Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 498(2): 305-312, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28911864

RESUMEN

Sensor histidine kinases (SHKs) are an integral component of the molecular machinery that permits bacteria to adapt to widely changing environmental conditions. CpxA, an extensively studied SHK, is a multidomain homodimeric protein with each subunit consisting of a periplasmic sensor domain, a transmembrane domain, a signal-transducing HAMP domain, a dimerization and histidine phospho-acceptor sub-domain (DHp) and a catalytic and ATP-binding subdomain (CA). The key activation event involves the rearrangement of the HAMP-DHp helical core and translation of the CA towards the acceptor histidine, which presumably results in an autokinase-competent complex. In the present work we integrate coarse-grained, all-atom, and hybrid QM-MM computer simulations to probe the large-scale conformational reorganization that takes place from the inactive to the autokinase-competent state (conformational step), and evaluate its relation to the autokinase reaction itself (chemical step). Our results highlight a tight coupling between conformational and chemical steps, underscoring the advantage of CA walking along the DHp core, to favor a reactive tautomeric state of the phospho-acceptor histidine. The results not only represent an example of multiscale modelling, but also show how protein dynamics can promote catalysis.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Simulación de Dinámica Molecular , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Fosforilación , Conformación Proteica , Dominios Proteicos
2.
Biochemistry ; 55(12): 1909-17, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26950759

RESUMEN

The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly. ERK2 is activated by the upstream kinases MEK1/2, which phosphorylate both tyrosine 185 and threonine 183. ERK2 requires phosphorylation on both sites to be fully active. Some additional ERK2 phosphorylation sites have also been reported, including threonine 188. It has been suggested that this phospho form has distinct properties. We detected some ERK2 phosphorylated on T188 in bacterial preparations of ERK2 by mass spectrometry and further demonstrate that phosphomimetic substitution of this ERK2 residue impairs its kinase activity toward well-defined substrates and also affects its DNA binding. We used electrophoretic mobility shift assays with oligonucleotides derived from the insulin gene promoter and other regions to examine effects of phosphorylation and mutations on the binding of ERK2 to DNA. We show that ERK2 can bind oligonucleotides directly. Phosphorylation and mutations alter DNA binding and support the idea that signaling functions may be influenced through an alternate phosphorylation site.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Animales , Proteína Quinasa 1 Activada por Mitógenos/química , Mutación/fisiología , Oligonucleótidos/química , Fosforilación/fisiología , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA