Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(10): 4039-4047, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38422552

RESUMEN

Trace element concentrations in toenail clippings have increasingly been used to measure trace element exposure in epidemeological research. Conventional methods such as inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography ICP-MS (HPLC-ICP-MS) are commonly used to measure trace elements and their speciation in toenails. However, the impact of the removal of external contamination on trace element quantification has not been thoroughly studied. In this work, the microdistribution of trace elements (As, Ca, Co, Cu, Fe, K, Mn, Ni, Rb, S, Sr, Ti, and Zn) in dirty and washed toenails and the speciation of As in situ in toenails were investigated using synchrotron X-ray fluorescence microscopy (XFM) and laterally resolved X-ray absorption near edge spectroscopy (XANES). XFM showed different distribution patterns for each trace element, consistent with their binding properties and nail structure. External (terrestrial) contamination was identified and distinguished from the endogenous accumulation of trace elements in toenails─contaminated areas were characterized by the co-occurrence of Co, Fe, and Mn with elements such as Ti and Rb (i.e., indicators of terrestrial contamination). The XANES spectra showed the presence of one As species in washed toenails, corresponding to As bound to sulfhydryl groups. In dirty specimens, a mixed speciation was found in localized areas, containing AsIII-S species and AsV species. ArsenicV is thought to be associated with surface contamination and exogenous As. These findings provide new insights into the speciation of arsenic in toenails, the microdistribution of trace elements, and the effectiveness of a cleaning protocol in removing external contamination.


Asunto(s)
Arsénico , Oligoelementos , Arsénico/análisis , Oligoelementos/análisis , Uñas/química , Espectroscopía de Absorción de Rayos X
2.
Plant Physiol ; 191(3): 1520-1534, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36423229

RESUMEN

The concentration, chemical speciation, and spatial distribution of essential and toxic mineral elements in cereal seeds have important implications for human health. To identify genes responsible for element uptake, translocation, and storage, high-throughput phenotyping methods are needed to visualize element distribution and concentration in seeds. Here, we used X-ray fluorescence microscopy (µ-XRF) as a method for rapid and high-throughput phenotyping of seed libraries and developed an ImageJ-based pipeline to analyze the spatial distribution of elements. Using this method, we nondestructively scanned 4,190 ethyl methanesulfonate (EMS)-mutagenized M1 rice (Oryza sativa) seeds and 533 diverse rice accessions in a genome-wide association study (GWAS) panel to simultaneously measure concentrations and spatial distribution of elements in the embryo, endosperm, and aleurone layer. A total of 692 putative mutants and 65 loci associated with the spatial distribution of elements in rice seed were identified. This powerful method provides a basis for investigating the genetics and molecular mechanisms controlling the accumulation and spatial variations of mineral elements in plant seeds.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Humanos , Rayos X , Semillas/genética , Minerales , Microscopía Fluorescente , Oryza/genética
3.
Environ Sci Technol ; 58(1): 440-448, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38108297

RESUMEN

A novel binding layer (BL) as part of the diffusive gradients in thin films (DGT) technique was developed for the two-dimensional visualization and quantification of labile phosphorus (P) in soils. This BL was designed for P detection by synchrotron-based X-ray fluorescence microscopy (XFM). It differs from the conventional DGT BL as the hydrogel is eliminated to overcome the issue that the fluorescent X-rays of P are detected mainly from shallow sample depths. Instead, the novel design is based on a polyimide film (Kapton) onto which finely powdered titanium dioxide-based P binding agent (Metsorb) was applied, resulting in superficial P binding only. The BL was successfully used for quantitative visualization of P diffusion from three conventional P fertilizers applied to two soils. On a selection of samples, XFM analysis was confirmed by quantitative laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The XFM method detected significant differences in labile P concentrations and P diffusion zone radii with the P fertilizer incubation, which were explained by soil and fertilizer properties. This development paves the way for fast XFM analysis of P on large DGT BLs to investigate in situ diffusion of labile P from fertilizers and to visualize large-scale P cycling processes at high spatial resolution.


Asunto(s)
Fertilizantes , Fósforo , Fósforo/análisis , Fósforo/química , Fertilizantes/análisis , Rayos X , Suelo/química , Difusión , Microscopía Fluorescente
4.
Anal Chem ; 94(11): 4584-4593, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276040

RESUMEN

Synchrotron-based X-ray fluorescence microscopy (XFM) analysis is a powerful technique that can be used to visualize elemental distributions across a broad range of sample types. Compared to conventional mapping techniques such as laser ablation inductively coupled plasma mass spectrometry or benchtop XFM, synchrotron-based XFM provides faster and more sensitive analyses. However, access to synchrotron XFM beamlines is highly competitive, and as a result, these beamlines are often oversubscribed. Therefore, XFM experiments that require many large samples to be scanned can penalize beamline throughput. Our study was largely driven by the need to scan large gels (170 cm2) using XFM without decreasing beamline throughput. We describe a novel approach for acquiring two sets of XFM data using two fluorescence detectors in tandem; essentially performing two separate experiments simultaneously. We measured the effects of tandem scanning on beam quality by analyzing a range of contrasting samples downstream while simultaneously scanning different gel materials upstream. The upstream gels were thin (<200 µm) diffusive gradients in thin-film (DGT) binding gels. DGTs are passive samplers that are deployed in water, soil, and sediment to measure the concentration and distribution of potentially bioavailable nutrients and contaminants. When deployed on soil, DGTs are typically small (2.5 cm2), so we developed large DGTs (170 cm2), which can be used to provide extensive maps to visualize the diffusion of fertilizers in soil. Of the DGT gel materials tested (bis-acrylamide, polyacrylamide, and polyurethane), polyurethane gels were most suitable for XFM analysis, having favorable handling, drying, and analytical properties. This gel type enabled quantitative (>99%) transmittance with minimal (<3%) flux variation during raster scanning, whereas the other gels had a substantial effect on the beam focus. For the first time, we have (1) used XFM for mapping analytes in large DGTs and (2) developed a tandem probe analysis mode for synchrotron-based XFM, effectively doubling throughput. The novel tandem probe analysis mode described here is of broad applicability across many XFM beamlines as it could be used for future experiments where any uniform, highly transmissive sample could be analyzed upstream in the "background" of downstream samples.


Asunto(s)
Poliuretanos , Sincrotrones , Difusión , Geles , Suelo/química
5.
Physiol Plant ; 174(4): e13761, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36004733

RESUMEN

Foliar fertilization delivers essential nutrients directly to plant tissues, reducing excessive soil fertilizer applications that can lead to eutrophication following nutrient leaching. Foliar nutrient absorption is a dynamic process affected by leaf surface structure and composition, plant nutrient status, and ion physicochemical properties. We applied multiple methods to study the foliar absorption behaviors of manganese (Mn) and phosphorus (P) in nutrient-deficient spring barley (Hordeum vulgare) at two growth stages. Nutrient-specific chlorophyll a fluorescence assays were used to visualize leaf nutrient status, while laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to visualize foliar absorption pathways for P and Mn ions. Rapid Mn absorption was facilitated by a relatively thin cuticle with a low abundance of waxes and a higher stomatal density in Mn-deficient plants. Following absorption, Mn accumulated in epidermal cells and in the photosynthetically active mesophyll, enabling a fast (6 h) restoration of Mn-dependent photosynthetic processes. Conversely, P-deficient plants developed thicker cuticles and epidermal cell walls, which reduced the penetration of P across the leaf surface. Foliar-applied P accumulated in trichomes and fiber cells above leaf veins without reaching the mesophyll and, as a consequence, no restoration of P-dependent photosynthetic processes was observed. This study reveals new links between leaf surface morphology, foliar-applied ion absorption pathways, and the restoration of affected physiological processes in nutrient-deficient leaves. Understanding that ions may have different absorption pathways across the leaf surface is critical for the future development of efficient fertilization strategies for crops in nutrient-limited soils.


Asunto(s)
Hordeum , Manganeso , Fósforo , Hojas de la Planta , Clorofila A/análisis , Hordeum/metabolismo , Iones/metabolismo , Manganeso/metabolismo , Nutrientes/análisis , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Suelo
6.
Environ Sci Technol ; 56(9): 5580-5589, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35438975

RESUMEN

The environmental mobility of Cu and therefore its potential toxicity are closely linked to its attachment to natural organic matter (NOM). Geochemical models assume full lability of metals bound to NOM, especially under strong oxidizing conditions, which often leads to an overestimation of the lability of soil metals. Stable isotope dilution (SID) has been successfully applied to estimate the labile (isotopically exchangeable) pool of soil metals. However, its application to study the lability of NOM-Cu required development of a robust separation and detection approach so that free Cu ions can be discriminated from (the also soluble) NOM-Cu. We developed a SID protocol (with enriched 65Cu) to quantify the labile pool of NOM-Cu using size exclusion chromatography coupled to a UV detector (for the identification of different NOM molecular weights) and ICP-MS (for 65Cu/63Cu ratio measurement). The Cu isotopic-exchange technique was first characterized and verified using standard NOM (SR-NOM) before applying the developed technique to an "organic-rich" podzol soil extract. The developed protocol indicated that, in contrast to the common knowledge, significant proportions of SR-NOM-Cu (25%) and soil organic-Cu (55%) were not labile, i.e., permanently locked into inaccessible organic structures. These findings need to be considered in defining Cu interactions with the reactive pool of NOM using geochemical models and risk evaluation protocols in which complexed Cu has always been implicitly assumed to be fully labile and exchangeable with free Cu ions.


Asunto(s)
Contaminantes del Suelo , Humanos , Cobre/química , Isótopos , Metales/análisis , Suelo/química , Contaminantes del Suelo/análisis
7.
Plant Physiol ; 183(4): 1472-1483, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32540871

RESUMEN

Global demand for phosphorus (P) requires new agronomic practices to address sustainability challenges while increasing food production. Foliar P fertilization could increase P use efficiency; however, leaf entry pathways for inorganic phosphate ion (Pi) uptake remain unknown, and it is unclear whether foliar P applications can meet plant nutrient demands. We developed two techniques to trace foliar P uptake in P-deficient spring barley (Hordeum vulgare) and to monitor the effectiveness of the treatment on restoring P functionality. First, a whole-leaf P status assay was developed using an IMAGING PAM system; nonphotochemical quenching was a proxy for P status, as P-deficient barley developed nonphotochemical quenching at a faster rate than P-sufficient barley. The assay showed restoration of P functionality in P-deficient plants 24 h after foliar P application. Treated leaves reverted to P deficiency after 7 d, while newly emerging leaves exhibited partial restoration compared with untreated P-deficient plants, indicating Pi remobilization. Second, vanadate was tested as a possible foliar Pi tracer using high-resolution laser ablation-inductively coupled plasma-mass spectrometry elemental mapping. The strong colocalization of vanadium and P signal intensities demonstrated that vanadate was a sensitive and useful Pi tracer. Vanadate and Pi uptake predominantly occurred via fiber cells located above leaf veins, with pathways to the vascular tissue possibly facilitated by the bundle sheath extension. Minor indications of stomatal and cuticular Pi uptake were also observed. These techniques provided an approach to understand how Pi crosses the leaf surface and assimilates to meet plant nutrient demands.


Asunto(s)
Hordeum/metabolismo , Hojas de la Planta/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo
8.
Plant Physiol ; 182(4): 1869-1882, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31974126

RESUMEN

Understanding the distribution of elements in plants is important for researchers across a broad range of fields, including plant molecular biology, agronomy, plant physiology, plant nutrition, and ionomics. However, it is often challenging to evaluate the applicability of the wide range of techniques available, with each having its own strengths and limitations. Here, we compare scanning/transmission electron microscopy-based energy-dispersive x-ray spectroscopy, x-ray fluorescence microscopy, particle-induced x-ray emission, laser ablation inductively coupled plasma-mass spectrometry, nanoscale secondary ion mass spectroscopy, autoradiography, and confocal microscopy with fluorophores. For these various techniques, we compare their accessibility, their ability to analyze hydrated tissues (without sample preparation) and suitability for in vivo analyses, as well as examining their most important analytical merits, such as resolution, sensitivity, depth of analysis, and the range of elements that can be analyzed. We hope that this information will assist other researchers to select, access, and evaluate the approach that is most useful in their particular research program or application.


Asunto(s)
Plantas/química , Espectrometría de Masas , Microscopía Confocal , Microscopía Electrónica , Espectrometría por Rayos X
9.
J Exp Bot ; 72(13): 5079-5092, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33944939

RESUMEN

Trichomes are potentially important for absorption of foliar fertilizers. A study has shown that the non-glandular trichromes (NGTs) of sunflower (Helianthus annuus) accumulated high concentrations of foliar-applied zinc (Zn); however, the mechanisms of Zn accumulation in the NGTs and the fate of this Zn are unclear. Here we investigated how foliar-applied Zn accumulates in the NGTs and the subsequent translocation of this Zn. Time-resolved synchrotron-based X-ray fluorescence microscopy and transcriptional analyses were used to probe the movement of Zn in the NGTs, with the cuticle composition of the NGTs examined using confocal Raman microscopy. The accumulation of Zn in the NGTs is both an initial preferential absorption process and a subsequent translocation process. This preferred absorption is likely because the NGT base has a higher hydrophilicity, whilst the subsequent translocation is due to the presence of plasmodesmata, Zn-chelating ligands, and Zn transporters in the NGTs. Furthermore, the Zn sequestered in the NGTs was eventually translocated out of the trichome once the leaf Zn concentration had decreased, suggesting that the NGTs are also important in maintaining leaf Zn homeostasis. This study demonstrates for the first time that trichomes have a key structural and functional role in the absorption and translocation of foliar-applied Zn.


Asunto(s)
Helianthus , Tricomas , Fertilizantes , Hojas de la Planta , Zinc
10.
Environ Sci Technol ; 55(17): 11848-11858, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34382781

RESUMEN

Synchrotron-based X-ray fluorescence microscopy (XFM) coupled with X-ray absorption near-edge structure (XANES) imaging was used to study selenium (Se) biodistribution and speciation in Limnodynastes peronii tadpoles. Tadpoles were exposed to dissolved Se (30 µg/L) as selenite (SeIV) or selenate (SeVI) for 7 days followed by 3 days of depuration. High-resolution elemental maps revealed that Se partitioned primarily in the eyes (specifically the eye lens, iris, and retinal pigmented epithelium), digestive and excretory organs of SeIV-exposed tadpoles. Speciation analysis confirmed that the majority of accumulated Se was converted to organo-Se. Multielement analyses provided new information on Se colocalization and its impact on trace element homeostasis. New insights into the fate of Se on a whole organism scale contribute to our understanding of the mechanisms and risks associated with Se pollution.


Asunto(s)
Compuestos de Selenio , Selenio , Animales , Larva , Ácido Selénico , Sincrotrones , Distribución Tisular , Humedales
11.
Environ Sci Technol ; 55(20): 13523-13531, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34037394

RESUMEN

Using zinc (Zn) foliar fertilizers to enhance the grain quality of wheat (Triticum aestivum) can be an effective alternative or supplement to Zn soil fertilizers. However, knowledge about the mechanisms of Zn absorption and translocation following foliar application is scarce. Here, autoradiography and γ-spectrometry were used to investigate the behavior of 65Zn applied to wheat leaves as soluble 65Zn chloride (65ZnCl2), chelated 65Zn (65ZnEDTA), 65Zn oxide nanoparticle (65ZnO-NP) suspensions, and 65ZnO microparticle (65ZnO-MP) suspensions. The largest amount of 65Zn absorption occurred in 65ZnCl2 treated leaves. However, this treatment (65ZnCl2) also had the lowest proportion of absorbed 65Zn translocated away from the treated leaf after 15 d due to leaf scorching (p = 0.0007). Foliar-applied 65ZnO-NPs and 65ZnO-MPs had the lowest absorption, but 65ZnO-NPs had the highest relative translocation. 65Zinc EDTA was intermediate, with higher 65Zn absorption than 65ZnO treatments but similar translocation. Regardless, the majority of the foliar-applied 65Zn remained in the treated leaf for all treatments. Furthermore, 65ZnO-NPs and 65ZnO-MPs accumulated in plant nodes, suggesting that Zn was absorbed as dissolved 65Zn and particulate 65ZnO. Overall, the form and amount of absorbed 65Zn affected translocation.


Asunto(s)
Nanopartículas , Óxido de Zinc , Grano Comestible/química , Fertilizantes/análisis , Hojas de la Planta/química , Suelo , Triticum , Zinc/análisis
12.
Food Microbiol ; 93: 103610, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32912583

RESUMEN

Pre-harvest sanitization of irrigation water has potential for reducing pathogen contamination of fresh produce. We compared the sanitizing effects of irrigation water containing neutral electrolyzed oxidizing water (EOW) or sodium hypochlorite (NaClO) on pre-harvest lettuce and baby spinach leaves artificially contaminated with a mixture of Escherichia coli, Salmonella Enteritidis and Listeria innocua (~1 × 108 colony-forming units/mL each resuspended in water containing 100 mg/L dissolved organic carbon, simulating a splash-back scenario from contaminated soil/manure). The microbial load and leaf quality were assessed over 7 days, and post-harvest shelf life evaluated for 10 days. Irrigation with water containing EOW or NaClO at 50 mg/L free chlorine significantly reduced the inoculated bacterial load by ≥ 1.5 log10, whereas tap water irrigation reduced the inoculated bacterial load by an average of 0.5 log10, when compared with untreated leaves. There were no visual effects of EOW or tap water irrigation on baby spinach or lettuce leaf surfaces pre- or post-harvest, whereas there were obvious negative effects of NaClO irrigation on leaf appearance for both plants, including severe necrotic zones and yellowing/browning of leaves. Therefore, EOW could serve as a viable alternative to chemical-based sanitizers for pre-harvest disinfection of minimally processed vegetables.


Asunto(s)
Descontaminación , Electrólisis , Microbiología de Alimentos , Hojas de la Planta/microbiología , Agua/química , Cloro , Desinfección , Enfermedades Transmitidas por los Alimentos/microbiología , Lactuca/microbiología , Listeria , Plantas/microbiología , ARN Ribosómico 16S , Radioisótopos , Hipoclorito de Sodio/química , Spinacia oleracea/microbiología
13.
Physiol Plant ; 170(3): 384-397, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32652623

RESUMEN

Foliar absorption of zinc (Zn) is limited by several barriers, the first of which is the leaf cuticle. In this study, we investigated the absorption of Zn from Zn oxide nanoparticles (ZnO-NPs) in wheat (Triticum aestivum cv Gladius) and sunflower (Helianthus annuus cv Hyoleic 41) to determine the importance of NP surface coating for Zn absorption. Fourier transform infrared (FTIR) spectroscopy showed a higher polysaccharide content in the wheat cuticle than sunflower, indicated by a more pronounced glycosidic bond at 1020 cm-1 , but wax and cutin content were similar. Scanning electron microscopy (SEM) revealed that trichome density was twice as high in wheat (3600 ± 900 cm-2 ) as in sunflower (1600 cm-2 ) and stomatal density four times higher in sunflower (6400 ± 800 cm-2 in wheat and 22 900 cm-2 in sunflower). Suspensions of ZnO-NPs with coatings of different hydrophobicity were applied to leaves to compare Zn absorption using X-ray fluorescence microscopy (XFM) and inductively coupled plasma mass spectroscopy (ICP-MS). Absorption of Zn was similar between wheat and sunflower when Zn was applied at 1000 mg Zn l-1 , but much less Zn was absorbed from all ZnO products than from soluble Zn fertiliser. Particle coating did not affect Zn absorption, but it may facilitate particle adhesion to leaves, providing a longer-term source of resupply of Zn ions to the leaves. Differences in leaf surface characteristics did not affect Zn absorption, indicating that the cuticle is the main pathway of absorption under these conditions.


Asunto(s)
Nanopartículas , Óxido de Zinc , Hojas de la Planta , Propiedades de Superficie
14.
Environ Sci Technol ; 54(19): 12034-12041, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32852945

RESUMEN

Recycling of organic waste (OW) as fertilizer on farmland is a widespread practice that fosters sustainable development via resource reuse. However, the advantages of OW fertilization should be weighed against the potentially negative environmental impacts due to the presence of contaminants such as zinc (Zn). Current knowledge on the parameters controlling the environmental fate of Zn following OW application on cultivated soils is scant. We addressed this shortcoming by combining soil column experiments and Zn speciation characterization in OWs and amended soils. Soil column experiments were first carried out using two contrasted soils (sandy soil and sandy clay loam) that were amended with sewage sludge or poultry manure and cropped with lettuce. The soil columns were irrigated with identical amounts of water twice a week, and the leachates collected at the column outlet were monitored and analyzed. This scheme (OW application and lettuce crop cycle) was repeated for each treatment. Lettuce yields and Zn uptake were assessed at the end of each cycle. The soil columns were dismantled and seven soil layers were sampled and analyzed at the end of the second cycle (total experiment time: 12 weeks). X-ray absorption spectroscopy analyses were then conducted to assess Zn speciation in OW and OW-amended soils. The results of this study highlighted that (i) the fate of Zn in water-soil-plant compartments was similar, regardless of the type of soil and OW, (ii) >97.6% of the Zn input from OW accumulated in the soil surface layer, (iii) Zn uptake by lettuce increased with repeated OW applications, and (iv) no radical change in Zn speciation was observed at the end of the 12-week experiment, and phosphate was found to drive Zn speciation in both OW and amended soils (i.e., amorphous Zn-phosphate and Zn sorbed on hydoxylapatite). These results suggest that Zn speciation in OW is a key determinant controlling the environmental fate of this element in OW-amended soils.


Asunto(s)
Contaminantes del Suelo , Suelo , Estiércol , Aguas del Alcantarillado , Contaminantes del Suelo/análisis , Zinc/análisis
15.
Environ Sci Technol ; 54(19): 12072-12080, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32910856

RESUMEN

Consumption of rice (Oryza sativa) is the major dietary source of cadmium (Cd) for populations with rice as the staple. Little is known about the distribution and chemical speciation of Cd in rice grain, which is critical in determining the bioavailability of Cd to humans. We used synchrotron-based techniques for analyses of the speciation and distribution of Cd in rice grain. The majority of the Cd in rice grain was present as Cd-thiolate complexes (66-92%), likely in the form of Cd bound with thiol-rich proteins. The remainder was present as Cd-carboxyl compounds and Cd-histidine. Elemental mapping showed two different patterns of Cd distribution, one with an even distribution throughout the entire grain and the other with a preferential distribution in the outer tissues (aleurone layer and outer starchy endosperm). The distribution pattern is important as it affects the removal of Cd during milling. On average, milling reduced grain Cd concentrations by 23.5% (median of 27.5%), although the range varied widely from a 64.7% decrease to a 22.2% increase, depending upon the concentration of Cd in the bran. We found that the variation in the distribution pattern of Cd in the rice grain was due to a temporal change in the supply of Cd from the soil porewater during grain filling. These results have important implications for Cd bioavailability in human diets.


Asunto(s)
Oryza , Contaminantes del Suelo , Disponibilidad Biológica , Cadmio/análisis , Grano Comestible/química , Humanos , Suelo , Contaminantes del Suelo/análisis
16.
Ecotoxicol Environ Saf ; 196: 110576, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32279000

RESUMEN

Antimony (Sb) and its compounds are emerging priority pollutants which pose a serious threat to the environment. The aim of this study was to evaluate the short-term fate of antimonate added to different soils (S1 and S2) with respect to its mobility and impact on soil microbial communities and soil biochemical functioning. To this end, S1 (sandy clay loam, pH 8.2) and S2 (loamy coarse sand, pH 4.9) soils were spiked with 100 and 1000 mg Sb(V) kg-1 soil and left in contact for three months. Sequential extractions carried out after this contact time indicated a higher percentage of labile antimony in the Sb-spiked S1 soils than S2 (e.g. ~13 and 4% in S1 and S2 treated with 1000 mg Sb(V) kg-1 respectively), while the opposite was found for residual (hardly bioavailable) Sb. Also, a reduced number of culturable heterotrophic bacteria was recorded in Sb-spiked S1 soil (compared to the unpolluted S1), while an increased one was found in S2. Heterotrophic fungi followed the opposite trend. Actinomycetes and heat-resistant aerobic bacterial spores showed a variable trend depending on the soil type and Sb(V) treatment. The Biolog community level physiological profile indicated a reduced metabolic activity potential of microbial communities from the Sb-spiked S1 soils (e.g. <50% for Sb-1000 compared to the unpolluted S1), while an increase was recorded for those extracted from the Sb-spiked S2 soils (e.g. >2-fold for Sb-1000). The soil dehydrogenase activity followed the same trend. High-throughput 16S rRNA amplicon sequencing analysis revealed that Sb did not influence the bacterial α-diversity in both soils, while significantly affected the composition of the respective soil bacterial communities. Several phyla (e.g. Nitrosospira Nitrososphaeraceae, Adheribacter) were found positively correlated with the concentration of water-soluble Sb in soil. Overall, the results obtained suggest that the risk assessment in soils polluted with antimony should be a priority especially for alkaline soils where the high mobility of the anionic Sb(OH)6- species can pose, at least in the short-term, a serious threat for soil microbial abundance, diversity and functionality, soil fertility and eventually human health.


Asunto(s)
Antimonio/análisis , Microbiota/efectos de los fármacos , Microbiología del Suelo , Contaminantes del Suelo/análisis , Suelo/química , Antimonio/metabolismo , Antimonio/toxicidad , Disponibilidad Biológica , Humanos , Oxidación-Reducción , ARN Ribosómico 16S/genética , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad
17.
Plant Biotechnol J ; 17(8): 1514-1526, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30623558

RESUMEN

Bread wheat (Triticum aestivum L.) is cultivated on more land than any other crop and produces a fifth of the calories consumed by humans. Wheat endosperm is rich in starch yet contains low concentrations of dietary iron (Fe) and zinc (Zn). Biofortification is a micronutrient intervention aimed at increasing the density and bioavailability of essential vitamins and minerals in staple crops; Fe biofortification of wheat has proved challenging. In this study we employed constitutive expression (CE) of the rice (Oryza sativa L.) nicotianamine synthase 2 (OsNAS2) gene in bread wheat to up-regulate biosynthesis of two low molecular weight metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - that play key roles in metal transport and nutrition. The CE-OsNAS2 plants accumulated higher concentrations of grain Fe, Zn, NA and DMA and synchrotron X-ray fluorescence microscopy (XFM) revealed enhanced localization of Fe and Zn in endosperm and crease tissues, respectively. Iron bioavailability was increased in white flour milled from field-grown CE-OsNAS2 grain and positively correlated with NA and DMA concentrations.


Asunto(s)
Harina/análisis , Hierro de la Dieta/análisis , Ingeniería Metabólica , Triticum/química , Transferasas Alquil y Aril/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Disponibilidad Biológica , Grano Comestible/química , Oryza/enzimología , Oryza/genética , Plantas Modificadas Genéticamente/química , Triticum/genética
18.
Plant Physiol ; 178(2): 507-523, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30108140

RESUMEN

Understanding the distribution of elements within plant tissues is important across a range of fields in plant science. In this review, we examine synchrotron-based x-ray fluorescence microscopy (XFM) as an elemental imaging technique in plant sciences, considering both its historical and current uses as well as discussing emerging approaches. XFM offers several unique capabilities of interest to plant scientists, including in vivo analyses at room temperature and pressure, good detection limits (approximately 1-100 mg kg-1), and excellent resolution (down to 50 nm). This has permitted its use in a range of studies, including for functional characterization in molecular biology, examining the distribution of nutrients in food products, understanding the movement of foliar fertilizers, investigating the behavior of engineered nanoparticles, elucidating the toxic effects of metal(loid)s in agronomic plant species, and studying the unique properties of hyperaccumulating plants. We anticipate that continuing technological advances at XFM beamlines also will provide new opportunities moving into the future, such as for high-throughput screening in molecular biology, the use of exotic metal tags for protein localization, and enabling time-resolved, in vivo analyses of living plants. By examining current and potential future applications, we hope to encourage further XFM studies in plant sciences by highlighting the versatility of this approach.


Asunto(s)
Microscopía Fluorescente/métodos , Plantas/ultraestructura , Plantas/metabolismo , Sincrotrones , Rayos X
19.
Ann Bot ; 123(1): 57-68, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30020418

RESUMEN

Background and Aims: The pathways whereby foliar-applied nutrients move across the leaf surface remain unclear. The aim of the present study was to examine the pathways by which foliar-applied Zn moves across the sunflower (Helianthus annuus) leaf surface, considering the potential importance of the cuticle, stomata and trichomes. Methods: Using synchrotron-based X-ray florescence microscopy and nanoscale secondary ion mass spectrometry (NanoSIMS), the absorption of foliar-applied ZnSO4 and nano-ZnO were studied in sunflower. The speciation of Zn was also examined using synchrotron-based X-ray absorption spectroscopy. Key Results: Non-glandular trichomes (NGTs) were particularly important for foliar Zn absorption, with Zn preferentially accumulating within trichomes in ≤15 min. The cuticle was also found to have a role, with Zn appearing to move across the cuticle before accumulating in the walls of the epidermal cells. After 6 h, the total Zn that accumulated in the NGTs was approx. 1.9 times higher than in the cuticular tissues. No marked accumulation of Zn was found within the stomatal cavity, probably indicating a limited contribution of the stomatal pathway. Once absorbed, the Zn accumulated in the walls of the epidermal and the vascular cells, and trichome bases of both leaf sides, with the bundle sheath extensions that connected to the trichomes seemingly facilitating this translocation. Finally, the absorption of nano-ZnO was substantially lower than for ZnSO4, with Zn probably moving across the leaf surface as soluble Zn rather than nanoparticles. Conclusions: In sunflower, both the trichomes and cuticle appear to be important for foliar Zn absorption.


Asunto(s)
Helianthus/metabolismo , Zinc/metabolismo , Absorción Fisiológica , Fertilizantes/análisis , Hojas de la Planta/metabolismo , Estomas de Plantas/metabolismo , Tricomas/metabolismo
20.
Environ Sci Technol ; 53(17): 10131-10138, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31418551

RESUMEN

Acid-soluble soil phosphorus (P) is a potential resource in P-limited agricultural systems that may become critical as global P sources decrease in the future. The fate of P in three alkaline Vertisols, a major agricultural soil type, after acidic incubation was investigated using synchrotron-based K-edge X-ray absorption near-edge structure (XANES) spectroscopy, geochemical modeling, wet chemistry soil extraction, and a P sorption index. Increases in labile P generally coincided with decreased stability and dissolution of calcium phosphate (CaP) minerals. However, only a minor proportion of the CaP dissolved in each soil was labile. In two moderate-P soils (800 mg P kg-1), XANES indicated that approximately 160 mg kg-1 was repartitioned to sorbed phases at pH 5.1 of one soil and at pH 4.4 of the second; however, only 40 and 28% were labile, respectively. In a high-P soil (8900 mg P kg-1), XANES indicated a decrease in P of 1170 mg kg-1 from CaP minerals at pH 3.8, of which approximately only 33% was labile. Phosphorus mobilized by agricultural practices without concurrent uptake by plants may be repartitioned to sorbed forms that are not as plant-available as prior to acidification.


Asunto(s)
Contaminantes del Suelo , Suelo , Agricultura , Fosfatos de Calcio , Fosfatos , Fósforo , Espectroscopía de Absorción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA