RESUMEN
Autism Spectrum Disorder (ASD) diagnosis remains behavior-based and the median age of diagnosis is ~52 months, nearly 5 years after its first-trimester origin. Accurate and clinically-translatable early-age diagnostics do not exist due to ASD genetic and clinical heterogeneity. Here we collected clinical, diagnostic, and leukocyte RNA data from 240 ASD and typically developing (TD) toddlers (175 toddlers for training and 65 for test). To identify gene expression ASD diagnostic classifiers, we developed 42,840 models composed of 3570 gene expression feature selection sets and 12 classification methods. We found that 742 models had AUC-ROC ≥ 0.8 on both Training and Test sets. Weighted Bayesian model averaging of these 742 models yielded an ensemble classifier model with accurate performance in Training and Test gene expression datasets with ASD diagnostic classification AUC-ROC scores of 85-89% and AUC-PR scores of 84-92%. ASD toddlers with ensemble scores above and below the overall ASD ensemble mean of 0.723 (on a scale of 0 to 1) had similar diagnostic and psychometric scores, but those below this ASD ensemble mean had more prenatal risk events than TD toddlers. Ensemble model feature genes were involved in cell cycle, inflammation/immune response, transcriptional gene regulation, cytokine response, and PI3K-AKT, RAS and Wnt signaling pathways. We additionally collected targeted DNA sequencing smMIPs data on a subset of ASD risk genes from 217 of the 240 ASD and TD toddlers. This DNA sequencing found about the same percentage of SFARI Level 1 and 2 ASD risk gene mutations in TD (12 of 105) as in ASD (13 of 112) toddlers, and classification based only on the presence of mutation in these risk genes performed at a chance level of 49%. By contrast, the leukocyte ensemble gene expression classifier correctly diagnostically classified 88% of TD and ASD toddlers with ASD risk gene mutations. Our ensemble ASD gene expression classifier is diagnostically predictive and replicable across different toddler ages, races, and ethnicities; out-performs a risk gene mutation classifier; and has potential for clinical translation.
Asunto(s)
Trastorno del Espectro Autista , Humanos , Preescolar , Lactante , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Teorema de Bayes , Fosfatidilinositol 3-Quinasas , Inmunidad , Expresión GénicaRESUMEN
Early detection and intervention are believed to be key to facilitating better outcomes in children with autism, yet the impact of age at treatment start on the outcome is poorly understood. While clinical traits such as language ability have been shown to predict treatment outcome, whether or not and how information at the genomic level can predict treatment outcome is unknown. Leveraging a cohort of toddlers with autism who all received the same standardized intervention at a very young age and provided a blood sample, here we find that very early treatment engagement (i.e., <24 months) leads to greater gains while controlling for time in treatment. Pre-treatment clinical behavioral measures predict 21% of the variance in the rate of skill growth during early intervention. Pre-treatment blood leukocyte gene expression patterns also predict the rate of skill growth, accounting for 13% of the variance in treatment slopes. Results indicated that 295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact at the protein level, are enriched for differentially histone acetylated genes in autism postmortem cortical tissue, and are normatively highly expressed in a variety of subcortical and cortical areas important for social communication and language development. This work suggests that pre-treatment biological and clinical behavioral characteristics are important for predicting developmental change in the context of early intervention and that individualized pre-treatment biology related to histone acetylation may be key.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno Autístico/genética , Comunicación , Intervención Educativa Precoz/métodos , Expresión Génica , Humanos , Resultado del TratamientoRESUMEN
BACKGROUND: Both RNA-Seq and sample freeze-thaw are ubiquitous. However, knowledge about the impact of freeze-thaw on downstream analyses is limited. The lack of common quality metrics that are sufficiently sensitive to freeze-thaw and RNA degradation, e.g. the RNA Integrity Score, makes such assessments challenging. RESULTS: Here we quantify the impact of repeated freeze-thaw cycles on the reliability of RNA-Seq by examining poly(A)-enriched and ribosomal RNA depleted RNA-seq from frozen leukocytes drawn from a toddler Autism cohort. To do so, we estimate the relative noise, or percentage of random counts, separating technical replicates. Using this approach we measured noise associated with RIN and freeze-thaw cycles. As expected, RIN does not fully capture sample degradation due to freeze-thaw. We further examined differential expression results and found that three freeze-thaws should extinguish the differential expression reproducibility of similar experiments. Freeze-thaw also resulted in a 3' shift in the read coverage distribution along the gene body of poly(A)-enriched samples compared to ribosomal RNA depleted samples, suggesting that library preparation may exacerbate freeze-thaw-induced sample degradation. CONCLUSION: The use of poly(A)-enrichment for RNA sequencing is pervasive in library preparation of frozen tissue, and thus, it is important during experimental design and data analysis to consider the impact of repeated freeze-thaw cycles on reproducibility.
Asunto(s)
Criopreservación , ARN , Congelación , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ARNRESUMEN
OBJECTIVES: To examine the impact of a new approach, Get SET Early, on the rates of early autism spectrum disorder (ASD) detection and factors that influence the screen-evaluate-treat chain. STUDY DESIGN: After attending Get SET Early training, 203 pediatricians administered 57 603 total screens using the Communication and Symbolic Behavior Scales Infant-Toddler Checklist at 12-, 18-, and 24-month well-baby examinations, and parents designated presence or absence of concern. For screen-positive toddlers, pediatricians specified if the child was being referred for evaluation, and if not, why not. RESULTS: Collapsed across ages, toddlers were evaluated and referred for treatment at a median age of 19 months, and those screened at 12 months (59.4% of sample) by 15 months. Pediatricians referred one-third of screen-positive toddlers for evaluation, citing lack of confidence in the accuracy of screen-positive results as the primary reason for nonreferral. If a parent expressed concerns, referral probability doubled, and the rate of an ASD diagnosis increased by 37%. Of 897 toddlers evaluated, almost one-half were diagnosed as ASD, translating into an ASD prevalence of 1%. CONCLUSIONS: The Get SET Early model was effective at detecting ASD and initiating very early treatment. Results also underscored the need for change in early identification approaches to formally operationalize and incorporate pediatrician judgment and level of parent concern into the process.
Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Factores de Edad , Trastorno del Espectro Autista/psicología , Trastorno del Espectro Autista/terapia , Lista de Verificación , Preescolar , Diagnóstico Precoz , Femenino , Humanos , Lactante , Masculino , Tamizaje Masivo , Padres/psicología , Valor Predictivo de las Pruebas , Psicometría , Derivación y ConsultaRESUMEN
Genetic mechanisms underlying abnormal early neural development in toddlers with Autism Spectrum Disorder (ASD) remain uncertain due to the impossibility of direct brain gene expression measurement during critical periods of early development. Recent findings from a multi-tissue study demonstrated high expression of many of the same gene networks between blood and brain tissues, in particular with cell cycle functions. We explored relationships between blood gene expression and total brain volume (TBV) in 142 ASD and control male toddlers. In control toddlers, TBV variation significantly correlated with cell cycle and protein folding gene networks, potentially impacting neuron number and synapse development. In ASD toddlers, their correlations with brain size were lost as a result of considerable changes in network organization, while cell adhesion gene networks significantly correlated with TBV variation. Cell cycle networks detected in blood are highly preserved in the human brain and are upregulated during prenatal states of development. Overall, alterations were more pronounced in bigger brains. We identified 23 candidate genes for brain maldevelopment linked to 32 genes frequently mutated in ASD. The integrated network includes genes that are dysregulated in leukocyte and/or postmortem brain tissue of ASD subjects and belong to signaling pathways regulating cell cycle G1/S and G2/M phase transition. Finally, analyses of the CHD8 subnetwork and altered transcript levels from an independent study of CHD8 suppression further confirmed the central role of genes regulating neurogenesis and cell adhesion processes in ASD brain maldevelopment.
Asunto(s)
Trastorno del Espectro Autista/genética , Encéfalo/patología , Proteínas de Ciclo Celular/genética , Redes Reguladoras de Genes , Mutación , Trastorno del Espectro Autista/patología , Encéfalo/crecimiento & desarrollo , Adhesión Celular , Proteínas de Ciclo Celular/sangre , Preescolar , Biología Computacional , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Lactante , MasculinoRESUMEN
In this study, we have demonstrated a targeted metabolomics method for analysis of cancer cells, based on high-performance ion chromatography (IC) separation, Q Exactive HF MS for high-resolution and accurate-mass (HR/AM) measurement and the use of stable isotope-labeled internal standards for absolute quantitation. Our method offers great technical advantages for metabolite analysis, including exquisite sensitivity, high speed and reproducibility, and wide dynamic range. The high-performance IC provided fast separation of cellular metabolites within 20 min and excellent resolving power for polar molecules including many isobaric metabolites. The IC/Q Exactive HF MS achieved wide dynamic ranges of 5 orders of magnitude for six targeted metabolites, pyruvate, succinic acid, malic acid, citric acid, fumaric acid, and alpha-ketoglutaric acid, with R(2) ≈ 0.99. Using this platform, metabolites can be simultaneously quantified from low fmol/µL to nmol/µL levels in cellular samples. The high flow rate IC at 380 µL/min has shown excellent reproducibility for a large set of samples (150 injections), with minimal variations of retention time (SD < ± 0.03 min). In addition, the IC-MS-based approach acquires targeted and global metabolomic data in a same analytical run, and the use of stable isotope-labeled standards facilitates accurate quantitation of targeted metabolites in large-scale metabolomics analysis. This metabolomics approach has been successfully applied to analysis of targeted metabolites in head and neck cancer cells as well as cancer stem-like cells (CSCs), and the findings indicate that the metabolic phenotypes may be distinct between high and low invasive head and neck cancer cells and between CSCs and non-SCCs.
Asunto(s)
Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Metabolómica , Cromatografía Líquida de Alta Presión , Ácido Cítrico/metabolismo , Fumaratos/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Malatos/metabolismo , Espectrometría de Masas , Ácido Pirúvico/metabolismo , Ácido Succínico/metabolismoRESUMEN
A highly sensitive platform coupling capillary ion chromatography (Cap IC) with Q Exactive mass spectrometer has been developed for metabolic profiling of head and neck squamous cell carcinoma (HNSCC) cells. The Cap IC allowed an excellent separation of anionic polar metabolites, and the sensitivities increased by up to 100-fold compared to reversed-phase liquid chromatography and hydrophilic interaction chromatography performed at either high- or capillary-flow rates. The detection limits for a panel of standard metabolites were between 0.04 to 0.5 nmol/L (0.2 to 3.4 fmol) at a signal-to-noise ratio of 3. This platform was applied to an untargeted metabolomic analysis of head and neck cancer cells and stem-like cancer cells. Differential metabolomics analysis identified significant changes in energy metabolism pathways (e.g., glycolysis and tricarboxylic acid cycle). These experiments demonstrate Cap IC/MS as a powerful metabolomics tool by providing enhanced separation and sensitivity of polar metabolites combined with high resolution and accurate mass measurement (HR/AM) capabilities to differentiate isobaric metabolites.
Asunto(s)
Aniones/química , Neoplasias de Cabeza y Cuello/química , Metabolómica/métodos , Electrocromatografía Capilar , Línea Celular Tumoral , Humanos , Espectrometría de Masas , Células Madre Neoplásicas/química , ARN Interferente Pequeño/farmacología , Factores de Transcripción SOXC/química , Factores de Transcripción SOXC/genéticaRESUMEN
Some toddlers with autism spectrum disorder (ASD) have mild social symptoms and developmental improvement in skills, but for others, symptoms and abilities are moderately or even severely affected. Those with profound autism have the most severe social, language, and cognitive symptoms and are at the greatest risk of having a poor developmental outcome. The little that is known about the underlying biology of this important profound autism subtype, points clearly to embryonic dysregulation of proliferation, differentiation and neurogenesis. Because it is essential to gain foundational knowledge of the molecular biology associated with profound, moderate, and mild autism clinical subtypes, we used well-validated, data-driven patient subtyping methods to integrate clinical and molecular data at 1 to 3 years of age in a cohort of 363 ASD and controls representative of the general pediatric population in San Diego County. Clinical data were diagnostic, language, cognitive and adaptive ability scores. Molecular measures were 50 MSigDB Hallmark gene pathway activity scores derived from RNAseq gene expression. Subtyping identified four ASD, typical and mixed diagnostic clusters. 93% of subjects in one cluster were profound autism and 93% in a different cluster were control toddlers; a third cluster was 76% moderate ability ASD; and the last cluster was a mix of mild ASD and control toddlers. Among the four clusters, the profound autism subtype had the most severe social symptoms, language, cognitive, adaptive, social attention eye tracking, social fMRI activation, and age-related decline in abilities, while mild autism toddlers mixed within typical and delayed clusters had mild social symptoms, and neurotypical language, cognitive and adaptive scores that improved with age compared with profound and moderate autism toddlers in other clusters. In profound autism, 7 subtype-specific dysregulated gene pathways were found; they control embryonic proliferation, differentiation, neurogenesis, and DNA repair. To find subtype-common dysregulated pathways, we compared all ASD vs TD and found 17 ASD subtype-common dysregulated pathways. These common pathways showed a severity gradient with the greatest dysregulation in profound and least in mild. Collectively, results raise the new hypothesis that the continuum of ASD heterogeneity is moderated by subtype-common pathways and the distinctive nature of profound autism is driven by the differentially added profound subtype-specific embryonic pathways.
RESUMEN
BACKGROUND: Social affective and communication symptoms are central to autism spectrum disorder (ASD), yet their severity differs across toddlers: Some toddlers with ASD display improving abilities across early ages and develop good social and language skills, while others with "profound" autism have persistently low social, language and cognitive skills and require lifelong care. The biological origins of these opposite ASD social severity subtypes and developmental trajectories are not known. METHODS: Because ASD involves early brain overgrowth and excess neurons, we measured size and growth in 4910 embryonic-stage brain cortical organoids (BCOs) from a total of 10 toddlers with ASD and 6 controls (averaging 196 individual BCOs measured/subject). In a 2021 batch, we measured BCOs from 10 ASD and 5 controls. In a 2022 batch, we tested replicability of BCO size and growth effects by generating and measuring an independent batch of BCOs from 6 ASD and 4 control subjects. BCO size was analyzed within the context of our large, one-of-a-kind social symptom, social attention, social brain and social and language psychometric normative datasets ranging from N = 266 to N = 1902 toddlers. BCO growth rates were examined by measuring size changes between 1- and 2-months of organoid development. Neurogenesis markers at 2-months were examined at the cellular level. At the molecular level, we measured activity and expression of Ndel1; Ndel1 is a prime target for cell cycle-activated kinases; known to regulate cell cycle, proliferation, neurogenesis, and growth; and known to be involved in neuropsychiatric conditions. RESULTS: At the BCO level, analyses showed BCO size was significantly enlarged by 39% and 41% in ASD in the 2021 and 2022 batches. The larger the embryonic BCO size, the more severe the ASD social symptoms. Correlations between BCO size and social symptoms were r = 0.719 in the 2021 batch and r = 0. 873 in the replication 2022 batch. ASD BCOs grew at an accelerated rate nearly 3 times faster than controls. At the cell level, the two largest ASD BCOs had accelerated neurogenesis. At the molecular level, Ndel1 activity was highly correlated with the growth rate and size of BCOs. Two BCO subtypes were found in ASD toddlers: Those in one subtype had very enlarged BCO size with accelerated rate of growth and neurogenesis; a profound autism clinical phenotype displaying severe social symptoms, reduced social attention, reduced cognitive, very low language and social IQ; and substantially altered growth in specific cortical social, language and sensory regions. Those in a second subtype had milder BCO enlargement and milder social, attention, cognitive, language and cortical differences. LIMITATIONS: Larger samples of ASD toddler-derived BCO and clinical phenotypes may reveal additional ASD embryonic subtypes. CONCLUSIONS: By embryogenesis, the biological bases of two subtypes of ASD social and brain development-profound autism and mild autism-are already present and measurable and involve dysregulated cell proliferation and accelerated neurogenesis and growth. The larger the embryonic BCO size in ASD, the more severe the toddler's social symptoms and the more reduced the social attention, language ability, and IQ, and the more atypical the growth of social and language brain regions.
Asunto(s)
Trastorno del Espectro Autista , Organoides , Humanos , Trastorno del Espectro Autista/patología , Trastorno del Espectro Autista/fisiopatología , Organoides/patología , Masculino , Femenino , Preescolar , Corteza Cerebral/patología , Conducta Social , Tamaño de los Órganos , Lactante , Índice de Severidad de la Enfermedad , Encéfalo/patologíaRESUMEN
We developed an intervention to improve compliance with guidelines for monitoring metabolic syndrome and compared compliance prior to intervention and three times post-intervention at three community mental health clinics in Texas. One test clinic received intervention and two other clinics served as controls. Fifty random charts were reviewed from each clinic for three specific, 1-2 weeks periods over the course of 18 months. There were significant improvements in the ordering of labs, the presence of lab results in the chart, and documentation of blood pressure, body mass index and waist circumference in the intervention clinic over time in comparison to the control clinics. Documented evidence of physician action with respect to out of range values remained low. Metabolic monitoring is a multi-step process. Removing barriers, creating specific procedures, and dedicating staff resources can improve compliance with monitoring.
Asunto(s)
Servicios Comunitarios de Salud Mental/organización & administración , Difusión de Innovaciones , Adhesión a Directriz/estadística & datos numéricos , Síndrome Metabólico/prevención & control , Guías de Práctica Clínica como Asunto , Pautas de la Práctica en Medicina/estadística & datos numéricos , Antidepresivos de Segunda Generación/efectos adversos , Antidepresivos de Segunda Generación/uso terapéutico , Presión Sanguínea , Estudios de Casos y Controles , Servicios Comunitarios de Salud Mental/métodos , Humanos , Registros Médicos , Trastornos Mentales/tratamiento farmacológico , Síndrome Metabólico/diagnóstico , Texas , Circunferencia de la CinturaRESUMEN
LAY ABSTRACT: Delays in autism spectrum disorder identification and access to care could impact developmental outcomes. Although trends are encouraging, children from historically underrepresented minority backgrounds are often identified at later ages and have reduced engagement in services. It is unclear if disparities exist all along the screen-evaluation-treatment chain, or if early detection programs such as Get SET Early that standardize, these steps are effective at ameliorating disparities. As part of the Get SET Early model, primary care providers administered a parent-report screen at well-baby examinations, and parents designated race, ethnicity, and developmental concerns. Toddlers who scored in the range of concern, or whose primary care provider had concerns, were referred for an evaluation. Rates of screening and evaluation engagement within ethnic/racial groups were compared to US Census data. Age at screen, evaluation, and treatment engagement and quantity was compared across groups. Statistical models examined whether key factors such as parent concern were associated with ethnicity or race. No differences were found in the mean age at the first screen, evaluation, or initiation or quantity of behavioral therapy between participants. However, children from historically underrepresented minority backgrounds were more likely to fall into the range of concern on the parent-report screen, their parents expressed developmental concerns more often, and pediatricians were more likely to refer for an evaluation than their White/Not Hispanic counterparts. Overall results suggest that models that support transparent tracking of steps in the screen-evaluation-treatment chain and service referral pipelines may be an effective strategy for ensuring equitable access to care for all children.
Asunto(s)
Trastorno del Espectro Autista , Lactante , Humanos , Preescolar , Trastorno del Espectro Autista/diagnóstico , Etnicidad , Grupos Minoritarios , Pediatras , Accesibilidad a los Servicios de SaludRESUMEN
Importance: Caregivers have long captured the attention of their infants by speaking in motherese, a playful speech style characterized by heightened affect. Reduced attention to motherese in toddlers with autism spectrum disorder (ASD) may be a contributor to downstream language and social challenges and could be diagnostically revealing. Objective: To investigate whether attention toward motherese speech can be used as a diagnostic classifier of ASD and is associated with language and social ability. Design, Setting, and Participants: This diagnostic study included toddlers aged 12 to 48 months, spanning ASD and non-ASD diagnostic groups, at a research center. Data were collected from February 2018 to April 2021 and analyzed from April 2021 to March 2022. Exposures: Gaze-contingent eye-tracking test. Main Outcomes and Measures: Using gaze-contingent eye tracking wherein the location of a toddler's fixation triggered a specific movie file, toddlers participated in 1 or more 1-minute eye-tracking tests designed to quantify attention to motherese speech, including motherese vs traffic (ie, noisy vehicles on a highway) and motherese vs techno (ie, abstract shapes with music). Toddlers were also diagnostically and psychometrically evaluated by psychologists. Levels of fixation within motherese and nonmotherese movies and mean number of saccades per second were calculated. Receiver operating characteristic (ROC) curves were used to evaluate optimal fixation cutoff values and associated sensitivity, specificity, positive predictive value (PPV), and negative predictive value. Within the ASD group, toddlers were stratified based on low, middle, or high levels of interest in motherese speech, and associations with social and language abilities were examined. Results: A total of 653 toddlers were included (mean [SD] age, 26.45 [8.37] months; 480 males [73.51%]). Unlike toddlers without ASD, who almost uniformly attended to motherese speech with a median level of 82.25% and 80.75% across the 2 tests, among toddlers with ASD, there was a wide range, spanning 0% to 100%. Both the traffic and techno paradigms were effective diagnostic classifiers, with large between-group effect sizes (eg, ASD vs typical development: Cohen d, 1.0 in the techno paradigm). Across both paradigms, a cutoff value of 30% or less fixation on motherese resulted in an area under the ROC curve (AUC) of 0.733 (95% CI, 0.693-0.773) and 0.761 (95% CI, 0.717-0.804), respectively; specificity of 98% (95% CI, 95%-99%) and 96% (95% CI, 92%-98%), respectively; and PPV of 94% (95% CI, 86%-98%). Reflective of heterogeneity and expected subtypes in ASD, sensitivity was lower at 18% (95% CI, 14%-22%) and 29% (95% CI, 24%-34%), respectively. Combining metrics increased the AUC to 0.841 (95% CI, 0.805-0.877). Toddlers with ASD who showed the lowest levels of attention to motherese speech had weaker social and language abilities. Conclusions and Relevance: In this diagnostic study, a subset of toddlers showed low levels of attention toward motherese speech. When a cutoff level of 30% or less fixation on motherese speech was used, toddlers in this range were diagnostically classified as having ASD with high accuracy. Insight into which toddlers show unusually low levels of attention to motherese may be beneficial not only for early ASD diagnosis and prognosis but also as a possible therapeutic target.
Asunto(s)
Trastorno del Espectro Autista , Masculino , Lactante , Humanos , Adulto , Trastorno del Espectro Autista/diagnóstico , Habla , Cognición , Curva ROC , Valor Predictivo de las PruebasRESUMEN
We examined community mental health center staff perceptions of ongoing research within their agency. We interviewed upper management and conducted focus groups with medical staff, non-medical clinicians, and administrative staff. Participants were asked about (1) their attitudes towards research in general, agency research and towards the principal academic institution doing research with clients, (2) their perceptions of the value of research and (3) ideas for improving the collaboration. We identified 5 overarching themes: inter-agency communication, shared goals and equality in research, researchers adding knowledge to the agency, improving attitudes toward research, and agency involvement in research. Under these domains, specific suggestions are made for how to improve the collaboration across all stakeholder groups. Lack of shared values and inadequate communication processes can negatively impact community-based research collaborations. However, clear strategies, and adequate resources have great potential to improve community mental health collaborations.
Asunto(s)
Actitud del Personal de Salud , Centros Comunitarios de Salud Mental , Investigación sobre Servicios de Salud , Conducta Cooperativa , Grupos Focales , Humanos , Entrevistas como Asunto , TexasRESUMEN
As many as 50% of patients with schizophrenia do not take oral antipsychotic medications as prescribed, yet long acting injections are rarely utilized. Community agencies that serve this population are often over-burdened and poorly funded. There are negative attitudes on the part of both physicians and consumers about injections. Transportation and logistics are often problematic. We describe the unique opportunity provided by the need for bi-weekly or monthly injections to establish a recovery-oriented group around injection visits. Our approach discusses methods and resources to help overcome some of the common barriers by establishing advocates within the agency, establishing necessary infrastructure, providing education for consumers, providers, and staff, sharing information about successful outcomes with clinic staff and working through billing issues. We also recommend public advocacy on the part of the clinic and consumers to work with state funding sources to change regulations that may limit appropriate clinical care.
Asunto(s)
Antipsicóticos/administración & dosificación , Servicios Comunitarios de Salud Mental , Preparaciones de Acción Retardada , Aceptación de la Atención de Salud , Humanos , Inyecciones Intravenosas , Cumplimiento de la Medicación , Desarrollo de Programa , Esquizofrenia/tratamiento farmacológicoRESUMEN
Cortical regionalization develops via genomic patterning along anterior-posterior (A-P) and dorsal-ventral (D-V) gradients. Here, we find that normative A-P and D-V genomic patterning of cortical surface area (SA) and thickness (CT), present in typically developing and autistic toddlers with good early language outcome, is absent in autistic toddlers with poor early language outcome. Autistic toddlers with poor early language outcome are instead specifically characterized by a secondary and independent genomic patterning effect on CT. Genes involved in these effects can be traced back to midgestational A-P and D-V gene expression gradients and different prenatal cell types (e.g., progenitor cells and excitatory neurons), are functionally important for vocal learning and human-specific evolution, and are prominent in prenatal coexpression networks enriched for high-penetrance autism risk genes. Autism with poor early language outcome may be explained by atypical genomic cortical patterning starting in prenatal development, which may detrimentally affect later regional functional specialization and circuit formation.
RESUMEN
BACKGROUND: Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins. RESULTS: The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin ß-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit:H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform. CONCLUSION: Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.
Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/biosíntesis , Mucina-1/química , N-Acetilgalactosaminiltransferasas/metabolismo , Nicotiana/genética , Antígenos de Carbohidratos Asociados a Tumores/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Ingeniería Genética/métodos , Glicosilación , Humanos , N-Acetilgalactosaminiltransferasas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Procesamiento Proteico-Postraduccional , ARN de Planta/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Nicotiana/metabolismo , Transformación Genética , Polipéptido N-AcetilgalactosaminiltransferasaRESUMEN
Importance: Universal early screening for autism spectrum disorder (ASD) in primary care is becoming increasingly common and is believed to be a pivotal step toward early treatment. However, the diagnostic stability of ASD in large cohorts from the general population, particularly in those younger than 18 months, is unknown. Changes in the phenotypic expression of ASD across early development compared with toddlers with other delays are also unknown. Objectives: To examine the diagnostic stability of ASD in a large cohort of toddlers starting at 12 months of age and to compare this stability with that of toddlers with other disorders, such as developmental delay. Design, Setting, and Participants: In this prospective cohort study performed from January 1, 2006, to December 31, 2018, a total of 2241 toddlers were referred from the general population through a universal screening program in primary care or community referral. Eligible toddlers received their first diagnostic evaluation between 12 and 36 months of age and had at least 1 subsequent evaluation. Exposures: Diagnosis was denoted after each evaluation visit as ASD, ASD features, language delay, developmental delay, other developmental issue, typical sibling of an ASD proband, or typical development. Main Outcomes and Measures: Diagnostic stability coefficients were calculated within 2-month age bands, and logistic regression models were used to explore the associations of sex, age, diagnosis at first visit, and interval between first and last diagnosis with stability. Toddlers with a non-ASD diagnosis at their first visit diagnosed with ASD at their last were designated as having late-identified ASD. Results: Among the 1269 toddlers included in the study (918 [72.3%] male; median age at first evaluation, 17.6 months [interquartile range, 14.0-24.4 months]; median age at final evaluation, 36.2 months [interquartile range, 33.4-40.9 months]), the overall diagnostic stability for ASD was 0.84 (95% CI, 0.80-0.87), which was higher than any other diagnostic group. Only 7 toddlers (1.8%) initially considered to have ASD transitioned into a final diagnosis of typical development. Diagnostic stability of ASD within the youngest age band (12-13 months) was lowest at 0.50 (95% CI, 0.32-0.69) but increased to 0.79 by 14 months and 0.83 by 16 months (age bands of 12 vs 14 and 16 months; odds ratio, 4.25; 95% CI, 1.59-11.74). A total of 105 toddlers (23.8%) were not designated as having ASD at their first visit but were identified at a later visit. Conclusions and Relevance: The findings suggest that an ASD diagnosis becomes stable starting at 14 months of age and overall is more stable than other diagnostic categories, including language or developmental delay. After a toddler is identified as having ASD, there may be a low chance that he or she will test within typical levels at 3 years of age. This finding opens the opportunity to test the impact of very early-age treatment of ASD.
Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Fenotipo , Trastorno del Espectro Autista/psicología , Preescolar , Discapacidades del Desarrollo/diagnóstico , Diagnóstico Precoz , Femenino , Estudios de Seguimiento , Humanos , Lactante , Modelos Logísticos , Masculino , Tamizaje Masivo , Atención Primaria de Salud , Estudios Prospectivos , Escalas de Valoración Psiquiátrica , Derivación y ConsultaRESUMEN
Hundreds of genes are implicated in autism spectrum disorder (ASD), but the mechanisms through which they contribute to ASD pathophysiology remain elusive. Here we analyzed leukocyte transcriptomics from 1- to 4-year-old male toddlers with ASD or typical development from the general population. We discovered a perturbed gene network that includes highly expressed genes during fetal brain development. This network is dysregulated in human induced pluripotent stem cell-derived neuron models of ASD. High-confidence ASD risk genes emerge as upstream regulators of the network, and many risk genes may impact the network by modulating RAS-ERK, PI3K-AKT and WNT-ß-catenin signaling pathways. We found that the degree of dysregulation in this network correlated with the severity of ASD symptoms in the toddlers. These results demonstrate how the heterogeneous genetics of ASD may dysregulate a core network to influence brain development at prenatal and very early postnatal ages and, thereby, the severity of later ASD symptoms.
Asunto(s)
Trastorno del Espectro Autista/genética , Redes Reguladoras de Genes/genética , Trastorno del Espectro Autista/patología , Encéfalo/embriología , Encéfalo/patología , Preescolar , Desarrollo Fetal/genética , Humanos , Lactante , Leucocitos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Mutación/genética , Células-Madre Neurales , Proteína Oncogénica v-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética , Vía de Señalización Wnt/genética , beta Catenina/genéticaRESUMEN
Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD.
Asunto(s)
Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Leucocitos/metabolismo , Habla/fisiología , Transcriptoma , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Mapeo Encefálico , Preescolar , Femenino , Humanos , Lactante , Lenguaje , Imagen por Resonancia Magnética , Masculino , NeuroimagenRESUMEN
For more than two decades, bioengineered plants have produced protein therapeutics for human and animal use. Almost all proteins produced by other existing systems, including antibodies, vaccines and plasma proteins, have now been manufactured in plants. Considering the limitations of microbial and mammalian reactor-based protein-production technologies and the impending bottleneck in manufacturing capacity, plants are now emerging as an attractive alternative system with which to supply the growing need for protein-based therapeutics. However, full realization of the promise of plant-derived engineered proteins requires that we confront the dual challenges of bioequivalence and product consistency, challenges that are largely related to post-translational protein modifications (PTMs) that are crucial to the structure and function of most eukaryotic proteins. Among the protein PTMs, the foremost challenge for bioactivity and acceptance by the pharmaceutical and biotechnology industries and regulatory agencies is glycosylation. Advances made in recent years that 'humanize' plant glycosylation pathways combined with the discovery of terminal sialic acids (SAs) in plants now make feasible the bioengineering in plants of glycoproteins that have mammalian-like glycosylation.