes. The study aimed to examine maternal infections in each trimester of pregnancy and associations with children's developmental and intelligence quotients. The ALSPAC birth cohort was used to investigate associations between maternal infections in pregnancy and child cognitive outcomes. METHODS: Infection data from mothers and cognition data from children were included with the final study sample size comprising 7,410 mother-child participants. Regression analysis was used to examine links between maternal infections occurring at each trimester of pregnancy and children's cognition at 18 months, 4 years, and 8 years. RESULTS: Infections in the third trimester were significantly associated with decreased verbal IQ at age 4 (p < .05, adjusted R2 = 0.004); decreased verbal IQ (p < .01, adjusted R2 = 0.001), performance IQ (p < .01, adjusted R2 = 0.0008), and total IQ at age 8 (p < .01, adjusted R2 = 0.001). CONCLUSION: Results suggest that maternal infections in the third trimester could have a latent effect on cognitive development, only emerging when cognitive load increases over time, though magnitude of effect appears to be small. Performance IQ may be more vulnerable to trimester-specific exposure to maternal infection as compared to verbal IQ. Future research could include examining potential mediating mechanisms on childhood cognition, such as possible moderating effects of early childhood environmental factors, and if effects persist in future cognitive outcomes.


Asunto(s)
Cognición , Madres , Embarazo , Femenino , Humanos , Preescolar , Niño , Pruebas de Inteligencia , Tercer Trimestre del Embarazo
7.
Hum Brain Mapp ; 42(4): 953-966, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33295656

RESUMEN

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is accompanied by neurodevelopmental differences in regional cortical volume (CV), and a potential layer-specific pathology. Conventional measures of CV, however, do not indicate how volume is distributed across cortical layers. In a sample of 92 typically developing (TD) controls and 92 adult individuals with ASD (aged 18-52 years), we examined volumetric gradients by quantifying the degree to which CV is weighted from the pial to the white surface of the brain. Overall, the spatial distribution of Frustum Surface Ratio (FSR) followed the gyral and sulcal pattern of the cortex and approximated a bimodal Gaussian distribution caused by a linear mixture of vertices on gyri and sulci. Measures of FSR were highly correlated with vertex-wise estimates of mean curvature, sulcal depth, and pial surface area, although none of these features explained more than 76% variability in FSR on their own. Moreover, in ASD, we observed a pattern of predominant increases in the degree of FSR relative to TD controls, with an atypical neurodevelopmental trajectory. Our findings suggest a more outward-weighted gradient of CV in ASD, which may indicate a larger contribution of supragranular layers to regional differences in CV.


Asunto(s)
Trastorno del Espectro Autista/patología , Corteza Cerebral/patología , Neuroimagen/métodos , Adolescente , Adulto , Trastorno del Espectro Autista/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Hum Brain Mapp ; 42(2): 467-484, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33094897

RESUMEN

Autism spectrum disorder (ASD) is a highly complex neurodevelopmental condition that is accompanied by neuroanatomical differences on the macroscopic and microscopic level. Findings from histological, genetic, and more recently in vivo neuroimaging studies converge in suggesting that neuroanatomical abnormalities, specifically around the gray-white matter (GWM) boundary, represent a crucial feature of ASD. However, no research has yet characterized the GWM boundary in ASD based on measures of diffusion. Here, we registered diffusion tensor imaging data to the structural T1-weighted images of 92 adults with ASD and 92 matched neurotypical controls in order to examine between-group differences and group-by-sex interactions in fractional anisotropy and mean diffusivity sampled at the GWM boundary, and at different sampling depths within the superficial white and into the gray matter. As hypothesized, we observed atypical diffusion at and around the GWM boundary in ASD, with between-group differences and group-by-sex interactions depending on tissue class and sampling depth. Furthermore, we identified that altered diffusion at the GWM boundary partially (i.e., ~50%) overlapped with atypical gray-white matter tissue contrast in ASD. Our study thus replicates and extends previous work highlighting the GWM boundary as a crucial target of neuropathology in ASD, and guides future work elucidating etiological mechanisms.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Trastorno del Espectro Autista/fisiopatología , Encéfalo/fisiopatología , Femenino , Sustancia Gris/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/fisiopatología , Adulto Joven
9.
Mol Psychiatry ; 25(9): 2175-2188, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104728

RESUMEN

Early-onset neurodevelopmental conditions (e.g., autism) affect males more frequently than females. Androgens may play a role in this male-bias by sex-differentially impacting early prenatal brain development, particularly neural circuits that later develop specialized roles in social cognition. Here, we find that increasing prenatal testosterone in humans is associated with later reduction of functional connectivity between social brain default mode (DMN) subsystems in adolescent males, but has no effect in females. Since testosterone can work directly via the androgen receptor (AR) or indirectly via the estrogen receptor through aromatase conversion to estradiol, we further examined how a potent non-aromatizable androgen, dihydrotestosterone (DHT), acts via the AR to influence gene expression in human neural stem cells (hNSC)-particularly for genes of high-relevance for DMN circuitry. DHT dysregulates a number of genes enriched for syndromic causes of autism and intellectual disability and for genes that in later development are expressed in anatomical patterns that highly correspond to the cortical midline DMN subsystem. DMN-related and DHT-affected genes (e.g., MEF2C) are involved in a number of synaptic processes, many of which impact excitation-inhibition balance. Androgens have male-specific prenatal influence over social brain circuitry in humans and may be relevant towards explaining some component of male-bias in early-onset neurodevelopmental conditions.


Asunto(s)
Andrógenos , Dihidrotestosterona , Adolescente , Encéfalo , Estradiol , Femenino , Humanos , Masculino , Testosterona
10.
Mol Psychiatry ; 25(3): 614-628, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31028290

RESUMEN

Significant heterogeneity across aetiologies, neurobiology and clinical phenotypes have been observed in individuals with autism spectrum disorder (ASD). Neuroimaging-based neuroanatomical studies of ASD have often reported inconsistent findings which may, in part, be attributable to an insufficient understanding of the relationship between factors influencing clinical heterogeneity and their relationship to brain anatomy. To this end, we performed a large-scale examination of cortical morphometry in ASD, with a specific focus on the impact of three potential sources of heterogeneity: sex, age and full-scale intelligence (FIQ). To examine these potentially subtle relationships, we amassed a large multi-site dataset that was carefully quality controlled (yielding a final sample of 1327 from the initial dataset of 3145 magnetic resonance images; 491 individuals with ASD). Using a meta-analytic technique to account for inter-site differences, we identified greater cortical thickness in individuals with ASD relative to controls, in regions previously implicated in ASD, including the superior temporal gyrus and inferior frontal sulcus. Greater cortical thickness was observed in sex specific regions; further, cortical thickness differences were observed to be greater in younger individuals and in those with lower FIQ, and to be related to overall clinical severity. This work serves as an important step towards parsing factors that influence neuroanatomical heterogeneity in ASD and is a potential step towards establishing individual-specific biomarkers.


Asunto(s)
Trastorno del Espectro Autista/patología , Encéfalo/anatomía & histología , Encéfalo/patología , Adolescente , Adulto , Factores de Edad , Corteza Cerebral/patología , Niño , Preescolar , Bases de Datos Factuales , Femenino , Humanos , Inteligencia/fisiología , Pruebas de Inteligencia , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Neuroimagen , Caracteres Sexuales
11.
Artículo en Inglés | MEDLINE | ID: mdl-33289092

RESUMEN

Fombonne's (2020) editorial is a thought-provoking appraisal of the literature on 'camouflaging', whereby some autistic people mask or compensate for their autistic characteristics as an attempt to fit in and to cope with disabilities under neurotypical social norms. Fombonne (2020) highlights three issues of contention: (a) construct validity and measurement of camouflaging; (b) camouflaging as a reason for late autism diagnosis in adolescence/adulthood; and (c) camouflaging as a feature of the 'female autism phenotype'. Here, we argue that (a) establishing construct validity and measurement of different aspects of camouflaging is warranted; (b) subjective experiences are important for the differential diagnosis of autism in adolescence/adulthood; and (c) camouflaging is not necessarily a feature of autism in female individuals - nevertheless, taking into account sex and gender influences in development is crucial to understand behavioural manifestations of autism. Future research and clinical directions should involve clarification of associated constructs and measurements, demography, mechanisms, impact (including harms and benefits) and tailored support.


Asunto(s)
Trastorno Autístico , Adaptación Psicológica , Adulto , Femenino , Humanos
12.
Am J Hum Biol ; 33(1): e23448, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32501636

RESUMEN

OBJECTIVE: Lower digit ratios between the lengths of fingers 2 (2D) and 4 (4D) (2D:4D) are associated with superior distance running and athletic performance. We examined relationships between 2D:4D, aerobic fitness, physical skills, and overall physical fitness of elite adolescent boy and girl distance runners. METHODS: Subjects were top five finishers for their sex and age in 10 or more races of 10 km or longer in Michigan in 1981. We calculated 2D:4D of 15 girls and 11 boys from radiographs. Subject peak O2 consumption (VO2Peak ), ventilatory threshold (VT), and point of equivalent change (PEC) were collected during intermittent treadmill protocol tests. Performances on physical skills tests (flex-arm hang, broad jump, vertical jump, figure-8-run, sit ups, and sit-and-reach test) were collected in the laboratory. We examined the interrelationships between 2D:4D, subject sex, aerobic fitness, physical skills test performance, and overall physical fitness, a composite of aerobic and physical skills performance with correlation, linear regression, t tests, and principle component analyses. RESULTS: Girls had significantly larger right hand (R) 2D:4D than boys. Boys had greater VO2Peak by mass than girls. Boys with lower R2D:4D had significantly greater VO2Peak and PEC. Girls with lower R2D:4D had significantly greater VT. Factors associated with aerobic fitness explained most of the variation in composite physical fitness scores. Composite aerobic fitness, physical skills, and overall physical fitness scores of boys were negatively correlated with R2D:4D. CONCLUSIONS: These data suggest that R2D:4D may help predict distance running performance in girls and boys and overall physical fitness in boys and provide additional insights into the innate factors influencing youth physical fitness.


Asunto(s)
Atletas/estadística & datos numéricos , Ejercicio Físico , Dedos/anatomía & histología , Aptitud Física , Adolescente , Femenino , Humanos , Estudios Longitudinales , Masculino , Michigan , Fuerza Muscular , Consumo de Oxígeno , Factores Sexuales
13.
Mol Psychiatry ; 24(10): 1435-1450, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30617272

RESUMEN

Autism is a diagnostic label based on behavior. While the diagnostic criteria attempt to maximize clinical consensus, it also masks a wide degree of heterogeneity between and within individuals at multiple levels of analysis. Understanding this multi-level heterogeneity is of high clinical and translational importance. Here we present organizing principles to frame research examining multi-level heterogeneity in autism. Theoretical concepts such as 'spectrum' or 'autisms' reflect non-mutually exclusive explanations regarding continuous/dimensional or categorical/qualitative variation between and within individuals. However, common practices of small sample size studies and case-control models are suboptimal for tackling heterogeneity. Big data are an important ingredient for furthering our understanding of heterogeneity in autism. In addition to being 'feature-rich', big data should be both 'broad' (i.e., large sample size) and 'deep' (i.e., multiple levels of data collected on the same individuals). These characteristics increase the likelihood that the study results are more generalizable and facilitate evaluation of the utility of different models of heterogeneity. A model's utility can be measured by its ability to explain clinically or mechanistically important phenomena, and also by explaining how variability manifests across different levels of analysis. The directionality for explaining variability across levels can be bottom-up or top-down, and should include the importance of development for characterizing changes within individuals. While progress can be made with 'supervised' models built upon a priori or theoretically predicted distinctions or dimensions of importance, it will become increasingly important to complement such work with unsupervised data-driven discoveries that leverage unknown and multivariate distinctions within big data. A better understanding of how to model heterogeneity between autistic people will facilitate progress towards precision medicine for symptoms that cause suffering, and person-centered support.


Asunto(s)
Trastorno del Espectro Autista/clasificación , Macrodatos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Estudios de Casos y Controles , Heterogeneidad Genética , Humanos , Estudios Longitudinales
14.
Mol Psychiatry ; 24(1): 88-107, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29934544

RESUMEN

Autism spectrum disorder (ASD) has captured the attention of scientists, clinicians and the lay public because of its uncertain origins and striking and unexplained clinical heterogeneity. Here we review genetic, genomic, cellular, postmortem, animal model, and cell model evidence that shows ASD begins in the womb. This evidence leads to a new theory that ASD is a multistage, progressive disorder of brain development, spanning nearly all of prenatal life. ASD can begin as early as the 1st and 2nd trimester with disruption of cell proliferation and differentiation. It continues with disruption of neural migration, laminar disorganization, altered neuron maturation and neurite outgrowth, disruption of synaptogenesis and reduced neural network functioning. Among the most commonly reported high-confidence ASD (hcASD) genes, 94% express during prenatal life and affect these fetal processes in neocortex, amygdala, hippocampus, striatum and cerebellum. A majority of hcASD genes are pleiotropic, and affect proliferation/differentiation and/or synapse development. Proliferation and subsequent fetal stages can also be disrupted by maternal immune activation in the 1st trimester. Commonly implicated pathways, PI3K/AKT and RAS/ERK, are also pleiotropic and affect multiple fetal processes from proliferation through synapse and neural functional development. In different ASD individuals, variation in how and when these pleiotropic pathways are dysregulated, will lead to different, even opposing effects, producing prenatal as well as later neural and clinical heterogeneity. Thus, the pathogenesis of ASD is not set at one point in time and does not reside in one process, but rather is a cascade of prenatal pathogenic processes in the vast majority of ASD toddlers. Despite this new knowledge and theory that ASD biology begins in the womb, current research methods have not provided individualized information: What are the fetal processes and early-age molecular and cellular differences that underlie ASD in each individual child? Without such individualized knowledge, rapid advances in biological-based diagnostic, prognostic, and precision medicine treatments cannot occur. Missing, therefore, is what we call ASD Living Biology. This is a conceptual and paradigm shift towards a focus on the abnormal prenatal processes underlying ASD within each living individual. The concept emphasizes the specific need for foundational knowledge of a living child's development from abnormal prenatal beginnings to early clinical stages. The ASD Living Biology paradigm seeks this knowledge by linking genetic and in vitro prenatal molecular, cellular and neural measurements with in vivo post-natal molecular, neural and clinical presentation and progression in each ASD child. We review the first such study, which confirms the multistage fetal nature of ASD and provides the first in vitro fetal-stage explanation for in vivo early brain overgrowth. Within-child ASD Living Biology is a novel research concept we coin here that advocates the integration of in vitro prenatal and in vivo early post-natal information to generate individualized and group-level explanations, clinically useful prognoses, and precision medicine approaches that are truly beneficial for the individual infant and toddler with ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Amígdala del Cerebelo/metabolismo , Animales , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Femenino , Humanos , Masculino , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología
15.
Biochemistry ; 58(9): 1188-1197, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714720

RESUMEN

Enolase is a glycolytic metalloenzyme involved in carbon metabolism. The advantage of targeting enolase lies in its essentiality in many biological processes such as cell wall formation and RNA turnover and as a plasminogen receptor. We initially used a DARTS assay to identify enolase as a target in Escherichia coli. The antibacterial activities of α-, ß-, and γ-substituted seven-member ring tropolones were first evaluated against four strains representing a range of Gram-negative bacteria. We observed that the chemical properties and position of the substituents on the tropolone ring play an important role in the biological activity of the investigated compounds. Both α- and ß-substituted phenyl derivatives of tropolone were the most active with minimum inhibitory concentrations in the range of 11-14 µg/mL. The potential inhibitory activity of the synthetic tropolones was further evaluated using an enolase inhibition assay, X-ray crystallography, and molecular docking simulations. The catalytic activity of enolase was effectively inhibited by both the naturally occurring ß-thujaplicin and the α- and ß-substituted phenyl derivatives of tropolones with IC50 values in range of 8-11 µM. Ligand binding parameters were assessed by isothermal titration calorimetry and differential scanning calorimetry techniques and agreed with the in vitro data. Our studies validate the antibacterial potential of tropolones with careful consideration of the position and character of chelating moieties for stronger interaction with metal ions and residues in the enolase active site.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Fosfopiruvato Hidratasa/antagonistas & inhibidores , Tropolona/farmacología , Antibacterianos/química , Calorimetría , Dominio Catalítico , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/enzimología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Fosfopiruvato Hidratasa/química , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Tropolona/química
16.
Hum Brain Mapp ; 40(18): 5354-5369, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31464062

RESUMEN

Autism is a neurodevelopmental condition characterized by atypical brain functional organization. Here we investigated the intrinsic indirect (semi-metric) connectivity of the functional connectome associated with autism. Resting-state functional magnetic resonance imaging scans were acquired from 65 neurotypical adults (33 males/32 females) and 61 autistic adults (30 males/31 females). From functional connectivity networks, semi-metric percentages (SMPs) were calculated to assess the proportion of indirect shortest functional pathways at global, hemisphere, network, and node levels. Group comparisons were then conducted to ascertain differences between autism and neurotypical control groups. Finally, the strength and length of edges were examined to explore the patterns of semi-metric connections associated with autism. Compared with neurotypical controls, autistic adults displayed significantly higher SMP at all spatial scales, similar to prior observations in adolescents. Differences were primarily in weaker, longer-distance edges in the majority between networks. However, no significant diagnosis-by-sex interaction effects were observed on global SMP. These findings suggest increased indirect functional connectivity in the autistic brain is persistent from adolescence to adulthood and is indicative of reduced functional network integration.


Asunto(s)
Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adulto , Conectoma/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
17.
Cereb Cortex ; 28(8): 2959-2975, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771288

RESUMEN

Sex differences in the human brain are of interest for many reasons: for example, there are sex differences in the observed prevalence of psychiatric disorders and in some psychological traits that brain differences might help to explain. We report the largest single-sample study of structural and functional sex differences in the human brain (2750 female, 2466 male participants; mean age 61.7 years, range 44-77 years). Males had higher raw volumes, raw surface areas, and white matter fractional anisotropy; females had higher raw cortical thickness and higher white matter tract complexity. There was considerable distributional overlap between the sexes. Subregional differences were not fully attributable to differences in total volume, total surface area, mean cortical thickness, or height. There was generally greater male variance across the raw structural measures. Functional connectome organization showed stronger connectivity for males in unimodal sensorimotor cortices, and stronger connectivity for females in the default mode network. This large-scale study provides a foundation for attempts to understand the causes and consequences of sex differences in adult brain structure and function.


Asunto(s)
Bancos de Muestras Biológicas , Mapeo Encefálico , Encéfalo/fisiología , Caracteres Sexuales , Adulto , Anciano , Bancos de Muestras Biológicas/estadística & datos numéricos , Encéfalo/diagnóstico por imagen , Planificación en Salud Comunitaria , Conectoma , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Descanso , Reino Unido , Sustancia Blanca/diagnóstico por imagen
18.
Cereb Cortex ; 27(2): 877-887, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28057721

RESUMEN

Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P < 0.05). As expected, these reductions were greatest when tissue intensities were sampled close to gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies.


Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adolescente , Adulto , Algoritmos , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Caracteres Sexuales , Adulto Joven
19.
Neuroimage ; 154: 59-80, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28363836

RESUMEN

In recent years the field of fMRI research has enjoyed expanded technical abilities related to resolution, as well as use across many fields of brain research. At the same time, the field has also dealt with uncertainty related to many known and unknown effects of artifact in fMRI data. In this review we discuss an emerging fMRI technology, called multi-echo (ME)-fMRI, which focuses on improving the fidelity and interpretability of fMRI. Where the essential problem of standard single-echo fMRI is the indeterminacy of sources of signals, whether BOLD or artifact, this is not the case for ME-fMRI. By acquiring multiple echo images per slice, the ME approach allows T2* decay to be modeled at every voxel at every time point. Since BOLD signals arise by changes in T2* over time, an fMRI experiment sampling the T2* signal decay can be analyzed to distinguish BOLD from artifact signal constituents. While the ME approach has a long history of use in theoretical and validation studies, modern MRI systems enable whole-brain multi-echo fMRI at high resolution. This review covers recent multi-echo fMRI acquisition methods, and the analysis steps for this data to make fMRI at once more principled, straightforward, and powerful. After a brief overview of history and theory, T2* modeling and applications will be discussed. These applications include T2* mapping and combining echoes from ME data to increase BOLD contrast and mitigate dropout artifacts. Next, the modeling of fMRI signal changes to detect signal origins in BOLD-related T2* versus artifact-related S0 changes will be reviewed. A focus is on the use of ME-fMRI data to extract and classify components from spatial ICA, called multi-echo ICA (ME-ICA). After describing how ME-fMRI and ME-ICA lead to a general model for analysis of fMRI signals, applications in animal and human imaging will be discussed. Applications include removing motion artifacts in resting state data at subject and group level. New imaging methods such as multi-band multi-echo fMRI and imaging at 7T are demonstrated throughout the review, and a practical analysis pipeline is described. The review culminates with evidence from recent studies of major boosts in statistical power from using multi-echo fMRI for detecting activation and connectivity in healthy individuals and patients with neuropsychiatric disease. In conclusion, the review shows evidence that the multi-echo approach expands the range of experiments that is practicable using fMRI. These findings suggest a compelling future role of the multi-echo approach in subject-level and clinical fMRI.


Asunto(s)
Imagen Eco-Planar/métodos , Neuroimagen Funcional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Animales , Humanos
20.
Hum Brain Mapp ; 38(3): 1208-1223, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27774713

RESUMEN

Neuroimaging studies have reported structural and physiological differences that could help understand the causes and development of Autism Spectrum Disorder (ASD). Many of them rely on multisite designs, with the recruitment of larger samples increasing statistical power. However, recent large-scale studies have put some findings into question, considering the results to be strongly dependent on the database used, and demonstrating the substantial heterogeneity within this clinically defined category. One major source of variance may be the acquisition of the data in multiple centres. In this work we analysed the differences found in the multisite, multi-modal neuroimaging database from the UK Medical Research Council Autism Imaging Multicentre Study (MRC AIMS) in terms of both diagnosis and acquisition sites. Since the dissimilarities between sites were higher than between diagnostic groups, we developed a technique called Significance Weighted Principal Component Analysis (SWPCA) to reduce the undesired intensity variance due to acquisition site and to increase the statistical power in detecting group differences. After eliminating site-related variance, statistically significant group differences were found, including Broca's area and the temporo-parietal junction. However, discriminative power was not sufficient to classify diagnostic groups, yielding accuracies results close to random. Our work supports recent claims that ASD is a highly heterogeneous condition that is difficult to globally characterize by neuroimaging, and therefore different (and more homogenous) subgroups should be defined to obtain a deeper understanding of ASD. Hum Brain Mapp 38:1208-1223, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Trastorno Autístico/patología , Mapeo Encefálico , Encéfalo/patología , Análisis de Componente Principal , Adolescente , Adulto , Trastorno Autístico/diagnóstico por imagen , Trastorno Autístico/genética , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA