Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Hematol Oncol Clin North Am ; 36(4): 829-851, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35778331

RESUMEN

The field of gene therapy has experienced tremendous growth in the last decade ranging from improvements in the design of viral vectors for gene addition of therapeutic gene cassettes to the discovery of site-specific nucleases targeting transgenes to desired locations in the genome. Such advancements have not only enabled the development of disease models but also created opportunities for the development of tailored therapeutic approaches. There are 3 main methods of gene modification that can be used for the prevention or treatment of disease. This includes viral vector-mediated gene therapy to supply or bypass a missing/defective gene, gene editing enabled by programmable nucleases to create sequence-specific alterations in the genome, and gene silencing to reduce the expression of a gene or genes. These gene-modification platforms can be delivered either in vivo, for which the therapy is injected directed into a patient's body, or ex vivo, in which cells are harvested from a patient and modified in a laboratory setting, and then returned to the patient.


Asunto(s)
Edición Génica , Terapia Genética , Endonucleasas/metabolismo , Vectores Genéticos/genética , Humanos , Transgenes
3.
Mol Ther Nucleic Acids ; 27: 505-516, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35036061

RESUMEN

Gene editing utilizing homology-directed repair has advanced significantly for many monogenic diseases of the hematopoietic system in recent years but has also been hindered by decreases between in vitro and in vivo gene integration rates. Homology-directed repair occurs primarily in the S/G2 phases of the cell cycle, whereas long-term engrafting hematopoietic stem cells are typically quiescent. Alternative methods for a targeted integration have been proposed including homology-independent targeted integration and precise integration into target chromosome, which utilize non-homologous end joining and microhomology-mediated end joining, respectively. Non-homologous end joining occurs throughout the cell cycle, while microhomology-mediated end joining occurs predominantly in the S phase. We compared these pathways for the integration of a corrective DNA cassette at the Bruton's tyrosine kinase gene for the treatment of X-linked agammaglobulinemia. Homology-directed repair generated the most integration in K562 cells; however, synchronizing cells into G1 resulted in the highest integration rates with homology-independent targeted integration. Only homology-directed repair produced seamless junctions, making it optimal for targets where insertions and deletions are impermissible. Bulk CD34+ cells were best edited by homology-directed repair and precise integration into the target chromosome, while sorted hematopoietic stem cells contained similar integration rates using all corrective donors.

4.
Cell Rep ; 23(9): 2606-2616, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29847792

RESUMEN

X-linked hyper-immunoglobulin M (hyper-IgM) syndrome (XHIM) is a primary immunodeficiency due to mutations in CD40 ligand that affect immunoglobulin class-switch recombination and somatic hypermutation. The disease is amenable to gene therapy using retroviral vectors, but dysregulated gene expression results in abnormal lymphoproliferation in mouse models, highlighting the need for alternative strategies. Here, we demonstrate the ability of both the transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) platforms to efficiently drive integration of a normal copy of the CD40L cDNA delivered by Adeno-Associated Virus. Site-specific insertion of the donor sequence downstream of the endogenous CD40L promoter maintained physiologic expression of CD40L while overriding all reported downstream mutations. High levels of gene modification were achieved in primary human hematopoietic stem cells (HSCs), as well as in cell lines and XHIM-patient-derived T cells. Notably, gene-corrected HSCs engrafted in immunodeficient mice at clinically relevant frequencies. These studies provide the foundation for a permanent curative therapy in XHIM.


Asunto(s)
Edición Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Células Madre Hematopoyéticas/metabolismo , Síndrome de Inmunodeficiencia con Hiper-IgM/genética , Animales , Antígenos CD34/metabolismo , Secuencia de Bases , Ligando de CD40/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Línea Celular , Ensayo de Unidades Formadoras de Colonias , Reparación del ADN , ADN Complementario/genética , Humanos , Ratones , Linfocitos T/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA