Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35193955

RESUMEN

In search of redox mechanisms in breast cancer, we uncovered a striking role for glutathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss stimulates malignant progression due to reactive oxygen species/hypoxia inducible factor-α (HIF1α)/VEGFA (vascular endothelial growth factor A) signaling, causing poor perfusion and hypoxia, which were reversed by GPx2 reexpression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated the Warburg effect in most tumor cell subpopulations, except for one cluster, which was capable of oxidative phosphorylation and glycolysis, as confirmed by coexpression of phosphorylated-AMPK and GLUT1. These findings underscore a unique role for redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, leading to metabolic plasticity and malignant progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Plasticidad de la Célula/fisiología , Glutatión Peroxidasa/metabolismo , Animales , Línea Celular Tumoral , Femenino , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/fisiología , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Metabolismo/fisiología , Ratones , Ratones Desnudos , Neovascularización Patológica/genética , Oxidación-Reducción , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
N Engl J Med ; 384(25): 2406-2417, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34161705

RESUMEN

BACKGROUND: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related (ATG) genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare. METHODS: We performed a genetic, clinical, and neuroimaging analysis involving five families. Mechanistic investigations were conducted with the use of patient-derived fibroblasts, skeletal muscle-biopsy specimens, mouse embryonic fibroblasts, and yeast. RESULTS: We found deleterious, recessive variants in human ATG7, a core autophagy-related gene encoding a protein that is indispensable to classical degradative autophagy. Twelve patients from five families with distinct ATG7 variants had complex neurodevelopmental disorders with brain, muscle, and endocrine involvement. Patients had abnormalities of the cerebellum and corpus callosum and various degrees of facial dysmorphism. These patients have survived with impaired autophagic flux arising from a diminishment or absence of ATG7 protein. Although autophagic sequestration was markedly reduced, evidence of basal autophagy was readily identified in fibroblasts and skeletal muscle with loss of ATG7. Complementation of different model systems by deleterious ATG7 variants resulted in poor or absent autophagic function as compared with the reintroduction of wild-type ATG7. CONCLUSIONS: We identified several patients with a neurodevelopmental disorder who have survived with a severe loss or complete absence of ATG7, an essential effector enzyme for autophagy without a known functional paralogue. (Funded by the Wellcome Centre for Mitochondrial Research and others.).


Asunto(s)
Anomalías Múltiples/genética , Ataxia/genética , Proteína 7 Relacionada con la Autofagia/genética , Autofagia/genética , Discapacidades del Desarrollo/genética , Mutación Missense , Adolescente , Adulto , Autofagia/fisiología , Proteína 7 Relacionada con la Autofagia/fisiología , Células Cultivadas , Cerebelo/anomalías , Simulación por Computador , Cara/anomalías , Femenino , Fibroblastos , Genes Recesivos , Humanos , Lactante , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Malformaciones del Sistema Nervioso/genética , Linaje , Fenotipo
3.
Chem Rev ; 122(12): 11085-11130, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35476402

RESUMEN

Since the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems. Here, we highlight some novel methodological approaches employed to address eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we first show how ab initio and machine learning methodologies can partially reproduce surface reconstruction under operation, thus identifying active sites and reaction mechanisms if coupled with microkinetic modeling. Later, we introduce the potential of density functional theory and machine learning to interpret data from Operando spectroelectrochemical techniques, such as Raman spectroscopy and extended X-ray absorption fine structure characterization. Next, we review the role of electrolyte and mass transport effects. Finally, we suggest further challenges for computational modeling in the near future as well as our perspective on the directions to follow.

4.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34772803

RESUMEN

PRACE (Partnership for Advanced Computing in Europe), an international not-for-profit association that brings together the five largest European supercomputing centers and involves 26 European countries, has allocated more than half a billion core hours to computer simulations to fight the COVID-19 pandemic. Alongside experiments, these simulations are a pillar of research to assess the risks of different scenarios and investigate mitigation strategies. While the world deals with the subsequent waves of the pandemic, we present a reflection on the use of urgent supercomputing for global societal challenges and crisis management.


Asunto(s)
COVID-19/epidemiología , Computación en Informática Médica/normas , Europa (Continente) , Humanos , Difusión de la Información , Sistemas de Información/normas , Computación en Informática Médica/tendencias
5.
BMC Oral Health ; 24(1): 229, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350956

RESUMEN

OBJECTIVE: The main objective of this study was to estimate the prevalence of molar incisor hypomineralisation (MIH), an alteration of tooth enamel with an estimated worldwide prevalence rate of 14%, among children using primary care services in the Community of Madrid, Spain. MATERIALS AND METHODS: This was a descriptive, cross-sectional and multicentre study. After calibrating all researchers and following the diagnostic criteria of the European Academy of Paediatric Dentistry (EAPD), children aged between 8 and 16 years who were users of the dental services at 8 primary oral health units of the Madrid Health Service (SERMAS) were included. The children underwent a dental examination, and the parents were asked to complete a questionnaire. RESULTS: The prevalence of MIH was 28.63% (CI: 24.61-32.65%). The age cohorts most affected by MIH were 8 years (21.4%) and 11 years (20.7%). The presence of MIH was greater among girls (85; 60.71%) than among boys (55; 39.28%). The mean number of affected teeth per patient was 4.46 ± 2.8. The most frequently affected molar was the upper right first molar (74.3%), and the upper left central incisor was the most affected incisor (37.85%). Opacities were the defects most frequently recorded (63.57%). CONCLUSIONS: The prevalence of MIH in this study is the highest of all relevant studies conducted in Spain.


Asunto(s)
Hipoplasia del Esmalte Dental , Hipomineralización Molar , Niño , Masculino , Femenino , Humanos , Adolescente , Hipoplasia del Esmalte Dental/epidemiología , Estudios Transversales , Prevalencia , Esmalte Dental
6.
Angew Chem Int Ed Engl ; 63(8): e202317343, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38117671

RESUMEN

The implementation of supported metal catalysts heavily relies on the synergistic interactions between metal nanoparticles and the material they are dispersed on. It is clear that interfacial perimeter sites have outstanding skills for turning catalytic reactions over, however, high activity and selectivity of the designed interface-induced metal distortion can also obtain catalysts for the most crucial industrial processes as evidenced in this paper. Herein, the beneficial synergy established between designed Pt nanoparticles and MnO in the course of the reverse water gas shift (RWGS) reaction resulted in a Pt/MnO catalyst having ≈10 times higher activity compared to the reference Pt/SBA-15 catalyst with >99 % CO selectivity. Under activation, a crystal assembly through the metallic Pt (110) and MnO evolved, where the plane distance differences caused a mismatched-row structure in softer Pt nanoparticles, which was identified by microscopic and surface-sensitive spectroscopic characterizations combined with density functional theory simulations. The generated edge dislocations caused the Pt lattice expansion which led to the weakening of the Pt-CO bond. Even though MnO also exhibited an adverse effect on Pt by lowering the number of exposed metal sites, rapid desorption of the linearly adsorbed CO species governed the performance of the Pt/MnO in the RWGS.

7.
J Am Chem Soc ; 145(36): 19601-19610, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651736

RESUMEN

Understanding the role of cations in the electrochemical CO2 reduction (CO2RR) process is of fundamental importance for practical application. In this work, we investigate how cations influence HCOOH and CO formation on PdMLPt(111) in pH 3 electrolytes. While only (a small amount of adsorbed) CO forms on PdMLPt(111) in the absence of metal cations, the onset potential of HCOOH and CO decreases with increasing cation concentrations. The cation effect is stronger on HCOOH formation than that on CO formation on PdMLPt(111). Density functional theory simulations indicate that cations facilitate both hydride formation and CO2 activation by polarizing the electronic density at the surface and stabilizing *CO2-. Although the upshift of the metal work function caused by high coverage of adsorbates limits hydride formation, the cation-induced electric field counterbalances this effect in the case of *H species, sustaining HCOOH production at mild negative potentials. Instead, at the high *CO coverages observed at very negative potentials, surface hydrides do not form, preventing the HCOOH route both in the absence and presence of cations. Our results open the way for a consistent evaluation of cationic electrolyte effects on both activity and selectivity in CO2RR on Pd-Pt catalysts.

8.
J Am Chem Soc ; 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37924283

RESUMEN

A cause of losses in energy and carbon conversion efficiencies during the electrochemical CO2 reduction reaction (eCO2RR) can be attributed to the formation of carbonates (CO32-), which is generally considered to be an electrochemically inert species. Herein, using in situ Raman spectroscopy, liquid chromatography, 1H nuclear magnetic resonance spectroscopy, 13C and deuterium isotope labeling, and density functional theory simulations, we show that carbonate intermediates are adsorbed on a copper electrode during eCO2RR in KHCO3 electrolyte from 0.2 to -1.0 VRHE. These intermediates can be reduced to formate at -0.4 VRHE and more negative potentials. This finding is supported by our observation of formate from the reduction of Cu2(CO3)(OH)2. Pulse electrolysis on a copper electrode immersed in a N2-purged K2CO3 electrolyte was also performed. We found that the carbonate anions therein could be first adsorbed at -0.05 VRHE and then directly reduced to formate at -0.5 VRHE (overpotential of 0.28 V) with a Faradaic efficiency of 0.61%. The nature of the active sites generating the adsorbed carbonate species and the mechanism for the pulse-enabled reduction of carbonate to formate were elucidated. Our findings reveal how carbonates are directly reduced to a high-value product such as formate and open a potential pathway to mitigate carbonate formation during eCO2RR.

9.
Cytotherapy ; 25(1): 14-19, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36041984

RESUMEN

BACKGROUND AIMS: To describe and analyze whether a hub-and-spoke organizational model could efficiently provide access to chimeric antigen receptor (CAR) T-cell therapy within a network of academic hospitals and address the growing demands of this complex and specialized activity. METHODS: The authors performed a retrospective evaluation of activity within the Catalan Blood and Tissue Bank network, which was established for hematopoietic stem cell transplantation to serve six CAR T-cell programs in academic hospitals of the Catalan Health Service. Procedures at six hospitals were followed from 2016 to 2021. Collection shipments of starting materials, CAR T-cell returns for storage and infusions for either clinical trials or commercial use were evaluated. RESULTS: A total of 348 leukocytapheresis procedures were performed, 39% of which were delivered fresh and 61% of which were cryopreserved. The network was linked to seven advanced therapy medicinal product manufacturers. After production, 313 CAR T-cell products were shipped back to the central cryogenic medicine warehouse located in the hub. Of the units received, 90% were eventually administered to patients. A total of 281 patients were treated during this period, 45% in clinical trials and the rest with commercially available CAR T-cell therapies. CONCLUSIONS: A hub-and-spoke organizational model based on an existing hematopoietic stem cell transplantation program is efficient in incorporating CAR T-cell therapy into a public health hospital network. Rapid access and support of growing activity enabled 281 patients to receive CAR T cells during the study period.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Salud Pública , Estudios Retrospectivos , Receptores de Antígenos de Linfocitos T
10.
Eur J Pediatr ; 182(4): 1897-1909, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36801975

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a rare but severe disease temporarily related to SARS-CoV-2. We aimed to describe the epidemiological, clinical, and laboratory findings of all MIS-C cases diagnosed in children < 18 years old in Catalonia (Spain) to study their trend throughout the pandemic. This was a multicenter ambispective observational cohort study (April 2020-April 2022). Data were obtained from the COVID-19 Catalan surveillance system and from all hospitals in Catalonia. We analyzed MIS-C cases regarding SARS-CoV-2 variants for demographics, symptoms, severity, monthly MIS-C incidence, ratio between MIS-C and accumulated COVID-19 cases, and associated rate ratios (RR). Among 555,848 SARS-CoV-2 infections, 152 children were diagnosed with MIS-C. The monthly MIS-C incidence was 4.1 (95% CI: 3.4-4.8) per 1,000,000 people, and 273 (95% CI: 230-316) per 1,000,000 SARS-CoV-2 infections (i.e., one case per 3,700 SARS-CoV-2 infections). During the Omicron period, the MIS-C RR was 8.2 (95% CI: 5.7-11.7) per 1,000,000 SARS-CoV-2 infections, which was significantly lower (p < 0.001) than that for previous variant periods in all age groups. The median [IQR] age of MIS-C was 8 [4-11] years, 62.5% male, and 80.2% without comorbidities. Common symptoms were gastrointestinal findings (88.2%) and fever > 39 °C (81.6%); nearly 40% had an abnormal echocardiography, and 7% had coronary aneurysm. Clinical manifestations and laboratory data were not different throughout the variant periods (p > 0.05).  Conclusion: The RR between MIS-C cases and SARS-CoV-2 infections was significantly lower in the Omicron period for all age groups, including those not vaccinated, suggesting that the variant could be the main factor for this shift in the MISC trend. Regardless of variant type, the patients had similar phenotypes and severity throughout the pandemic. What is Known: • Before our study, only two publications investigated the incidence of MIS-C regarding SARS-CoV-2 variants in Europe, one from Southeast England and another from Denmark. What is New: • To our knowledge, this is the first study investigating MIS-C incidence in Southern Europe, with the ability to recruit all MIS-C cases in a determined area and analyze the rate ratio for MIS-C among SARS-CoV-2 infections throughout variant periods. • We found a lower rate ratio of MISC/infections with SARS-CoV-2 in the Omicron period for all age groups, including those not eligible for vaccination, suggesting that the variant could be the main factor for this shift in the MISC trend.


Asunto(s)
COVID-19 , SARS-CoV-2 , Masculino , Humanos , Femenino , COVID-19/diagnóstico , COVID-19/epidemiología , España/epidemiología , Estudios de Cohortes
11.
Proc Natl Acad Sci U S A ; 117(12): 6675-6685, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152119

RESUMEN

A comprehensive understanding of the development and evolution of human B cell responses induced by pathogen exposure will facilitate the design of next-generation vaccines. Here, we utilized a high-throughput single B cell cloning technology to longitudinally track the human B cell response to the yellow fever virus 17D (YFV-17D) vaccine. The early memory B cell (MBC) response was mediated by both classical immunoglobulin M (IgM) (IgM+CD27+) and switched immunoglobulin (swIg+) MBC populations; however, classical IgM MBCs waned rapidly, whereas swIg+ and atypical IgM+ and IgD+ MBCs were stable over time. Affinity maturation continued for 6 to 9 mo following vaccination, providing evidence for the persistence of germinal center activity long after the period of active viral replication in peripheral blood. Finally, a substantial fraction of the neutralizing antibody response was mediated by public clones that recognize a fusion loop-proximal antigenic site within domain II of the viral envelope glycoprotein. Overall, our findings provide a framework for understanding the dynamics and complexity of human B cell responses elicited by infection and vaccination.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Linfocitos B/inmunología , Memoria Inmunológica/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Fiebre Amarilla/prevención & control , Virus de la Fiebre Amarilla/inmunología , Adulto , Humanos , Vacunación , Vacunas Atenuadas/inmunología , Proteínas del Envoltorio Viral/inmunología , Replicación Viral , Fiebre Amarilla/inmunología , Fiebre Amarilla/virología , Vacuna contra la Fiebre Amarilla/administración & dosificación
12.
Genes Dev ; 29(9): 934-47, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25934505

RESUMEN

MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.


Asunto(s)
Proteínas Represoras/genética , Animales , Autofagia/genética , Ingestión de Alimentos/genética , Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Longevidad/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , ARN de Transferencia/metabolismo , Espermidina/metabolismo
13.
J Clin Pediatr Dent ; 47(5): 103-115, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37732443

RESUMEN

The aim of the study was to establish the normality ranges of the linear and angular measurements that can be carried out in orthopantomographies (OPGs) of a paediatric sample from Madrid, according to sex and dentition. OPGs performed in the Radiology Service of the Faculty of Dentistry of the Complutense University of Madrid (UCM) from caucasic children between 4-14 years old were selected. A total of 44 measurements were made in the OPGs, and the sex and type of dentition of each child were recorded. Panoramic Mandibular Index and Antegonial Index were also calculated. Statistical tests were performed with a confidence level of 95% (p < 0.05) and bilateral significance to analyse the differences between sex and type of dentition, and the correlation between the measurements of the right and left sides. A total sample of 160 OPGs (50% boys, 50% girls) were analysed. 16.25% of the sample was in primary dentition, 50% in first phase mixed dentition, 17.5% in second phase mixed dentition and 16.25% in permanent dentition. Statistically significant differences were found with respect to the sex of the subjects in 11 of the measurements; and 44 in relation to the dentition stages of the subjects. A strong correlation is found between the measurements on the right and left sides. The application of panoramic measurements as indicators of normality can help in the detection of craniofacial alterations in growth and development of the lower facial third.


Asunto(s)
Dentición Mixta , Mandíbula , Masculino , Femenino , Humanos , Niño , Preescolar , Adolescente , Mandíbula/diagnóstico por imagen , Radiografía Panorámica
14.
J Infect Dis ; 226(11): 1913-1923, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36200261

RESUMEN

BACKGROUND: We analyzed humoral and cellular immune responses induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in people with human immunodeficiency virus (HIV; PWH) who had CD4+ T-cell counts <200/µL (HIV<200 group). METHODS: This prospective cohort study included 58 PWH in the HIV<200 group, 36 with CD4+ T-cell counts >500/µL (HIV>500 group), and 33 HIV-1-negative controls (control group). Antibodies against the SARS-CoV-2 spike protein (anti-S immunoglobulin [Ig] G) and the receptor-binding domain (anti-RBD IgG) were quantified before and 4 weeks after the first and the second doses of BNT162b2 or mRNA-1273 (at week 8). Viral neutralization activity and T-cell responses were also determined. RESULTS: At week 8, anti-S/anti-RBD IgG responses increased in all groups (P < .001). Median (interquartile range) anti-S and anti-RBD IgG levels at week 8 were 153.6 (26.4-654.9) and 171.9 (61.8-425.8) binding antibody units (BAU)/mL, respectively, in the HIV<200 group, compared with 245.6 (145-824) and 555.8 (166.4-1751) BAU/mL in the HIV>500 group and 274.7 (193.7-680.4) and 281.6 (181-831.8) BAU/mL in controls (P < .05). Neutralizing capacity and specific T-cell immune responses were absent or reduced in 33% of those in the HIV<200 group, compared with 3.7% in the HIV>500 group (P < .01). CONCLUSIONS: One-third of PWH with CD4+ T-cell counts <200/µL show low anti-S/anti-RBD IgG levels, reduced in vitro neutralization activity against SARS-CoV-2, and no vaccine-induced T cells after receiving coronavirus disease 2019 mRNA vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Seropositividad para VIH , Reconstitución Inmune , Humanos , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Inmunoglobulina G , Estudios Prospectivos , SARS-CoV-2 , Vacunación , Inmunidad Humoral , Inmunidad Celular , Linfocitos T
15.
Angew Chem Int Ed Engl ; 62(42): e202306563, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37395462

RESUMEN

Ternary Pd-In2 O3 /ZrO2 catalysts exhibit technological potential for CO2 -based methanol synthesis, but developing scalable systems and comprehending complex dynamic behaviors of the active phase, promoter, and carrier are key for achieving high productivity. Here, we show that the structure of Pd-In2 O3 /ZrO2 systems prepared by wet impregnation evolves under CO2 hydrogenation conditions into a selective and stable architecture, independent of the order of addition of Pd and In phases on the zirconia carrier. Detailed operando characterization and simulations reveal a rapid restructuring driven by the metal-metal oxide interaction energetics. The proximity of InPdx alloy particles decorated by InOx layers in the resulting architecture prevents performance losses associated with Pd sintering. The findings highlight the crucial role of reaction-induced restructuring in complex CO2 hydrogenation catalysts and offer insights into the optimal integration of acid-base and redox functions for practical implementation.

16.
Angew Chem Int Ed Engl ; 62(18): e202301815, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36852584

RESUMEN

Graphitic carbon nitride (g-CN) is a transition metal free semiconductor that mediates a variety of photocatalytic reactions. Although photoinduced electron transfer is often postulated in the mechanism, proton-coupled electron transfer (PCET) is a more favorable pathway for substrates possessing X-H bonds. Upon excitation of an (sp2 )N-rich structure of g-CN with visible light, it behaves as a photobase-it undergoes reductive quenching accompanied by abstraction of a proton from a substrate. The results of modeling allowed us to identify active sites for PCET-the 'triangular pockets' on the edge facets of g-CN. We employ excited state PCET from the substrate to g-CN to selectively cleavethe endo-(sp3 )C-H bond in oxazolidine-2-ones followed by trapping the radical with O2 . This reaction affords 1,3-oxazolidine-2,4-diones. Measurement of the apparent pKa value and modeling suggest that g-CN excited state can cleave X-H bonds that are characterized by bond dissociation free energy (BDFE) ≈100 kcal mol-1 .

17.
Angew Chem Int Ed Engl ; 62(44): e202308647, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37498680

RESUMEN

Electrocatalytic processes involving the oxygen evolution reaction (OER) present a kinetic bottleneck due to the existence of linear-scaling relationships, which bind the energies of the different intermediates in the mechanism limiting optimization. Here, we offer a way to break these scaling relationships and enhance the electrocatalytic activity of a Co-Fe Prussian blue modified electrode in OER by applying external stimuli. Improvements of ≈11 % and ≈57 % were achieved under magnetic field (0.2 T) and light irradiation (100 mW cm-2 ), respectively, when working at fixed overpotential, η=0.6 V at pH 7. The observed enhancements strongly tie in with the intermetallic charge transfer (IMCT) intensity between Fe and Co sites. Density Functional Theory simulations suggest that tuning the IMCT can lead to a change of the OER mechanism to an external stimuli-sensitive spin crossover-based pathway, which opens the way for switchable electrocatalytic devices.

18.
J Am Chem Soc ; 144(4): 1589-1602, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-34962791

RESUMEN

CO2 electroreduction (CO2RR) is a sustainable alternative for producing fuels and chemicals. Metal cations in the electrolyte have a strong impact on the reaction, but mainly alkali species have been studied in detail. In this work, we elucidate how multivalent cations (Li+, Cs+, Be2+, Mg2+, Ca2+, Ba2+, Al3+, Nd3+, and Ce3+) affect CO2RR and the competing hydrogen evolution by studying these reactions on polycrystalline gold at pH = 3. We observe that cations have no effect on proton reduction at low overpotentials, but at alkaline surface pH acidic cations undergo hydrolysis, generating a second proton reduction regime. The activity and onset for the water reduction reaction correlate with cation acidity, with weakly hydrated trivalent species leading to the highest activity. Acidic cations only favor CO2RR at low overpotentials and in acidic media. At high overpotentials, the activity for CO increases in the order Ca2+ < Li+ < Ba2+ < Cs+. To favor this reaction there must be an interplay between cation stabilization of the *CO2- intermediate, cation accumulation at the outer Helmholtz plane (OHP), and activity for water reduction. Ab initio molecular dynamics simulations with explicit electric field show that nonacidic cations show lower repulsion at the interface, accumulating more at the OHP, thus triggering local promoting effects. Water dissociation kinetics is increasingly promoted by strongly acidic cations (Nd3+, Al3+), in agreement with experimental evidence. Cs+, Ba2+, and Nd3+ coordinate to adsorbed CO2 steadily; thus they enable *CO2- stabilization and barrierless protonation to COOH and further reduction products.

19.
J Am Chem Soc ; 144(18): 8018-8029, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35333043

RESUMEN

Single-atom catalytic sites may have existed in all supported transition metal catalysts since their first application. Yet, interest in the design of single-atom heterogeneous catalysts (SACs) only really grew when advances in transmission electron microscopy (TEM) permitted direct confirmation of metal site isolation. While atomic-resolution imaging remains a central characterization tool, poor statistical significance, reproducibility, and interoperability limit its scope for deriving robust characteristics about these frontier catalytic materials. Here, we introduce a customized deep-learning method for automated atom detection in image analysis, a rate-limiting step toward high-throughput TEM. Platinum atoms stabilized on a functionalized carbon support with a challenging irregular three-dimensional morphology serve as a practically relevant test system with promising scope in thermo- and electrochemical applications. The model detects over 20,000 atomic positions for the statistical analysis of important properties for establishing structure-performance relations over nanostructured catalysts, like the surface density, proximity, clustering extent, and dispersion uniformity of supported metal species. Good performance obtained on direct application of the model to an iron SAC based on carbon nitride demonstrates its generalizability for single-atom detection on carbon-related materials. The approach establishes a route to integrate artificial intelligence into routine TEM workflows. It accelerates image processing times by orders of magnitude and reduces human bias by providing an uncertainty analysis that is not readily quantifiable in manual atom identification, improving standardization and scalability.


Asunto(s)
Inteligencia Artificial , Carbono , Humanos , Microscopía Electrónica de Transmisión , Platino (Metal) , Reproducibilidad de los Resultados
20.
Retrovirology ; 19(1): 6, 2022 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-35346235

RESUMEN

BACKGROUND: Long-Term Non-Progressors (LTNPs) are untreated Human Immunodeficiency virus type 1 (HIV-1) infected individuals able to control disease progression for prolonged periods. However, the LTNPs status is temporary, as viral load increases followed by decreases in CD4 + T-cell counts. Control of HIV-1 infection in LTNPs viremic controllers, have been associated with effective immunodominant HIV-1 Gag-CD8 + T-cell responses restricted by protective HLA-B alleles. Individuals carrying HLA-B*14:02 control HIV-1 infection is related to an immunodominant Env-CD8 + T-cell response. Limited data are available on the contribution of HLA-B*14:02 CD8 + T -cells in LTNPs. RESULTS: In this study, we performed a virological and immunological detailed analysis of an HLA-B*14:02 LNTP individual that lost viral control (LVC) 27 years after HIV-1 diagnosis. We analysed viral evolution and immune escape in HLA-B*14:02 restricted CD8 + T -cell epitopes and identified viral evolution at the Env-EL9 epitope selecting the L592R mutation. By IFN-γ ELISpot and immune phenotype, we characterized HLA- B*14:02 HIV-1 CD8 + T cell responses targeting, Gag-DA9 and Env-EL9 epitopes before and after LVC. We observed an immunodominant response against the Env-EL9 epitope and a decreased of the CD8 T + cell response over time with LVC. Loss of Env-EL9 responses was concomitant with selecting K588R + L592R mutations at Env-EL9. Finally, we evaluated the impact of Env-EL9 escape mutations on HIV-1 infectivity and Env protein structure. The K588R + L592R escape variant was directly related to HIV-1 increase replicative capacity and stability of Env at the LVC. CONCLUSIONS: These findings support the contribution of immunodominant Env-EL9 CD8 + T-cell responses and the imposition of immune escape variants with higher replicative capacity associated with LVC in this LNTP. These data highlight the importance of Env-EL9 specific-CD8 + T-cell responses restricted by the HLA-B*14:02 and brings new insights into understanding long-term HIV-1 control mediated by Env mediated CD8 + T-cell responses.


Asunto(s)
Linfocitos T CD8-positivos , Infecciones por VIH , VIH-1 , Antígenos HLA-B , Infecciones por VIH/inmunología , VIH-1/fisiología , Antígenos HLA-B/genética , Humanos , Evasión Inmune , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA